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Abstract: In manufacturing enterprises, maintenance is a significant contributor to the total company’s cost. Condition 
Based Maintenance (CBM) relies on prognostic models and uses them to support maintenance decisions 
based on the current and predicted health state of equipment. Although decision support for CBM is not an 
extensively explored area, there exist methods which have been developed in order to deal with specific 
challenges such as the need to cope with real-time information, to prognose the health state of equipment 
and to continually update decision recommendations. We propose an approach for supporting analysts 
selecting the most suitable combination(s) of methods for prognostic-based maintenance decision support 
according to the requirements of a given maintenance application. Our approach is based on the ID3 
decision tree learning algorithm and is applied in a maintenance scenario in the oil and gas industry.

1 INTRODUCTION 

In manufacturing enterprises, high reliability, low 
environmental impact and safety of operations are 
important issues for every industry (Peng, Dong, and 
Zuo, 2010).  Maintenance is a significant contributor 
to the total company’s cost, so optimal maintenance 
policy in terms of cost, equipment downtime and 
quality should be identified (Garg, and Deshmukh, 
2006). Condition Based Maintenance (CBM) is a 
type of maintenance strategy, which relies on 
diagnostic and prognostic models and uses them to 
support decisions about the appropriate maintenance 
actions based on the current health state of a system 
through condition monitoring (Jardine, Lin, and 
Banjevic, 2006). Condition monitoring in 
manufacturing enterprises is increasingly realised 
with equipment-installed sensors, which have the 
capability of measuring with high frequencies a 
multitude of parameters. This capability leads to 
storage of a huge amount of data. Generating and 
storing Big Data has become possible due to recent 
developments in both hardware and data 
management software (Zikopoulos, and Eaton, 
2011).  

Big Data-driven CBM poses challenges to 
Decision Support Systems. These challenges are not 

easily addressed within the complex manufacturing 
environment, especially when dealing with 
maintenance where several factors should be 
considered simultaneously such as costs of 
maintenance actions as a function of time, safety 
issues and equipment degradation. 

Although decision support for CBM is not an 
extensively explored area, there exist several works 
focusing on combinations of methods that can be 
utilised for CBM decision support. Such methods 
deal with real-time data which are gathered in high 
frequency, develop prognostic models for the 
estimation of Remaining Useful Life (RUL) or 
Remaining Life Distribution (RLD) and provide 
recommendations for maintenance. In the current 
paper, we propose a practical approach for 
supporting analysts to select the most suitable 
combination(s) of methods for prognostic-based 
maintenance on the basis of Big Data according to 
the requirements of the application which they are 
involved with. 

Aiming to support prognostic-based maintenance 
in various application domains and for a wide range 
of functional and non-functional application 
requirements, we follow a practical multistage 
decision making approach. The basic idea of our 
hierarchical approach is to break up the problem of 
selecting the most suitable combination(s) of 
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methods for prognosis and prognostic-based 
maintenance, into a union of several simpler 
decisions about the suitability of the method 
combination depending on the functional and non-
functional application requirements by developing a 
Decision Tree (DT).  

To formulate the information found in the papers 
examined in our literature review in the form and 
structure needed for feeding the DT learning 
algorithm and building the DT, the following steps 
were performed. First, generic categories of methods 
for prognosis and prognostic-based maintenance 
were defined in our effort to avoid specific method 
extensions or variations used in the various papers 
and keep the resulting DT as generic as possible. 
Second, unique combinations of the previously 
defined generic methods, which are actually the leaf 
nodes of the DT, were identified in the papers 
reviewed. Third, rules for classifying the method 
combinations using criteria that depend on 
functional and non-functional application 
requirements were defined; such rules and criteria 
are used in the decision nodes of the DT. Fourth, for 
all method combinations identified, the fulfilment of 
the criteria used in the DT’s decision nodes was 
assessed. Finally, the appropriate DT learning 
algorithm was selected and fed with the training 
dataset.   

The rest of the paper is organized as follows: 
Section 2 presents the literature review; Section 3 
outlines the method filtering approach, while Section 
4 illustrates its application in a maintenance scenario 
in the oil and gas industry. Section 6 discusses the 
method filtering approach and the results and 
concludes the paper. 

2 LITERATURE REVIEW 

2.1 Literature Search and Pre-filtering 
of Results 

Several research works have examined and 
developed maintenance decision support methods, 
based on historical and real-time data as well as 
expert knowledge, in order to address different 
maintenance challenges. Most of the existing 
research works address maintenance issues for 
components subjected to condition monitoring in the 
context of Condition Based Maintenance (CBM). 
Maintenance decision support is related to 
reliability, safety and environmental issues as well 
as associated with equipment downtime costs in 
cases of breakdowns or malfunctions of machines 

(Peng, Dong, and Zuo, 2010). First, prognostic 
methods are applied and then decision methods are 
developed in order to provide prognostic-based 
recommendations. Table 1 summarises the 
prognostic-based decision support methods 
reviewed, as well as their inputs and outputs. The 
methods have been separated in two groups: one 
group supports the Prognostic (P) and the second 
one the Decision (D) step. 

The papers examined were identified by 
searching Google scholar with the keywords ‘CBM, 
‘recommendations’, ‘decision support’, ‘decision 
making’,’ manufacturing’, ‘maintenance’ in various 
combinations among them. We focused on papers 
dealing with the decision step of CBM. However, 
we realized that most of them proposed a 
combination of methods so that they develop a 
prognostic model based on real-time data and then, 
based on this, they provide recommendations for 
maintenance. The focus was on most recent papers, 
after 2008, with exceptions in cases where an older 
paper satisfied the keywords and proposed a novel 
and useful method which has not been extended 
until now. 

2.2 Categorising Methods 

The methods found in the literature for prognostic-
based decision support can be divided into the 
following generic categories:  

 Bayesian Network (BN), which also 
include Dynamic Bayesian Network 

 Neural Network (NN) 
 Statistical Analysis (SA), which include 

statistical techniques such as Statistical 
Quality Control (SQC), Support Vector 
Machine (SVM) and moving average.   

 Degradation Modelling (DM), which 
includes all the mathematical techniques 
dealing with representing the degradation 
process. 

 Reinforcement Learning (RL), such as 
State-Action-Reward-State-Action 
(SARSA) algorithm. 

 Markov Chain (MC)  
 Mathematical Programming (MP)-

Optimisation, which includes operational 
research methods such as linear, non-linear 
and stochastic dynamic programming  

 Markov Decision Process (MDP), which 
also includes Semi-Markov Decision 
Process (SMDP) and Partially Observable 
Markov Decision Process (POMDP). 
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 Rules (R), which include rule-based 
systems such as IF-THEN rules and Event-
Condition-Action (ECA) rules. 

2.3 Identifying Combinations of 
Methods 

As shown in Τable 2, there exist in the reviewed 
literature ten unique combinations of methods used 
for providing prognostic-based recommendations. 

3 METHOD FILTERING 
APPROACH 

3.1 Identifying Method Filtering 
Criteria 

Following our analysis of existing methods and 
combinations of methods, we propose criteria for 
selecting the appropriate ones based on the 
functional and/or non-functional requirements of 
specific applications. Selection should be based on 
desired output that the business analyst expects to 
get after the implementation of the method 
combination. Depending on the available input, 
different combinations of methods can be applicable. 
Another criterion is whether Domain Knowledge 
(DK) can be expressed in terms of utility functions. 
Finally, the existence of degradation knowledge 
affects the selection of the appropriate prognostic 
methods and thus the selection of the suitable 
combination of methods. 

3.2 Evaluating Methods 

Based on the information given in Table 1, the 
identified combinations of methods are evaluated 
according to the four specified criteria. Evaluation of 
method combinations on the criteria of available 
input and desired output was done based on the 
information summarized in Table 1. For evaluating 
method combinations on the other two criteria, we 
examined in more detail the information provided in 
the respective papers. Desired output can be either 
the optimal time of applying a predefined action 
(e.g., optimal time of replacement of some part of 
equipment) or the optimal action and the optimal 
time of applying it (e.g., lubrication of metal parts 
accompanied with the optimal time). Available input 
can include historical data about cause (e.g., 
vibration, temperature, etc.) and effect (e.g., failure, 
malfunction, etc.) or prognostic information. 

Knowledge of the degradation process is a 
prerequisite for some prognostic methods, while this 
is not the case for others. Table 3 shows the 
evaluation of the methods’ combinations using the 
four specified criteria. 

3.3 Decision Tree Learning 

The data presented in Table 3, were fed into a DT 
learning algorithm, i.e. a DT classifier, in order to 
produce the DT for supporting analysts perform 
prognostic-based maintenance in various application 
domains and for a wide range of functional and non-
functional application requirements. DT classifiers 
have the ability to handle data which are measured 
in different scales, they do not require any 
assumptions about the frequency of data in each 
class, while they are able to handle non-linear 
relationships between features and classes. 
Furthermore, the analyst can comprehend and 
interpret a decision tree as it is not a ‘black box’ 
(Pal, M., and Mather, 2003). The ID3 (Iterative 
Dichotomiser 3) algorithm, that was used in our 
case, classifies all training data provided that there 
are enough attributes to do so.  

There are several extensions of the ID3 
algorithm, such as J48, C4.5 and C5.0, which, 
among others, are able to handle continuous 
attributes, training data with missing attribute values 
and attributes with differing costs. However, these 
capabilities are not useful in our case because there 
are not any related issues to address. Moreover, 
these additional capabilities provide improvements 
in terms of speed and memory usage, which are 
nevertheless not needed in our case because it 
consists of a small number of combinations of 
methods and the DT learning is done once. Finally, 
the aforementioned extensions of ID3 create smaller 
DTs because the probability of over-classifying the 
data is much smaller compared to ID3. However, in 
our case, we want to separate our method dataset as 
much as possible. The four criteria used for the 
separation of the combinations of methods and their 
alternative values were defined in an abstract level. 
This means that if, for example, two combinations of 
methods are classified in the same class, they are not 
necessarily the same and cannot be used 
interchangeably because e.g., their input may require 
additional, more specific data or knowledge than 
those specified in Table 3. 

The ID3 decision trees algorithm is based on 
information theory and tries to minimize the number 
of comparisons among the data of the training set. 
The   core   idea   behind   the   algorithm  Is   asking 
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Table 1: Reviewed Research Works on Prognostic-based Decision Support. 

Reference  Methods Input Output 

(Kaiser, and 
Gebraeel, 

2009) 

P BN; DM Real-time and historical data; 
Threshold; Replacements 

Estimation of RLD 

D R RLD; Costs of maintenance; Process 
knowledge 

Compute/update maintenance 
schedule 

(Besnard, 
and 

Bertling, 
2010) 

P DM; MC (Continuous 
time); 

Degradation condition monitoring; 
Degradation process 

RUL; Failure rate 

D MC (Continuous time); 
MP; R 

RUL; Failure rate; Maintenance and 
production knowledge and costs 

Optimal maintenance strategy 

(Besnard, et 
al., 2011) 

P - - - 
D MP (Stochastic); R Wind forecasting ; Failure rate; List of 

actions; Production and maintenance 
knowledge and costs 

Minimised cost of production 
losses and transportation 

(Castro, et 
al., 2012) 

P DM Real-time and historical data; Threshold Mean Residual Life; Times of 
replacement 

D MP (cost minimisation) Mean Residual Life; Times and costs of 
maintenance 

Minimised maintenance cost; 
Optimum policy 

(Wu, et al., 
2007) 

P NN; MP (Non-linear 
programming); SA 
(Moving average) 

Real-time and historical data; Threshold Residual Life Percentile 
Prediction 

 
D MP (Non-linear 

programming) 
Predicted Residual Life Percentile; 
Times of operation; Costs related to 

maintenance 

Minimised cost; Optimal 
replacement time 

(Ivy, and 
Nembhard, 

2005) 

P SA (SQC) Real-time and historical data; States; 
Threshold 

Transition Matrix; Estimation 
of observation distribution 

parameters 
D MDP (POMDP) Transition Matrix; Estimation of the 

observation distribution parameters; 
Maintenance costs 

Minimised expected cost ; 
Optimal maintenance and 

monitoring actions 
(Aissani, 
Beldjilali, 

and 
Trentesaux, 

2009) 

P RL (SARSA algorithm) Real-time and historical data; 
Degradation and maintenance 

knowledge 

Solution of SARSA 
algorithm; Probabilities of 

events 
D MDP Solution of SARSA algorithm; 

Probabilities of events 
Predictive and corrective 

maintenance tasks 
(Elwany, 

and 
Gebraeel, 

2008) 

P DM Real-time and historical data; Failure 
threshold 

RLD 

D MP (replacement 
model) 

RLD; Costs of maintenance; Lead times 
of spare parts 

Optimal replacement and 
inventory ordering times 

(Bouvard, 
et al., 2011) 

P DM; SA Real-time monitoring; Degradation 
process; Threshold 

Failure probability; Estimated 
degradation path; Time-to-

failure 
D MP (maintenance 

optimization) 
Failure probability; Time-to-failure; 

Maintenance costs 
Optimal maintenance cost and 

planning 
(Huynh, 

Barros, and, 
Berenguer, 

2012) 

P DM Condition monitoring; Degradation 
process 

Reliability; Probability 
density function 

D MP (dynamic 
replacement model); R 

Reliability; Probability density function; 
Cost function 

Replacement Time 
Estimation; Optimised cost 

(Muller, 
Suhner, and 
Iung, 2007) 

P BN (DBN) Real-time and historical data; Process Degradation process; 
Prognosis 

D MC (Discrete time); R Degradation process; Prognosis; List of 
actions; Costs 

Optimal maintenance policy 

(Engel, 
Etzion, and 
Feldman, 

2012) 

P BN Real-time monitoring; Historical data of 
transitions 

Probability distribution of an 
event; Time-to-failure 

D MDP 
 

Probability distribution of an event; 
Time-to-failure; States; Actions; Cost 

function 

Optimal action; Optimal time 
of action 
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Table 2: Methods and Techniques for Decision Making. 

Reference BN NN SA DM MC RL MP MDP R 
(Kaiser, and Gebraeel, 2009) v   v     v 
(Besnard, and Bertling, 2010)    v v  v  v 

(Besnard, et al., 2011)       v  v 
(Castro, et al., 2012)    v   v   

(Wu, et al., 2007)  v v    v   
(Ivy, and Nembhard, 2005)   v     v  

(Aissani, Beldjilali, and Trentesaux, 2009)      v  v  
(Elwany, and Gebraeel, 2008)    v   v   

(Bouvard, et al., 2011)    v   v   
(Huynh, Barros, and, Berenguer, 2012)    v   v  v 

(Muller, Suhner, and Iung, 2007) v    v    v 
(Engel, Etzion, and Feldman, 2012) v       v  

Table 3. Methods’ combinations evaluation. 

 
Combinations 

of methods 
 

Desired Output 

 

Available input 

 

DK expressed in 

utility function 

Knowledge of the 

degradation process 

Time of 
action 

Action 
and time 

Historical 
data 

Prognosis Yes No Yes No 

NN-SA-MP v  v   v  v 
BN-DM-R  v v   v v  
BN-MC-R  v v  v  v  
RL-MDP  v v  v   v 

DM-MC-MP-R  v v  v  v  
SA-MDP  v v  v  v  

DM-MP-R  v v   v v  
DM-MP v  v   v v  
MP-R  v  v  v  v 

BN-MDP  v v  v  v  
 
 

               

 

questions the answers of which provide the most 
information. The splitting criteria are prioritized 
according to the information gain; splitting criteria 
with more information gain are used first. The 
decision tree is constructed by employing a top-
down, greedy search through the given sets to test 
each attribute at every tree node. Information is 
measured by the entropy which represents the 
amount of uncertainty of a data set D (Chen, Zhang, 
and Tong, 2014). Based on the entropy, the 
information gain can be measured. Information gain 
is the difference in entropy from before to after the 
data set D is split on an attribute A or equally, how 
much uncertainty in the data set was reduced after 
splitting it on an attribute A (Gaddam, Phoha, and 
Balagani, 2007). 

The DT was built by feeding the combinations of 
methods identified in the literature as training data to 
the decision tree learning algorithm and shows the 
sequence of steps needed to be followed by an 
analyst in order to decide which combination(s) of 
methods are the most appropriate ones for a specific 

problem. The pseudo-code of the application of the 
ID3 algorithm for the classification of the 
combinations of methods according to the four 
criteria is shown below (adapted from (Jin, De-lin, 
and Fen-xiang 2009)):  
 

ID3 (Set of combinations of methods D, 
Set of criteria-attributes S, Criteria-
Attributes_values V)  
Return Decision Tree. 
Begin 
 

Load set of combinations of methods D 
first, create decision tree root  node 
'rootNode', add learning set D into 
root node  as its subset. 
 

For rootNode, we compute  
 H(rootNode.subset) first 
 If H(rootNode.subset)==0, then  

 rootNode.subset consists of 
records all with the same 
value for the  categorical 
criterion-attribute,  
return a leaf  node with 
decision criterion-
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attribute: criterion-
attribute value;  

 If H(rootNode.subset)!=0, then  
compute IG for each  
criterion-attribute left 
(have not been used in  
splitting), find attribute S 
with Maximum(IG(D, S)). 
Create child nodes of this 
rootNode and add to rootNode 
in the decision tree. 
For each child of the 
rootNode,  

apply ID3(D, S, V) 
recursively until reach  
node that has H=0 or 
reach  leaf node. 

End ID3 
 

Our problem was formulated in the ID3 notation 
using the RapidMiner machine learning software, 
while the DT obtained after running ID3 is shown in 
Figure 1. 

4 APPROACH ILLUSTRATION 
IN A MAINTENANCE 
SCENARIO 

In this section, we outline how our method filtering 
approach can help in selecting the most appropriate 
method combination for supporting decision making 
in a maintenance scenario in the oil and gas industry. 
In the scenario under consideration, sensors collect 

data with a very high frequency, and these data 
accompanied with historical data and domain 
knowledge are used for detecting the current health 
state of the equipment examined, estimating RUL 
and calculating the probability distribution of an 
undesired event, e.g., breakdown of the gearbox of 
an oil drilling company’s equipment. Historical data 
show the patterns of the monitored parameters, 
which are used as indicators of degradation till 
failure. Domain knowledge can include a list of 
maintenance actions, failure threshold as well as 
utility functions considering criteria such as cost, 
time and safety. Then, the optimal action and the 
optimal time of applying it are recommended.   

The DT flow in the aforementioned scenario is 
shown in Figure 2. First, as far as the available input 
is concerned, in the aforementioned scenario there 
are historical data about causes (sensed parameter) 
and effects (failure) but not prognostic information 
(e.g. RUL, probability distributions of the 
occurrence of failure, etc.), while data are 
continuously updated with the ones coming from 
sensors. 

The prognostic information is not known in 
advance, but it will derive from the processing and 
analysis of data by using the appropriate method. 

The output of this method will feed into another 
method for providing recommendations. Then, the 
desired output is the optimal action and the optimal 
time for this action, because the objective is to 
identify the best maintenance action out of a list of 
actions   as   well as the  best  time to implement it in 

   

Figure 1: Method filtering process for choosing the appropriate combination of methods. 
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Figure 2: Method filtering process in a maintenance scenario. 

terms of cost. 
DK can be expressed in utility functions as there 

is extensive industrial experience on the domain 
which can be expressed in a systematic way. Issues 
about cost function, safety, current maintenance 
policy, etc. can be embedded to a utility function 
which can be used in optimization techniques in 
order to provide reliable recommendations. Finally, 
there is knowledge of the degradation process.  
Hence, there are four options: BN-MC-R, DM-MC-
MP-R, SA-MDP and BN-MDP. 

For example, for the BN-MDP combination, BN 
are used for data-driven estimation of probability 
distribution of an undesired event (e.g. gearbox 
breakdown) and MDP for generating 
recommendations about optimal maintenance 
actions and optimal time for applying these actions. 
Moreover, this particular combination can 
effectively support decision-making in 
manufacturing enterprise and especially for CBM 
(Engel, Etzion, and Feldman, 2012). This case 
shows that MDP and MC are the most suitable 
methods for extracting this output provided that 
some domain knowledge exists and probability 
distribution of an undesired event has been extracted 
from machine learning or statistical methods. 

5 CONCLUSIONS 

CBM relies on prognostic models and uses them to 

support decisions about the appropriate maintenance 
actions based on the current health state of a system 
through condition monitoring (e.g. using sensors). 
To do this, combinations of both machine learning 
and decision methods are required in a way that they 
are able to handle real-time data and provide 
recommendations for maintenance decisions based 
on predictions about future health state of the 
equipment.  

We examined literature that deals with methods 
supporting decision making in the context of CBM. 
The method filtering approach that we propose 
supports the business analyst to select the most 
appropriate combination(s) of methods based on the 
requirements of the specific maintenance scenario. 
Our method may recommend more than one 
alternative method or method combinations, which 
are applicable in specific maintenance scenarios and 
under specific conditions. In such cases however, 
methods or combinations of methods that are 
classified in the same class are not the same and, 
while our filtering method cannot discern between 
them, a human expert should be able to do so by 
taking into account additional data or knowledge in 
order to select the most appropriate. Although we 
identified several combinations of methods that are 
used for prognostic-based maintenance 
recommendations, most are not able to adequately 
support proactive decision making by 
recommending the optimal action and the optimal 
time of applying it based on predictions.  
Furthermore, there are limitations regarding the 
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continuous improvement of the recommendations 
using these combinations of methods. 

Our future research will focus on the 
examination and incorporation of additional machine 
learning and decision methods specifically targeting 
proactive decision support. Moreover, we will 
extend our method filtering approach with a 
feedback loop, which will support collection of data 
about the effectiveness of the recommended 
decisions and will utilize the collected data as a basis 
for improving the recommendation generation 
process. Finally, we will test and evaluate our 
approach in real maintenance scenarios in the oil & 
gas and automotive industries.  
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