
Simple, Not Simplistic
The Middleware of Behaviour Models

Vladimir Estivill-Castro and René Hexel
School of Information and Communication Technology, Griffith University, Nathan, QLD, Australia

Keywords: Model-driven Engineering, Software Modelling, Behaviour Models, Middleware.

Abstract: There are many areas where software components must interact witch each other and where middleware pro-
vides the appropriate benefits of robustness, decoupling, and modularisation. However, there is a potential
performance overhead that, for autonomous robotic and embedded systems, may be critical. Proposals for
robotic middleware continue to emerge, but surprisingly, they repeatedly follow the publish-subscriber model.
There are several disadvantages to the push paradigm of the publisher-subscriber approach; in particular, its
implication of a closer coupling where the subscriber must be active and able to keep up with the pace of
events. We propose an alternative pull model, where consumers of messages handle information at their own
time. We show that our proposal aligns with fundamental, time-triggered design principles, and produces sim-
ple module communication that reduces thread management and can enable rapid prototyping, validation, and
formal verification.

1 INTRODUCTION

Nowhere is the need for middleware more apparent
than in the world of mobile robotics (Brugali, 2007).
The system on board a mobile robot consists of the in-
tegration of drivers of a multitude of simple and com-
plex sensors that deliver data at different rates and in
different volumes, with varying degrees of accuracy.
Filtering, sensor-fusion, information processing, and
analysis modules compute and construct the picture
that reflects the state of the robot and the world. Based
on this, locomotion, localisation, planning, reasoning,
and behaviour modules can collaborate in generating
the corresponding commands to output modules that
direct actuators and effectors to achieve complex mis-
sions and tasks. Thus, it is not surprising that in recent
years, several major projects have resulted in the pro-
duction of such robotic middleware. Currently, one of
the most popular suites is ROS (Quigley et al., 2009)
and some very recent analyses (Chitic et al., 2014)
place ROS somewhat ahead of the others when con-
sidered under the criteria for middleware. Neverthe-
less, there continue to be emerging proposals (Anza-
lone et al., 2014; Huang et al., 2010).

What motivates our argument here is that, from
the perspective of software engineering, these frame-
works have some important, common characteristics.
While they all use a blackboard control architec-

ture as the paradigm central to integrate the mod-
ules (agents) performing cognitive processes, han-
dling behaviours and managing adaption and prob-
lem solving tasks, they largely re-incarnate the pub-
lisher/subscriber pattern. While this pattern elim-
inates the need to create complex communication
mechanisms, the blackboard control architecture al-
lows a further level of decoupling by being data-
centric (vs. component-centric) not only in the value
domain, but also the time domain, which is impor-
tant for timing-critical systems such as robots, but re-
grettably, often overlooked. The provider may sup-
ply information for unknown consumers who may not
even be active at the time the information is provided.
There is no need to be aware of a consumer’s inter-
face, only the interface to the blackboard is necessary.
The blackboard also can be considered a repository
architecture (Sommerville, 2010, Page 159) as well
as the knowledge base of an artificial agent.

From the perspective of software architectures, the
flexibility of a blackboard is also incorporated into the
notion of a broker. Thus, it is not surprising that this
pattern has also emerged as the CORBA standard (of
the Object Management Group, OMG) with the aim
of facilitating communication on systems that are de-
ployed on diverse platforms. In simple terms, these
types of infrastructures enable a sender to issue what
we will refer to as an add message(msg : T) which is

189Estivill-Castro V. and Hexel R..
Simple, Not Simplistic - The Middleware of Behaviour Models.
DOI: 10.5220/0005371101890196
In Proceedings of the 10th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE-2015), pages 189-196
ISBN: 978-989-758-100-7
Copyright c 2015 SCITEPRESS (Science and Technology Publications, Lda.)

a non-blocking call. In a sense, posting msg to the
blackboard is simple. Such a posting may or may
not include additional information, e.g. a sender sig-
nature, a timestamp, or an event counter that records
the belief the sender has of the currency of the mes-
sage. But when it comes to retrieving the message,
there are essentially two modes.

subscribe(T; f): The receiver subscribes to mes-
sages of a certain type T (of an implied class) and
essentially goes to sleep. Subscription includes
the name f of a function. The blackboard will no-
tify the receiver of the message msg every time
someone posts for the given class T by invok-
ing f (msg) (usually queued in a type T specific
thread). This is typically called PUSH technology.

get message(T): The receiver issues a
get message to the blackboard that supplies
the latest msg received so far for the type T . This
is usually called PULL.

For example, ROS’ PUSH technology names a com-
munication channel, a ROS::topic (corresponding to
what we call a type). The modules posting or getting
messages are called nodes. Posting a message in ROS
is also called publishing1.

Development of robot-controlling software mod-
ules under the PUSH approach assumes predictable
communication latency. For instance, standard algo-
rithms in robotics, like the Kalman filter, would be
significantly less effective if the time between the sen-
sor reading and the execution of the filtering step was
randomly perturbed. The motion model would not be
able to make sufficiently accurate predictions, and the
integration of information provided by the next obser-
vation with the prediction would be jeopardised. Sim-
ilarly, issuing commands to actuators heavily depends
on the issuer having reasonably accurate information
of the position of the actuator at the time of issuing the
next command. If sensor information or control com-
mands are unboundedly delayed, the safety of actions
is seriously compromised, even with mobile robots
that are not considered hard real-time systems.

Surprisingly, the PUSH (subscriber with call-back)
approach is ubiquitous among all these proposals of
robotic middleware. Its choice implies several con-
sequences. First, the overall approach to behaviour

1In fact, there is another mechanism for communica-
tion, called ROS-services, which is essentially a remote-
procedure call, the requester/client (an example appears
later in Figure 3) invokes though the middleware a function
(client.call which is blocking) and obtains a data struc-
ture as a response (or a failure signal) from a call-back in a
server (an example appears alter in Figure 4). This also im-
plies significant handshaking, and sadly, the responses can-
not be objects; that is, not members of a class with methods.

#include <sys/types.h>

#ifndef temperature_msg_h
#define temperature_msg_h

struct wb_temp
{
 int8_t degC; ///< temperature in Centigrade

ifdef __cplusplus
 /** constructor */
 wb_temp(int8_t temp = 0): degC(temp) {}
endif
};

#endif // temperature_msg_h

Figure 1: a simple blackboard message in C, containing a
single temperature value (in Centigrade).

control becomes event-driven. That is, the treatment
is that events are deposited into the middleware which
relays them to call-backs from the subscribers or ser-
vice providers. This also implies an optimistic ap-
proach; namely, there is the assumption that there will
be sufficient computational resources to enact all the
threads generated and to execute the subscribers’ call-
backs. Moreover, events would occur with enough
sparsity that call-backs would be completed by the
time they are executed again, or alternatively require
to handle concurrency issues. Both of these aspects
actually are not uncommon, e.g., middleware provid-
ing facilities for queuing events for call-backs, or al-
ternatively, developers performing real-time analyses
to establish confidence in the correctness of the sys-
tem by evaluating the duration of a call-back. Per-
haps more dramatic are the coupling and timing con-
sequences: ultimately this approach assumes that sub-
scriber modules react or act on the data immediately,
thus data is presumed to be as fresh and as recent as
possible. Not only is timeliness taken for granted,
but so are sequencing and reliability of data. Such an
optimistic approach works in best-case and, perhaps,
average-case scenarios but it is well known to suffer
dramatically in the worst-case. It leads to more cou-
pling as senders must eventually be slowed down or
complex handshaking protocols have to be deployed
in order to raise tolerance to message loss.

2 SPHERE OF CONTROL

We look first at a typical scenario of data-driven in-
formation exchange, and we contrast using the PUSH
versus the PULL model. Later, we look at more com-
plex scenarios, but for simplicity, we start with a uni-
directional message. Figure 1 shows a simple C data
structure that contains a single value of a tempera-
ture sensor. Superficially, following the PUSH model
seems intuitive. A recipient might simply subscribe

ENASE�2015�-�10th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

190

to the temperature message in order to receive up-
dates whenever the temperature changes. However,
when analysing this further, a lot of questions arise.
First, who is to say when messages are posted? Is
this defined by the subscriber, by the publisher, or
by the API? The convention to only post changes ap-
pears obvious at first glance, but what is it that consti-
tutes a change? Does the sensor module need to poll
the hardware or is there an interrupt that gets gener-
ated whenever the temperature changes? Can differ-
ent hardware (e.g. with different temperature resolu-
tion) cause different message update rates? Will the
subscriber be able to keep pace with the publisher un-
der all circumstances? The answer to these questions
depends on the sphere of control (Kopetz, 2011) for
the relevant message. The PUSH paradigm of the pub-
lisher/subscriber model puts messages in the sphere of
control of the publisher. The subscriber will need to
keep up in order to not lose any messages, no mat-
ter whether that specific update rate is necessary or
convenient for the receiver. In other words, the tim-
ing of the subscriber is determined by (or tightly cou-
pled with) the publisher. While it would be possible
for the interface to not only specify the value domain
(e.g. int8 t, degrees Celsius), but also the time do-
main (e.g. an update rate of once per second), this
only increases the complexity of the interface (rais-
ing the question how the update rate should be veri-
fied or enforced). Furthermore, this approach does not
loosen the level of coupling. Quite the opposite, while
the pace of the subscriber is still dictated by the rate
with which messages are posted, now the pace of the
publisher is also mandated (by the temporal interface
specification). This does little to reduce the complex-
ity of the recipient, but may now add complexity to
the sender (e.g. hardware-driven transmitter modules
may now need to throw away messages that do not
comply with the interface’s timing specification).

We argue here that the sphere of control should
remain within the respective component. This means
that a publisher should be able to post a message
whenever practicable for the publisher (e.g. when the
hardware reports a new temperature value, or periodi-
cally, whenever the the software reads the temperature
value) while the recipient should be able to query the
current temperature whenever needed. This kind of
decoupling allows for an independent development of
components without the requirement for a full, tem-
poral specification of all interfaces upfront. While this
approach does not necessarily prevent an impedance
mismatch between the sender and the recipient, the
remedy is fairly simple and straightforward. If, for
example, the temperature sensor module does not pro-
vide sensor data fast enough, it can simply be replaced

by a faster module that plugs into the same interface.
On the other hand, if the recipient cannot keep up with
the sender, it can simply read the temperature values
at a lower pace that is more suited to the processing
that is done by that module.

3 SEPARATION OF CONCERNS

While in the previous section we looked at a model
where no synchronisation is required between two
components, the question arises whether the decou-
pled model is also suitable in situations where actions
need to be synchronised. A typical example is a con-
troller that sends a message for an action to be ini-
tiated and then waits for that action to have started
(or completed) before continuing. This example is
akin to the rendezvous model in the message passing
world, or a synchronous remote procedure call (RPC).

int32 desiredSpeed

int32 reportedSpeed

Figure 2: Speed controller ROS-service definition.

We now contrast an example that illustrates how this
can be achieved using the PULL paradigm without
having to resort to the tight coupling caused by the
PUSH paradigm. On the PUSH side (server with call-
back), we preset in Figure 2 a ROS-service definition
for a speed controller that takes a speed value (e.g.
in mm=s) and returns the current speed. The relevant
C++ code for a client for this service can be found in
Figure 3. The important bit is client.call(srv),
which is a synchronous RPC call that returns true if
the service call was successful. The actual response
from the service can be found in the response data
structure (i.e., reportedSpeed as per the definition
in Figure 2). Again, from a simplistic client’s per-
spective, this code structure can be viewed as ideal;
if, for example, the RPC call does not return until the
actuator has reached the desired speed, the example
code might be sufficient for the client to just check
the return value of the RPC call and then continue
accordingly. In practice, this paradigm has funda-

#include "ros/ros.h"
#include "speed_controller/Speed.h"
#include <cstdlib>

int main(int argc, char **argv)
{
 ros::init(argc, argv, "speed_demo");
 if (argc != 2)
 {
 ROS_INFO("usage: speed_demo desired_speed");
 return EXIT_FAILURE;
 }

 ros::NodeHandle n;
 ros::ServiceClient client = n.serviceClient
 <speed_controller::Speed>("speed");
 speed_controller::Speed srv;
 srv.request.desiredSpeed = atoi(argv[1]); // set speed
 if (client.call(srv))
 ROS_INFO("Speed: %d", (int)srv.response.reportedSpeed);
 else
 {
 ROS_ERROR("Failed to call service speed_controller");
 return EXIT_FAILURE;
 }

 return EXIT_SUCCESS;
} Figure 3: ROS speed controller client.

Simple,�Not�Simplistic�-�The�Middleware�of�Behaviour�Models

191

#include "ros/ros.h"
#include "speed_controller/Speed.h"

bool set(speed_controller::Speed::Request &req,
 speed_controller::Speed::Response &res)
{
 res.reportedSpeed = req.desiredSpeed;
 // <set actuator to desiredSpeed> //
 return true;
}

int main(int argc, char **argv)
{
 ros::init(argc, argv, "speed_controller_server");
 ros::NodeHandle n;

 ros::ServiceServer service = n.advertiseService("speed", set);
 ROS_INFO("Ready to set speed.");
 ros::spin();

 return EXIT_SUCCESS;
}

Figure 4: ROS speed controller server.

mental problems when it comes to translating from
a pure software perspective (e.g. in a distributed ob-
ject middleware system) to sensors and actuators in
the physical world. A key structural issue becomes
apparent when we look at a typical, simple server im-
plementation for this ROS speed controller (Figure 4).
Here we can see that the server does not even report
the actual speed (but simply copies the desired speed
back, as an acknowledgement of the speed that it is
aiming at). The reason for this is that in reality, ac-
tuators and sensors are often separate. It therefore
makes sense that, for simplicity, sensor and actua-
tor software modules are also kept separate. Adding
sensor functionality to an actuator module violates a
very important system development principle of sepa-
ration of concerns. Even if we assume that the actua-
tor module can easily access sensor data and therefore
replace the response code with res.reportedSpeed
= sensor.measuredSpeed; this would not help the
client, as the reported speed would represent the speed
when the command was issued, not when the actual
speed was reached. Such semantics neither justifies
the added complexity imposed on the actuator mod-
ule (server), nor does it justify the overhead of a syn-
chronous RPC. It would, of course, be possible to add
further complexity to the actuator module by making
it wait until the desired speed is reached. However,
this not only makes the actuator module more com-
plex as now sensor accuracy and the possibility of
a timeout have to be taken into account (what hap-
pens, e.g., if a robot is physically blocked? How
long should the actuator wait for the target speed to
be reached?). Such a design would also significantly
increase the complexity and coupling of the system as
a whole as a key question now becomes what should
happen if a new request comes in while the RPC from
the previous request has not yet returned. ROS queues
up these requests and does not service a subsequent
request until the current request has completed.2 This
makes adding of, e.g., emergency stop functionality
impossible through the same interface. If the RPC
service, on the other hand, allowed re-entrancy, this
would negate the simplicity of the client, as any com-

2ROS enables programatic mechanisms to define the
queues and their behaviour and calls to enable the call-backs
like ros spin() and ros spin one().

//
// speed.h
// temperature
//
// Created by Rene Hexel on 24/11/2014.
// Copyright (c) 2014 Rene Hexel. All rights reserved.
//

#ifndef temperature_speed_h
#define temperature_speed_h

#include <sys/types.h>

struct wb_speed
{
 /// speed in mm/s
 int32_t speed;
};

#endifFigure 5: The speed actuator/sensor blackboard message.

class:wb_speed, atomic, Speed_Control, "Speed_Control", Actuator
class:wb_speed, atomic, Speed_Status, "Speed_Status", Sensor

Figure 6: Separate control and status message slots.

mand might now be interrupted and overridden by a
subsequent command, even before the previous com-
mand RPC had returned (adding significant handling
complexity to the client).

We argue here that physical sensors and actuators
often impose an end-to-end control and verification
requirement that cannot conveniently be hidden by a
simplistic interface. In fact, such end-to-end control
can naturally be mapped to an asynchronous PULL
model where concerns of sensor and actuator (server)
components are separated from each other and from
the concerns and functionality of control components
(acting as RPC clients). Figure 5 shows a blackboard
message for the speed controller (akin to the tempera-
ture message in Fig. 1, but without boilerplate code
and C++ convenience constructor). The key differ-
ence to the ROS-service definition is that only a single
speed field is defined for both the (actuator) request
and the (sensor) response. Instead of modelling a syn-
chronous RPC with a parameter and a return value,
two idempotent, asynchronous messages are used, a
Control message for the actuator and a Status mes-
sage for the sensor (Figure 6). Both the actuator and
the controller components us the PUSH paradigm to
query their corresponding message slots.

This approach facilitates decoupling through nat-
ural encapsulation of concerns (e.g., an actor soft-
ware module only needs to be concerned with actu-
ator hardware; other concerns such as reading sensor
values are factored out into a sensor module, and con-
trol and error handling can be moved into a separate
controller module). Moreover, the control/status ap-
proach complements very well deterministic arrange-
ments of logic-labeled finite-state machines (LLF-
SMs) (Estivill-Castro and Hexel, 2013a; Estivill-
Castro and Hexel, 2013b; Estivill-Castro et al., 2014)
where each LLFSM is a module, as the arrangement

1. is scheduled sequentially (e.g., in a single thread),
so messages are automatically atomic and do not
require explicit synchronisation, and

2. transitions in LLFSMs are labeled by Boolean
expressions, not events (so they are not event-
driven).

ENASE�2015�-�10th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

192

4 CASE STUDIES

4.1 ROS, bride and smach vs Simpler
Model-driven Development

As we mentioned, the ROS framework has become the
de-facto standard for component-based robotics and
robotic software frameworks. It also offers a soft-
ware environment for networked robotics. In a sense
it completely covers all areas of software engineering
for experimental robotics (Brugali, 2007).

Its main tools for describing and developing be-
haviours on robots are smach (Bohren and Cousins,
2010) (a ROS-independent Python library to build hi-
erarchical state machines) and bride (a model driven
engineering tool chain based on Eclipse). We com-
pare control/status messages (with LLFSM) in the
exact scenario presented in the bride-tutorial: the
predator/prey setting. The corresponding model can
be developed with control/status messages with just 3
logic-labeled finite-state machines (LLFSMs). This is
demonstrated in a one-minute video.3 The impact of
status/control messages can be observed in this video.
Moreover, the three finite-state machines execute in
only one thread, and they constitute an executable
model; that is, they are exactly the software that is
actually running. The complete system is visible and
transparent.

One LLFSM is dedicated to the behaviour of the
prey, a second one to the behaviour of the predator,
and the third one controls the ROS simulator that cre-
ates the animation. Since the simulator is a central
tool in ROS, we are forced to use ROS-msg and ROS-
srv to interact with the turtle simulator. However, the
controller LLFSM (that keeps track of the status of the
simulation) uses our approach of separation of con-
cerns using status and control messages. It spawns the
prey, spawns the predator and receives a control sig-
nal when the predator finds the trace of the prey (in
order to delete the prey from the simulator and halt
the simulator).

By contrast, the bride model-driven approach
generates some of the code, mostly the corresponding
signatures and methods with empty bodies, and many
code sections that are not necessary and unused. The
software developer is required to then edit the code
and complete several other functions and procedures
in an environment invisible to the modelling tools.
That is, it is a one-way direction, the models generate
templates of the code, but once the code is completed,
one cannot use the modelling tools anymore.4

3youtu.be/fX7ANt03Xsc
4The tool used to design the machines in the prey-

More drastic is the contrast of the complexity of
artefacts. The bride tutorial requires the developer
to become familiar with

1. Node and computation specification diagrams for
capacity building; and as already mentioned, ex-
pertise to fill in the code in the generated tem-
plates.

2. Interconnection diagrams for system deployment.

3. smach diagrams for coordination building.

The bride-tutorial results in at least 5 (five) ROS
nodes (one predator, one prey, one turtle manager,
one turtle mover, and one paint detector), and 6 (six)
communication protocols. Each node implies at least
one thread, each communication protocol implies at
least one message and topic type and channel, corre-
sponding to management of 6 message-queues, and
corresponding call-back coding. The story does not
finish there, we further need a smach model with two
finite-state machines who also need instruments for
synchronisation and the connection diagram!

Also, a very serious problem is that, in this and
earlier bride-tutorials, many aspects of the rates of
publishing and call-back response are hidden. In fact,
if the launch does not get lucky, messages may be lost,
and the simulation may fail!

We believe this case study alone provides justi-
fication to the title of this paper. While bride and
smach are tools going in the right direction, they start
to suffer a blowing up effect similar to UML’s. Tools
should be simple to support (but not simplistic as to
actually complicate) the tasks at hand. One would
perhaps suggest that more sophisticated and compli-
cated tools are necessary for large, and more com-
plicated challenges and missions of field and service
robotics. However, our point here is that if the cog-
nitive map of even simpler systems is so large, and
its semantics so cumbersome, the actual potential for
fragile, error-prone scenarios in large systems is a real
obstacle. We are of the opinion that such tools would
not scale. Software developers would then simply re-
sort back to tools closer to the programming code.
Part of this is the simplistic (but unworkable) pub-
lish/subscriber model whose issues we analysed ear-
lier (see Sections 2 and 3). A simplistic approach
attempts to hide fundamental issues without solving
them (and therefore, they eventually re-emerge).

Another aspect is the enormous consumption of
resources that the resulting software typically requires

predator demo of LLFSM for clfsm is called MiCASE. It
offers many levels of abstraction, allowing to close an open
states, some features of MiCASE appear in another video
youtu.be/F8K4V78vUbk.

Simple,�Not�Simplistic�-�The�Middleware�of�Behaviour�Models

193

due to the optimistic nature of the underlying assump-
tions. In other words, in order to keep the probability
of failure (due to resource over-utilisation) low, CPU
and other resources have to be over-specified. More
dramatically, since multithreading and uncontrollable
multitasking is happening under the hood and behind
the scenes, it is close to impossible to validate and
formally verify the behaviour of such systems (and
as a consequence, even with massive resource over-
specification, the system as a whole remains a best-
effort system that cannot formally guarantee respon-
siveness under specific load or fault scenarios).

The expertise required with ROS tools like bride
and smach is not unattainable by system integrators or
application engineers, but certainly will exclude end
users and application architects from direct participa-
tion in specifying projects for robotic systems. Sim-
pler tools (control/status messages and LLFSMs) al-
low communicating behaviour to a broader audience
than those traditionally involved with the design, im-
plementation, and deployment of robotic behaviour.
We argue that this will become an even greater neces-
sity in the foreseeable future with a dramatic increase
in the number of applications in service robotics.

4.2 Teleo-reactive Models vs LLFSMs

Another trend in modelling software that describes
behaviour in robots is that of teleo-reactive pro-
grams (Nilsson, 2001; Morales et al., 2014). This for-
malism has been expanded in many directions, more
recently in an attempt to enable the formal verification
for robotics that must meet real-time deadlines (Don-
gol et al., 2014). The formalism is considered central
to describing behaviour in goal-oriented agents. We
argue that such a formalism suffers from similar chal-
lenges as modelling tools such as Behaviour Trees5,
in that their semantics for concurrent elements seems
simple, but, in fact, results in serious complications
because of its open concurrency model. Besides the
possibility of undefined behaviour (Hayes, 2008), the
problems are similar to those of UML state-diagram
semantics (Estivill-Castro and Hexel, 2013a).

In particular, teleo-reactive programs can nest
to create concurrency (Dongol et al., 2014, Fig 2).
Namely, a teleo-reactive behaviour is a description of
guarded programs of the form c! M where c is a
state predicate (synthesised involving a Boolean ex-
pression on the sensors of the robot, and the state of
the world) and M is either a (primitive) durative ac-
tion of a sequence of guarded programs. Thus, for
example, in the Herbert’s world (Brooks et al., 1988),

5(Billington et al., 2011) discusses the concurrency is-
sues of Behaviour Trees and how LLFSMs eliminate them.

codification by teleo-reactive programs (Dongol et al.,
2014, Fig 2) we have the top sequence description
behaviour (named robot) execute the sub-behaviour
collect if the environment variables indicate

(:holding^ depot empty)_:open^ at depot:

But then, the collect behaviour has its own sub-
behaviour, fetch, that happens when the environ-
ment variable see can, is true. We have 3 behaviours
running concurrently, observing shared variables de-
scribing the environment and creating all sorts of race
conditions, because as soon as the conditions be-
come false in the top-level teleo-reactive program, the
collect behaviour is to be suspended, which in itself
is to suspend the fetch behaviour.

Moreover, in implementations like ROS, the PUSH
model (with call-backs to subscribers or servers) suf-
fers the challenges illustrated earlier with our speed-
controller example (Figures 3 and 4), but now with
actual information about 5 aspects of the world
(holding – the sensor that determines if there is a
can in the grasper, depot empty – the sensory in-
formation about whether there is space in the table,
open – the sensor that determines if the joint of the
grasper is closed, at depot – the sensory informa-
tion of the robot’s location, and see can – whether a
can is visible in the front camera). The clarification of
the semantics of concurrency like this is usually terri-
bly laborious and cumbersome. Just see the lengthly
description in the UML standard on nested states, the
inconsistent semantics regarding launching threads in
Behaviour Trees, or complicated formulation of the
semantics of teleo-operated programs. We believe all
this leads to ineffective model-driven engineering.

Herbert’s world (at least at the level of (Don-
gol et al., 2014, Fig 2) where grasping a can of
soda is considered a primitive action) can be solved
with three concurrent LLFSMs executing in a single
thread, using the sequential semantics of LLFSMs.
The video youtu.be/qs-jmjxOXLI demonstrates this.

Again, the modelling is rather simple. One
LLFSM is responsible for searching through spin-
ning. This behaviour is slightly different if it is to
find a soda can or to find the table. When finding a
can, the robot spins to its left. When aligning itself
to the table, because of odometry, it can turn to the
side that is shorter (in the video, after picking up the
second can, it spins to its right). What to look for in
the search behaviour is controlled by a super-LLFSM
that governs the overall behaviour. The communica-
tions is via control/status messages.

Also, the localisation information of the robot is
communicated via status/control messages. The dis-
tance to an object in the environment (in polar coor-
dinates for the table) is the content of these messages.

ENASE�2015�-�10th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

194

Figure 7: The master LLFSM of Herbert’s world shows the
use of status messages in some of the transitions.

Thus, this highly decoupled paradigm does pay off.
The master behaviour also resumes the LLFSM

that drives the robot to a soda can, or back to the ta-
ble. This sub-LLFSM behaviour that walks in the di-
rection of a target is also different if aiming for a can
(in which a reactive control keeps the robot aligned
with the target strictly in front), while for the table, the
behaviour is more tolerant about keeping the table in
front (and although not immediately obvious, travels
faster). Again, the modelling with LLFSMs exploits
the decoupled but reliable communication that the
control/status messages provide. The master LLFSM
can issue requests to its sub-behaviours, using a con-
trol message, and the sub-behaviours can report their
progress with the status message.

The generic states of the master-llfsm for this
case study are shown in Figure 7. We also use
control/status messages for indicating whether a
can has been found, and more importantly, since
gusimplewhiteboard (Estivill-Castro et al., 2014)
enables messages to be C++-objects, we can in-
voke getters and setters on them. This is shown
in Figure 7, where the transition from the state
CAN FOUND to the state GRABBING CAN uses the vari-
able IDofTheCanFound to extract only one compo-
nent of the status message.

Moreover, this case study is a direct replication
of the classic robotic mission that gave fame to the
subsumption architecture (Brooks et al., 1988). We
still have to use some ROS-msg and some ROS-srv be-
cause the video was produced using the ROS-drivers
of the Kuka robot which is the standard platform for
the RoboCup@Work league. The video has been pro-
duced in the ROS interface of the Gazebo simulator.

Teleo-reactive programs are considered useful for
model checking, but we show here that the LLFSMs
can also be readily formally verified. Our tools trans-

late LLFSMs for standard model-checking tools such
as NuSMV. For instance:

1. The robot does not walk towards a can of soda
unless it has found one.

2. The robot does not walk towards the table unless
is has collected a can of soda.

Formal representation of these properties as CTL or
LTL formulas reveals that one has to be more precise.
Nevertheless, we prove the first one as follows.

If the value of ros:ok() holds true at least
until we reach the OnEntry section of state
SET SEARCH (where we resume spinning
looking for a can), then

� as long as ros:ok() holds true
– we could stay in the state SET SEARCH

looking for a can for an indefinite amount
of time (possible forever) or

– all transitions out of SET SEARCH (with
target some other state) in fact lead to the
OnEntry section of CAN FOUND (where
we resume the walking straight).

We emphasise the insights that model-checking
brings, as the LLFSM in Figure 7 actually implies 6
types of transitions from SET SEARCH (plus the pos-
sibility of not taking any). For each of the two tran-
sitions we have an exit point after the OnEntry sec-
tion, after the OnExit section without the execution of
the Internal section and after the execution of a finite
number of times of the Internal section and once the
OnExit section. Although this may seem elaborate, it
is certainly simpler than the teleo-reactive programs,
which are models that actually do not execute.

5 CONCLUSIONS

In distributed systems, the notion of idempotent
messages is crucial, ranging from embedded sys-
tems (Kopetz, 2011) to the scale of cloud comput-
ing. This means, the accidental or faulty re-sending
of a message should not damage or impede commu-
nication or adversely impact a protocol. However, the
PUSH approach does not achieve this. With PUSH,
you need to wait for an acknowledgement to ensure
your message was received exactly once, causing a
plethora of issues on how long to wait for such an ac-
knowledgement. The PULL model implements idem-
potence through the control/status approach. More-
over, the literature on fault-tolerant systems (Laprie,
1992) has already established that the PULL tech-
nology is robust to messages being lost, while the
PUSH technology relies on delivery guarantees. With

Simple,�Not�Simplistic�-�The�Middleware�of�Behaviour�Models

195

PUSH, you must have a channel that absolutely
never loses messages.

In Section 3, we used the example of the ther-
mometer to highlight how the PUSH technology im-
plicitly creates more coupling and affects the sphere
of control in unsatisfactory aspects. Also, the PUSH
approach does not scale up well. If the effect of a
command is to be observed by more than one entity,
the PUSH approach becomes susceptible to concur-
rency issues, e.g. if different subsystems have differ-
ent priorities. Moreover, in the case of middleware,
our implementations and their treatment of the case
studies here illustrates that end-to-end control through
the PULL approach is a simpler and more effective ap-
proach than the simplistic PUSH mechanism using a
subscriber/server with call-backs. This is exemplified
in in the first case study, where the PUSH approach
results in 6 times the number of treads of the PULL
approach. In the second case study, even if it were
implemented, the teleo-operated approach would im-
ply three times more threads. Minimising threads is
crucial to enabling model-checking and formal verifi-
cation. Additional threads exponentially explode the
state space.

REFERENCES

Anzalone, S. M., Avril, M., Salam, H., and Chetouani,
M. (2014). IMI2S: A lightweight framework for dis-
tributed computing. Simulation, Modeling, and Pro-
gramming for Autonomous Robots - 4th Int. Conf.,
SIMPAR, Bergamo, v. 8810 LNCS, p. 267–278.
Springer.

Billington, D., Estivill-Castro, V., Hexel, R., and Rock, A.
(2011). Requirements engineering via non-monotonic
logics and state diagrams. Evaluation of Novel Ap-
proaches to Software Engineering, v. 230, p. 121–135,
Berlin. Springer Verlag.

Bohren, J. and Cousins, S. (2010). The SMACH high-level
executive [ROS News]. IEEE Robotics & Automation
Magazine, IEEE, 17(4):18–20.

Brooks, R., Connell, J., and Ning, P. (1988). Herbert:
A Second Generation Mobile Robot : By Rodney
A.Brooks, Jonathan H.Connell and Peter Ning. A.I.
memo. Massachusetts Institute of Technology.

Brugali, D., ed. (2007). Software Engineering for Exper-
imental Robotics, v. 30 Springer Tracts in Advanced
Robotics. Springer-Verlag.

Chitic, S.-G., Ponge, J., and Simonin, O. (2014). Are mid-
dlewares ready for multi-robots systems? Simulation,
Modeling, and Programming for Autonomous Robots
- 4th Int. Conf., SIMPAR, Bergamo, v. 8810 LNCS,
p. 279–290. Springer.

Dongol, B., Hayes, I. H., and Robinson, P. J. (2014). Rea-
soning about goal-directed real-time teleo-reactive
programs. Formal Asp. Comput., 26(3):563–589.

Estivill-Castro, V. and Hexel, R. (2013a). Arrangements
of finite-state machines semantics, simulation, and
model checking. Int. Conf. on Model-Driven Engi-
neering and Software Development MODELSWARD,
p. 182–189, Barcelona. SCITEPRESS.

Estivill-Castro, V. and Hexel, R. (2013b). Module isola-
tion for efficient model checking and its application
to FMEA in model-driven engineering. ENASE 8th
Int. Conf. on Evaluation of Novel Approaches to Soft-
ware Engineering, p. 218–225, Angers Loire Valley,
France. INSTCC.

Estivill-Castro, V., Hexel, R., and Lusty, C. (2014). High
performance relaying of C++11 objects across pro-
cesses and logic-labeled finite-state machines. Sim-
ulation, Modeling, and Programming for Autonomous
Robots - 4th Int. Conf., SIMPAR, v. 8810 LNCS,
p. 182–194, Bergamo, Springer.

Hayes, I. J. (2008). Towards reasoning about teleo-reactive
programs for robust real-time systems. SERENE
RISE/EFTS Joint Int. Workshop on Software Engi-
neering for REsilient SystEms, p. 87–94, Newcastle
Upon Tyne, UK. ACM.

Huang, A., Olson, E., and Moore, D. (2010). Lcm:
Lightweight communications and marshalling. Intelli-
gent Robots and Systems (IROS), IEEE/RSJ Int. Conf.
on, p. 4057–4062.

Kopetz, H. (2011). Real-Time Systems - Design Principles
for Distributed Embedded Applications. Real-Time
Systems Series. Springer.

Laprie, J. (1992). Dependability: Basic concepts and termi-
nology. Laprie, J., ed., v. 5 Dependable Computing
and Fault-Tolerant Systems, p. 3–245. Springer Vi-
enna.

Morales, J. L., Sánchez, P., and Alonso, D. (2014).
A systematic literature review of the teleo-reactive
paradigm. Artif. Intell. Rev., 42(4):945–964.

Nilsson, N. J. (2001). Teleo-reactive programs and the
triple-tower architecture. Electron. Trans. Artif. In-
tell., 5(B):99–110.

Quigley, M., Conley, K., Gerkey, B. P., Faust, J., Foote, T.,
Leibs, J., Wheeler, R., and Ng, A. Y. (2009). Ros: an
open-source robot operating system. ICRA Workshop
on Open Source Software.

Sommerville, I. (2010). Software engineering (9th ed.).
Addison-Wesley Longman, Boston, MA, USA.

ENASE�2015�-�10th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

196

