
Tool Support for Analyzing the Evolution of Enterprise Architecture
Metrics

Manoj Bhat, Thomas Reschenhofer and Florian Matthes
Technische Universität München, Munich, Germany

Keywords: Enterprise Architecture Management, Metrics, Domain Specific Language.

Abstract: Managing the evolution of the Enterprise Architecture (EA) is a key challenge for modern enterprises. The EA
metrics are instrumental in quantitatively measuring the progress of an enterprise towards its goals. Retrospec-
tive analysis of EA metrics empower business users to take informed decisions while planning and selecting
efficient alternatives to achieve envisioned EA goals. Even though the current EA management tools support
the definition and calculation of EA metrics, they do not capture the temporal aspects of EA metrics in their
meta-model to enable retrospective analysis. In this paper, we first propose a model-based approach to capture
the temporal aspects of EA metrics and then extend a domain specific language to compute EA metrics at
any point of time in the past. This allows visualizing the evolution of EA metrics and as a consequence the
evolution of the EA.

1 INTRODUCTION

Enterprises continuously change, improve, and evolve
to respond to demands of their highly dynamic and
competitive business and IT environment (Rouse,
2005). The enterprise architecture (EA) is an es-
sential mechanism to capture requirements of their
environment and it is widely accepted as a mecha-
nism to achieve business and IT alignment (Matthes
et al., 2008). Typically, an EA documents the (a) cur-
rent state of the EA model, (b) target state as an en-
visioned long-term perspective, and (c) intermediate
planned states to achieve the target state (Roth et al.,
2013). By defining several planned states with re-
spect to an envisioned target state, decision makers
can define efficient alternatives for the desired change
and use an EA metric model to justify their decisions.
The EA metrics which are part of an EA model en-
able the measurement of the EA management (EAM)
endeavor and support the quantitative based manage-
ment of the EA targeting the predefined EAM goal
achievement (Bose, 2006).

Managing the transformation of an enterprise
from its current state to an envisioned target state
via planned states is a challenge (Buckl et al., 2009).
A key aspect in analyzing the managed evolution of
an EA is the understanding of the evolution of its
EA metrics which indicates the progress of an enter-
prise towards its target state. By considering EA met-

rics’ evolution in a collaborative environment, deci-
sion makers can collectively reconfigure the planned
states and select the appropriate alternative. There-
fore, in this paper we focus on the temporal aspects
of the EA metric model for analyzing the evolution of
metrics and as a consequence the evolution of the EA.

In the context of an EA, a clear definition of
the EA metric does not exist. In general, EA met-
rics aid in planning and controlling the structural and
behavioral aspects of an EA. The EA metrics cor-
responding to the structural aspects include quality
and acceptance-oriented metrics such as the project’s
quality plan availability (Matthes et al., 2012a). The
EA metrics encompass Key Performance Indicators
(KPIs) which correspond to the behavioral aspects of
an EA (e.g. Application Criticality Rating). In this
paper, the term metric refers to the EA metric that
captures both the structural and behavioral aspects.

Even though metrics have been extensively used
in Enterprise Performance Management systems for
business intelligence, there exists a perception of the
lack of metrics in EAM (Kaisler et al., 2005; Bose,
2006). This perception is changing as more and more
efforts are being invested to formulate metrics and to
map them with EAM goals (Matthes et al., 2012a).
The survey conducted by Hauder et al. (Hauder et al.,
2013), shows that the current EAM systems (85% of
the surveyed tool vendors) support the definition, cal-
culation, and visualization of EA metrics and 23% of

154 Bhat M., Reschenhofer T. and Matthes F..
Tool Support for Analyzing the Evolution of Enterprise Architecture Metrics.
DOI: 10.5220/0005370701540161
In Proceedings of the 17th International Conference on Enterprise Information Systems (ICEIS-2015), pages 154-161
ISBN: 978-989-758-098-7
Copyright c 2015 SCITEPRESS (Science and Technology Publications, Lda.)

the surveyed systems allow the customization of met-
rics with a domain specific language (DSL).

Although the current EAM tools support the defi-
nition of metrics through DSLs, these DSLs however
do not have the flexibility to compute the metric at a
particular point of time in the past. Furthermore, ma-
jority of the existing EA tools maintain version repos-
itories of EA models as a sequence of architectural
snapshots (Buckl et al., 2009). One of the issues with
the snapshot-based versioning is the incompleteness
of the information stored in versioning systems to per-
form quality retrospective analysis. As versioning of
EA models is not very frequent (quarterly, yearly, or
only when significant changes are made), changes in
the artifacts which affect business decisions could be
lost during subsequent versioning of an EA. More-
over, the task of downloading and processing sev-
eral versions from a repository is time-consuming and
resource-intensive (Robbes and Lanza, 2007).

Therefore, a means to index appropriate business
artifacts for quick access becomes vital in understand-
ing the continuous evolution of an enterprise over a
given period of time. The contribution of this paper is
twofold: first we conceptualize the temporal aspects
of metrics in an EA model. We then extend an exist-
ing DSL (Monahov et al., 2013) to facilitate the com-
putation of metrics at any given time in the past by us-
ing the information model’s history. In consequence,
this allows the visualization of EA metrics’ evolution
for instance, on a time series graph.

Organizationally, Section 2 reviews the related
work. Section 3 presents our approach to model the
temporal aspects in an EA model. Section 4 presents
a DSL to query the historized data and Section 5
presents the evaluation of our approach. In section
6, we conclude with a short summary.

2 RELATED WORK

Pourshahid et al. extend the Goal-oriented Require-
ment Language (GRL) with the concept KPI to mea-
sure business processes against business goals (Pour-
shahid et al., 2007). The meta-type KPI is modeled
with attributes including target value, threshold value,
and worst value. The concepts in the GRL model such
as goals, tasks, and actors are associated with the KPI
to provide the organizational context.

Popova and Sharpanskykh propose a meta-model
to capture the goal, KPI structure and relations be-
tween them (Popova and Sharpanskykh, 2010). The
meta-model captures the KPI as a concept with at-
tributes including name, definition, type, timeframe,
scale, and threshold. The attribute type captures the

unit (continuous or discreet) used to measure the KPI.
The attribute timeframe indicates the duration during
which the KPI is defined and the attribute scale indi-
cates the unit of measurement.

Strecker et al. present a method (MetricM) along
with a DSL named MetricML (Strecker et al., 2012).
The MetricM is integrated with the Multi-Perspective
Enterprise Modeling method to enrich the description
of the KPI with relevant enterprise context. The con-
cept indicator in the MetricML meta-model refines
the definition of the KPI as captured by Pourshahid et
al. and Popova and Sharpanskykh.

To ensure consistency in defining, documenting,
and retrieving KPIs, Matthes et al. introduced a uni-
form KPI description template to capture the general
structural elements and organization-specific struc-
tural elements of a KPI (Matthes et al., 2012b). The
general structural elements and organization-specific
structural elements of a KPI are listed in Table 1
and Table 2 respectively. Furthermore, based on
this template, an EAM KPI Catalog consisting of 52
literature-based and practice-proven KPIs was devel-
oped (Matthes et al., 2012a). This catalog also lists
EAM goals and maps them to KPIs.

Table 1: General Structural Elements of a KPI.

Property Description
Title A unique name of the KPI.
Description Detailed description of the KPI

and its purpose.
Goals Each KPI is related to at least one

of the EAM goals.
Calculation Textual description of how the

KPI has to be calculated based on
a certain information model.

Source Source of the KPI (literature or
practice).

Layers A KPI can be assigned to one or
more EA layers.

There also exists a large body of knowledge on
DSLs for ensuring non-functional requirements (e.g.
safety-critical concerns and quality assurance) of in-
formation systems through appropriate metrics. For
instance, in (Monperrus et al., 2008) authors propose
a language for calculating metrics that determine the
internal complexity, size, and quality of the domain
models. Similarly in (Klint et al., 2009), a DSL for
analyzing the source code of software systems is pre-
sented. In the context of an EA, Iacob and Jonkers (Ia-
cob and Jonkers, 2006) propose an approach based on
the ArchiMate enterprise modeling language to quan-
titatively measure the performance of the EA models.
Similarly, Johnson et al. (Johnson et al., 2007) extend

Tool�Support�for�Analyzing�the�Evolution�of�Enterprise�Architecture�Metrics

155

Table 2: Organization-specific Structural Elements.

Property Description
Measurement
frequency

The time interval between two
measurement points.

Interpretation Description of how the calculated
value should be interpreted (good,
acceptable, or bad).

KPI con-
sumer

The person who is interested in the
value of the KPI.

KPI owner The person responsible for the
KPI.

Target value The KPI value to be achieved.
Planned val-
ues

The KPI values to be achieved
while targeting the target value.

Tolerance
values

The allowed deviations from
planned and target values.

Escalation
rule

Steps to be taken when the target
EAM goal is not achieved.

the influence diagram notation (Expert, 2005) to sup-
port the quantitative analysis of the EA model prop-
erties including information security, performance,
availability, and interoperability.

Monahov et al. (Monahov et al., 2013) pro-
pose a DSL named Model-based Expression Lan-
guage (MxL) to formally define KPIs in the catalog
(Matthes et al., 2012a) and to allow their automated
calculation and evaluation. However, as discussed in
(Monahov et al., 2013), the current version of MxL is
not able to access the information model’s history to
compute the KPI at a point of time in the past.

Even though the aforementioned meta-models
capture EA metrics and its properties, they do not
consider the concept of time with respect to these met-
rics. Considering the temporal aspects in the meta-
model is necessary for analyzing the evolution of met-
rics. Furthermore, it enables the extension of the ex-
isting DSLs to query the information model with re-
spect to time and hence allows the calculation of met-
rics at any point of time in the past.

3 CAPTURING AN EA MODEL’S
EVOLUTION

A wide variety of EAM tools provide the capability to
model an EA and to analyze the data in a collabora-
tive environment (Matthes et al., 2008). However, to
address the challenges including the rigid information
structures and mismatch between unstructured infor-
mation sources in an EA, a model-based hybrid wiki
approach (Matthes and Neubert, 2011) was designed

and an EAM tool Tricia1 was developed. We
extend Trica in our approach for the following
reasons:

1. Tricia follows a model-driven approach to system
implementation and has a flexible meta-model
(Büchner et al., 2010).

2. Tricia’s MxL provides the capability to define and
compute metrics.

3. Tricia’s user-related services including access
control, search, versioning, and schema evolu-
tion allows controlled access to the information
model’s history and enables the computation of
EA metrics at any point of time in the past.

4. Tricia’s extensive enterprise-level collaborative
environment supports iterative development and
management of quantitative models.

First, we will extend the EA metric meta-model
with the temporal aspects. This is followed by a dis-
cussion on the extended version of the MxL that com-
putes metrics at any point of time in the past by ac-
cessing the information model’s history.

Figure 1, provides an excerpt of the EA metric
meta-model with the focus on the metric and its tem-
poral aspects. A detailed description of the Tricia
meta-model is discussed in (Büchner et al., 2010). In
the following sub-sections, we will discuss the con-
cepts relevant in our context and illustrate how these
concepts enable to capture the evolution of metrics.
Business Type, Business Attribute Definition, Busi-
ness Entity, and Business Attribute. The Business
Type and Business Attribute Definition allow the def-
inition of the information model’s schema. As shown
in Figure 1, the Business Type contains multiple Busi-
ness Attribute Definitions. A user (constrained by the
Role) can create multiple Business Entities represent-
ing a specific Business Type. A Business Entity can
contain multiple Business Attributes belonging to a
Business Attribute Definition. These concepts in the
meta-model allow users to create their own informa-
tion model and its schema at runtime.
Metric, Metric Function, Measurement Rule (MR)
and Metric’s Value. The concept Metric comprises
of the general structural elements and organization
specific structural elements as discussed in the pre-
vious section (not shown in Figure 1). The temporal
aspects of metrics are captured by its corresponding
MR. The frequency information captured in the MR is
used to trigger temporal events to recalculate metrics
and the timeSeriesType information is used to visual-
ize the evolution of metrics. The concept MR captures
the following attributes:

1http://infoAsset.de

ICEIS�2015�-�17th�International�Conference�on�Enterprise�Information�Systems

156

tr

Figure 1: Meta-model capturing temporal aspects of EA metrics.

• startDate: determines when to start monitoring a
metric. The default value is the time when the
metric was first defined.

• endDate: determines when to stop monitoring a
metric.

• frequency: the interval between two measure-
ment points; enumeration of values such as daily,
monthly, and quarterly.

• timeSeriesType: enumeration of values such as
continuous, discrete, linear, step-wise (Segev and
Shoshani, 1987) for interpolation.
Furthermore, as shown in Figure 1, a Metric is cal-

culated by a Metric Function which refers to multiple
Business Types, Business Attribute Definitions, and
other metrics for its calculation. The attributes of the
Metric Function are as follows:

• name: name of the Metric Function.
• description: description of the Metric Function.
• method: implementation script in a DSL.
• enableDomainEventListner: if the value is true,

the Metric Function listens to domain events.
When a business entity triggers a domain event
to re-compute a metric, the Metric Function is ex-
ecuted and the new metric value is persisted.

Events. We explicitly model events in the meta-
model to enable the re-computation of metrics. On
occurrence of a specific event, a new job is created
by a job scheduler to recompute the corresponding
metric. For better readability, dependencies from the
source of an event to a specialized event are not shown
in Figure 1. These events are classified as:

• Temporal event: Is triggered by the Measurement
Rule depending on the measurement frequency of
a metric, i.e. daily, monthly or quarterly.

• User triggered event: A user can trigger this event
at any point to accesses the updated metric value.

• Domain event: A domain event is triggered by a
Business Entity or Business Attribute when it is
modified (created, updated, deleted).

• Model change event: Is triggered by a Business
Type and Business Attribute Definition to repre-
sent a change in the information model’s schema.

To avoid performance issues in the system due
to frequent generation of domain events, a metric is
recalculated only when the corresponding Business
Type’s attribute canGenerateDomainEvent and the
Metric function’s attribute enableDomainEventList-
ner are set to true. In other words, domain events
are propagated through the system and metrics are
recalculated only when their corresponding flags are
enabled. For instance, let us consider the scenario
shown in Figure 2. The metric “IT continuity plan
for business applications (ITC)” depends on the Con-
tinuityPlan and BusinessApplication Business Types

Figure 2: Events.

Tool�Support�for�Analyzing�the�Evolution�of�Enterprise�Architecture�Metrics

157

whereas, the metric “IT continuity plan for business
applications supporting critical processes (ITCP)”
depends on the CriticalProcess Business Type and
the value of the ITC metric. As both enable-
DomainEventListner and canGenerateDomainEvent
flags corresponding to the ITC metric and its corre-
sponding Business Types are set to true any change in
instances of these Business Types results in the recal-
culation and persistence of the ITC metric. On the
contrary, changes in instances of CriticalProcess or
values of the ITC metric does not result in the re-
calculation of the ITCP metric as the corresponding
enableDomainEventListner flag is set to false.
Role of User. Tricia provides access control and con-
tent authoring mechanisms to manage user permis-
sions on the information model. The users or the
group of users can read, write, or administrate content
in the system. Similarly, user permissions and roles
can be set on metrics defined in the system (through
the MetricRole concept shown in Figure 1). The met-
ric consumers have read access, while the metric own-
ers are responsible for defining metrics and have both
the read and write access.

Capturing the aforementioned concepts in the
model allows persisting metrics as its corresponding
business entities evolve and as a consequence allows
the visualization of the metrics’ evolution (Figure 8).

4 A DSL FOR ACCESSING AN EA
MODEL’S HISTORY

By modeling the temporal aspects of metrics, we can
query the value of metrics in the past and can visual-
ize their evolution. However, if the temporal aspects
of metrics are not yet modeled, their values in the past
cannot be determined. In such scenarios, the informa-
tion model’s history needs to be accessed to compute
the past metric values. Tricia manages versions of its
entities and provides functionalities to compare ver-
sions and to restore previous versions of entities. As
shown in Figure 3, versions are managed in change-
sets which not only capture the value of the entity be-
fore its change, but also its entity type, type of change
(new, edit, delete), and modification timestamp.

An EAM tool that manages the information
model’s history and a DSL that can access the in-
formation model can facilitate evaluating a metric at
any point of time in the past. As Tricia meets the
above requirements, we extended the capabilities of
the MxL to compute metrics at any point of time in the
past. Furthermore, the MxL is independent of Tricia
and can be integrated within other EAM tools. The
MxL is specific to the EAM domain and is inspired

Figure 3: Versions of Entities.

by the Object Constraint Language (OCL) and Mi-
crosoft’s Language Integrated Query (LINQ) leading
to properties such as functional programming, object-
orientation, and sequence-orientation. A detailed de-
scription of the available data types, language con-
structs, and operations in the MxL with examples is
documented in (Monahov et al., 2013).

We extend the grammar of MxL by introducing a
new literal “@” that retrieves the state of the object at
a given time. That is, the MxL expression “Expres-
sion @ time” is not evaluated on the current state of
the information model but on the information model’s
history and the state of entities at a given time.

The abstract syntax tree (AST) generated by the
MxL parser containing the “@” literal sets the AtEx-
pression as a node in the AST with one MxL expres-
sion as the left operator and the other MxL expression
representing date as the right operator. This is illus-
trated in Figure 4 with a very simple example. The
AST is passed to the MxL type checker to validate
the static semantics of the language, which generates
a Typed Expression Tree (TET) to be executed by the
MxL execution engine. If the MxL expression refers
to Business Types and Business Attribute Definitions,

Figure 4: The AST containing the At Expression.

Figure 5: Evaluating MxL Expression with Date as String.

ICEIS�2015�-�17th�International�Conference�on�Enterprise�Information�Systems

158

m1 = f i n d (Employee) . where (s a l a r y >3000) . c o u n t () / / 3
m2 = f i n d (Employee) . where (s a l a r y >3000) . c o u n t () @pastDate1 / / 1
m3 = f i n d (Employee) . where (s a l a r y >3000) . c o u n t () @pastDate2 / / 1
m4 = f i n d (Employee) . where (s a l a r y >3000) . c o u n t () @

[Today , p a s t D a t e 1 , p a s t D a t e 2 , p a s t D a t e 3] / / [3 , 1 , 1 , 2]

Figure 6: Evaluating MxL Expression with date as MxlOb-
ject/parameter.

the MxL type checker ensures their existence in the
information model’s schema and retrieves them be-
fore generating the TET. Please refer (Reschenhofer
et al., 2014) for a detailed description on the MXL
type checker and the type system of the MxL.

With the introduction of the AtExpression, the
MxL type checker now has to determine the type of
the MxL Objects on a given date. However, if the
date itself is an MxL Object, the type of other MxL
Objects corresponding to this date cannot be deter-
mined at compile time but only at runtime. Thus, we
consider the following two scenarios:
Considering Date at Compile Time If the date is ex-
pressed as a string, the type checker ensures that the
date is in a fixed format and determines the date at
the compile time. As indicated in Figure 5, the type
checker queries the schema history and checks the
type of the objects corresponding to this date.
Considering Date at Runtime. As shown in Fig-
ure 6, if the date is an MxL Object, the type checker
checks the type of all MxL Objects with respect to the
current state of the information model’s schema. At
runtime, first the date is evaluated and then types of
all other MxL objects are retrieved from the schema
history and the expression is evaluated for this date.

Since Tricia maintains the change-sets of both
the information model and its schema, it is pos-
sible to evaluate the expression irrespective of the
change in either one of them. Let us con-
sider an exemplary use-case to calculate a metric
(m - “find(Employee).where(salary>3000).count()”).
This metric computes the count of employees with

Figure 7: Evolution of Entity.

the salary more than 3000. Note that the value of
the metric m changes as the business type Employee
and its business attribute definitions name and salary
evolve over time. As shown in Figure 7, evaluating
the MxL expression (1) corresponding to m1 at the
current point in time (Today), returns value: 3 which
is based on the current state of system. However, ex-
ecuting the MxL expression (2) representing the met-
ric m2 at the current point in time returns value: 1,
which is based on the state of the system at a point
of time in the past i.e. pastDate1. Furthermore, Fig-
ure 7 also shows that the schema itself is updated at
some point after pastDate2 and executing the MxL
expression corresponding to the metric m3 with the
date pastDate2, first checks for changes in the change-
set representing schema change and returns the result
corresponding to the schema at pastDate2. Also, the
“@” literal can be followed by a sequence of dates,
which returns a sequence of results corresponding to
each date in the sequence as captured in mertic m4.

5 EVALUATION

We conducted an analytical and observational evalu-
ation (von Alan et al., 2004) of the implementation
of the MxL’s At Expression. One of our industry
partners in the financial sectors provided the histor-

Tool�Support�for�Analyzing�the�Evolution�of�Enterprise�Architecture�Metrics

159

Figure 8: Evolution of NACL metrics.

ized data for the evaluation. Without loosing general-
ity, we imported the data with the timestamp of snap-
shots and updated the versions of artifacts to achieve
a consistent view on the evolution of the information
model. We then implemented metrics that are used to
measure the complexity of the application landscapes
(AL). These metrics (e.g., topology-based metrics
and heterogeneity-focused metrics (Lagerstrom et al.,
2014; Schuetz et al., 2013; Schneider et al., 2015)),
were identified by our research group in a related re-
search activity. The metrics used to measure the com-
plexity of the AL include the Number of Applications,
Number of Information Flows, and Number of Ap-
plications per Customization Level (NACL) metrics.
The customization level indicates the category of the
business applications such as buy, make, and buy and
customize. The historized data received from our in-
dustry partner was versioned quarterly from the first
quarter of 2012 to the fourth quarter of 2013. Using
the “@” operator to compute the Number of Applica-
tions in the past, the trend in the metric is visualized
in the Tricia platform. Similarly, the Number of In-
formation Flows metric is visualized on a time series
graph and is used to analyze the complexity and con-
nectedness of the AL. The complexity of the AL is
directly proportional to the number of interfaces (in-
formation flows) in each application. The NACL met-
ric determines the number of business applications in
different customization levels. The trend in the NACL
metric, as shown in Figure 8, enables executives to
compare and analyze where the company has been in-
vesting over the period of time.

6 SUMMARY, CONCLUSION AND
OUTLOOK

In this paper, we have discussed the temporal as-
pects of metrics and proposed a meta-model to cap-
ture them in the context of the EAM. In section 3,
we elaborated the concepts in the EA metric meta-
model and discussed how metrics can be persisted as
the information model changes. We then extended
the existing DSL named MxL for calculating metrics
based on the information model’s history. In section
5, we presented the evaluation of our approach. Al-
though we have successfully evaluated the EA metric
meta-model and the extension of MxL in our research
group, to comply to the observational evaluation as
defined in (von Alan et al., 2004), we still need to
study the usability and performance in a business en-
vironment. We propose to further collaborate with our
industry partners from the banking domain for evalu-
ating our approach with their application landscape
data. Furthermore, conducting interviews of enter-
prise architects in the respective partner organizations
will provide necessary inputs to improve our system
before testing it in their practical settings.

In general, the time series analysis comprises of
(a) developing the model that represents a time se-
ries and (b) predicting the future values based on that
model. In this paper, our focus has been on the for-
mer aspect i.e. developing the model that represents
the time series of metrics and analyzing their past evo-
lution. However, considering both aspects of the time
series analysis will further benefit decision makers in
taking informed strategic decisions. The time series
model of metrics will act as a base model to apply
evolutionary algorithms to predict the future metric

ICEIS�2015�-�17th�International�Conference�on�Enterprise�Information�Systems

160

values along the time series. In the future work, we
will validate this claim as well as evaluate the pro-
posed EA metrics model in a practical settings.

REFERENCES

Bose, R. (2006). Understanding mgmt. data systems for en-
terprise performance mgmt. Industrial Mgmt. & Data
Systems, 106(1):43–59.

Büchner, T., Matthes, F., and Neubert, C. (2010). Data
model driven implementation of web cooperation sys-
tems with tricia. In Objects and Databases, pages 70–
84. Springer.

Buckl, S., Ernst, A., Matthes, F., and Schweda, C. M.
(2009). Visual roadmaps for managed enterprise ar-
chitecture evolution. In Software Eng., Artificial In-
tell., Networking and Parallel/Distributed Computing,
2009. SNPD’09. 10th ACIS Int. Conf. on, pages 352–
357. IEEE.

Expert, H. (2005). Hugin api reference manual, version 6.4,
september 2005.

Hauder, M., Roth, S., Schulz, C., and Matthes, F. (2013).
Current tool support for metrics in enterprise architec-
ture management.

Iacob, M.-E. and Jonkers, H. (2006). Quantitative analysis
of enterprise architectures. In Interoperability of En-
terprise Software and Applications, pages 239–252.
Springer.

Johnson, P., Lagerström, R., Närman, P., and Simonsson,
M. (2007). Enterprise architecture analysis with ex-
tended influence diagrams. Information Systems Fron-
tiers, 9(2-3):163–180.

Kaisler, S. H., Armour, F., and Valivullah, M. (2005). En-
terprise architecting: Critical problems. In System Sci-
ences, 2005. HICSS’05. Proceedings of the 38th An-
nual Hawaii Int. Conf. on, pages 224b–224b. IEEE.

Klint, P., van der Storm, T., and Vinju, J. (2009). Rascal:
A domain specific language for source code analysis
and manipulation. In Source Code Analysis and Ma-
nipulation, 2009. SCAM’09. Ninth IEEE Int. Working
Conf. on, pages 168–177.

Lagerstrom, R., Baldwin, C., MacCormack, A., and Aier,
S. (2014). Visualizing and measuring enterprise ap-
plication architecture: An exploratory telecom case.
In System Sciences (HICSS), 2014 47th Hawaii Int.
Conf. on, pages 3847–3856.

Matthes, F., Buckl, S., Leitel, J., and Schweda, C. M.
(2008). Enterprise architecture management tool sur-
vey 2008. Techn. Univ. München.

Matthes, F., Monahov, I., Schneider, A., and Schulz, C.
(2012a). Eam kpi catalog v 1.0. Technische Univer-
sität München, Germany, Tech. Rep.

Matthes, F., Monahov, I., Schneider, A. W., and Schulz, C.
(2012b). Towards a unified and configurable structure
for ea management kpis. In Trends in Enterprise Ar-
chitecture Research and Practice-Driven Research on
Enterprise Transformation, pages 284–299. Springer.

Matthes, F. and Neubert, C. (2011). Wiki4eam: Using hy-
brid wikis for enterprise architecture management. In

Proceedings of the 7th Int. Symposium on Wikis and
Open Collaboration, pages 226–226. ACM.

Monahov, I., Reschenhofer, T., and Matthes, F. (2013). De-
sign and prototypical implementation of a language
empowering business users to define key performance
indicators for enterprise architecture management. In
EDOCW, 2013 17th IEEE Int., pages 337–346. IEEE.

Monperrus, M., Jézéquel, J.-M., Champeau, J., and
Hoeltzener, B. (2008). Measuring models. Synthesis,
19:20.

Popova, V. and Sharpanskykh, A. (2010). Modeling organi-
zational performance indicators. Information Systems,
35(4):505–527.

Pourshahid, A., Amyot, D., Chen, P., Weiss, M., and
Forster, A. J. (2007). Business process monitoring
and alignment: An approach based on the user re-
quirements notation and business intelligence tools. In
WER, pages 80–91.

Reschenhofer, T., Monahov, I., and Matthes, F. (2014).
Type-safety in ea model analysis. In EDOCW, 2014
IEEE 18th Int., pages 87–94.

Robbes, R. and Lanza, M. (2007). A change-based ap-
proach to software evolution. Electronic Notes in The-
oretical Computer Science, 166:93–109.

Roth, S., Hauder, M., Farwick, M., Breu, R., and Matthes,
F. (2013). Ea documentation: Current practices and
future directions.

Rouse, W. B. (2005). A theory of enterprise transformation.
Systems Engineering, 8(4):279–295.

Schneider, A. W., Reschenhofer, T., Schütz, A., and
Matthes, F. (2015). Empirical results for application
landscape complexity. Technical report, Darmstadt
Technical University, Department of Business Admin-
istration, Economics and Law, Institute for Business
Studies (BWL).

Schuetz, A., Widjaja, T., and Kaiser, J. (2013). Complexity
in enterprise architectures-conceptualization and in-
troduction of a measure from a system theoretic per-
spective.

Segev, A. and Shoshani, A. (1987). Logical modeling of
temporal data. In ACM Sigmod Record, volume 16,
pages 454–466. ACM.

Strecker, S., Frank, U., Heise, D., and Kattenstroth, H.
(2012). Metricm: a modeling method in support of
the reflective design and use of performance measure-
ment systems. Information Systems and e-Business
Management, 10:241–276.

von Alan, R. H., March, S. T., Park, J., and Ram, S. (2004).
Design science in information systems research. MIS
quarterly, 28(1):75–105.

Tool�Support�for�Analyzing�the�Evolution�of�Enterprise�Architecture�Metrics

161

