
BPMN4V
An Extension of BPMN for Modelling Adaptive Processes using Versions

Imen Ben Said1, Mohamed Amine Chaâbane1, Eric Andonoff2 and Rafik Bouaziz1
1University of Sfax, MIRACL, route de l’aéroport, BP 1088, 3018 Sfax, Tunisia

2UT1-IRIT, 2 rue du Doyen Gabriel Marty, 31042 Toulouse Cedex, France

Keywords: BPMN4V, BPMN4V-Modeller, Versions, BPMN, Process Adaptation, Process Variability.

Abstract: This paper presents BPMN4V, an extension of BPMN 2.0 to support business process adaptation modelling
using versions. It introduces the provided extensions to the BPMN meta-model to take into account the
notion of version, considering both static and dynamic aspects of process versions. It also presents
BPMN4V-Modeller, an implementation of these extensions. Therefore, using BPMN4V business process
designers can model process adaptation, which is an important issue to address before the definitive
acceptance and use of business process management systems in companies.

1 INTRODUCTION

Versions are now known to be a powerful
mechanism to address business process adaptation
(Kradolfer and Geppert, 1999); (Zhao and Liu
2007), which is a key challenge for the definitive
acceptance and use of process information systems
in companies (Smith and Fingar, 2003); (Dumas et
al., 2005); (Weske, 2007). First, versions are useful
to facilitate the migration of instances from an old
process schema to a new one. Indeed, changes
performed on running instances may affect activities
already executed, making the migration impossible
(Casati et al., 1996): then versioning is very useful
as it allows the running of several instances of a
same process according to different schemas. In
addition, as defended in (Chaâbane et al., 2009),
versions are appropriate to address the three main
types of process adaptation (Nurcan, 2008);
(Schonenberg et al., 2008); (Weber et al., 2009): (i)
adaptation by design, for handling foreseen changes
in processes where strategies to face these changes
are not necessarily defined at design-time but must
be specified at run-time (e.g., late modelling and late
binding (Adams et al., 2006)), (ii) adaptation by
deviation, for handling occasional unforeseen
changes and where the differences with the initial
process are minimal, and, (iii) adaptation by
evolution, for handling unforeseen changes in
processes, which require occasional or permanent

modifications in process schemas. More precisely,
when modelling versions of process schemas, it is
possible to model both process schema evolution
and process schema variability (using alternative
versions). Consequently, versions enable business
process designers to address adaptation by evolution,
adaptation by design, including late modelling and
late binding, and also adaptation by deviation
(Chaâbane et al., 2009).

We examined different contributions from
literature which advocate the introduction of the
version notion to deal with process adaptation (e.g.,
(Kradolfer and Geppert, 1999); (Zhao and Liu,
2007); (Chaâbane et al., 2009); (Lu and Sadiq,
2009); (Hallerbach et al., 2010). These propositions
are interesting but they have two main drawbacks.
First, they mainly focus on the behavioural
dimension of processes, leaving aside their
organizational and informational dimensions.
However, these dimensions have also to be
considered when dealing with process adaptation,
since adaptation may be related to the resources
involved during process execution or to the
information being managed during process
execution. Secondly, each of these contributions
introduce specific notations, which are not standards
and are unlikely to be used by process designers who
are in charge of modelling variability of processes.

On the other side, BPMN is recognized as the de-
facto standard for business process modelling.
Promoted by the OMG (OMG, 2011), it is widely

258 Ben Said I., Amine Chaâbane M., Andonoff E. and Bouaziz R..
BPMN4V - An Extension of BPMN for Modelling Adaptive Processes using Versions.
DOI: 10.5220/0005376102580267
In Proceedings of the 17th International Conference on Enterprise Information Systems (ICEIS-2015), pages 258-267
ISBN: 978-989-758-098-7
Copyright c 2015 SCITEPRESS (Science and Technology Publications, Lda.)

used by process designers involved in business
process projects to model processes as a set of
synchronized activities and events. However, BPMN
does not integrate concepts to model variability of
processes.

Some extensions have been recommended to
face this drawback. First, (Korherr and List, 2007)
and (Santos et al., 2010) extended BPMN with the
notion of goal to deal with process adaptation issue.
For instance, in (Korherr and List, 2007), goal
models are used to define the possible variations of
processes. However several different process
schemas may co-exist all together while sharing the
same goal. Therefore, only considering goal is not
enough to deal with adaptation by design, adaptation
by deviation and adaptation by evolution. Secondly,
(Ben Said et al., 2010) and (Ben Said et al., 2014a)
recommended the extension of BPMN with the
notion of version to address process adaptation
issue. On the one hand, (Ben Said et al., 2010)
advocated the use of the VBP2M meta-model to
define versions of processes, and recommended a
model driven engineering approach to have a BPMN
graphical representation of process versions
modelled as instances of VBP2M. However, this
contribution does not really extend BPMN, which is
only used as a target notation for process version
modelling. Moreover, the proposed meta-model does
not integrate all the BPMN concepts and needs to be
improved to provide a more comprehensive view of
the modelled processes. On the other hand (Ben Said
et al., 2014a) really extended the BPMN meta-model
for process version modelling. However (Ben Said
et al., 2014a) has the following drawbacks: (i) it
does not introduce any graphical notation for process
version modelling, only focusing on the introduction
of the notion of version in BPMN meta-models, (ii)
it does not investigate the dynamic aspects of
process version management, and finally, (iii) it does
not present any tool supporting process version
modelling.

This paper extends the proposition of (Ben Said
et al., 2014a) addressing the dynamic aspects of
process version management defining several states
for process versions and corresponding operations. It
also recommends a graphical notation for
representing version concepts. This notation is used
in BPMN4V-Modeller, a tool intended to business
process designers, and supporting the modelling of
BPMN business process versions. Note that this
paper focuses on intra-organizational processes,
which are modelled in BPMN through private
processes, which are internal to a specific
organization. It does not consider inter-

organizational processes (modelled as collaborations
in BPMN) which will be the focus of a future work.

This paper is organized as follows. Section 2
presents the BPMN4V meta-model which extends
BPMN 2.0 meta-model to deal with process
adaptation/variability using versions. Section 3
focuses on the dynamic aspects of BPMN4V; it
introduces the different states a version may have
during its life cycle, along with the basic operations
for version management. Section 4 presents
BPMN4V-Modeller, a specific tool for process
version modelling along with the graphical notation
advocated for the notion of version. Finally, section
5 concludes the paper and gives some directions for
future works.

2 BACKGROUND: THE BPMN4V
META-MODEL

Figure 1 gives an overview of the BPMN4V meta-
model (Ben Said et al., 2014a), which combines
BPMN 2.0 concepts for the modelling of the three
main dimensions of processes, i.e. the behavioural,
the informational and the organizational dimensions,
along with the notion of version.

More precisely, the behavioural dimension of a
process supports the description of the process
activities and their synchronization along with the
events happening during its execution through the
notion of FlowElementContainer which gathers
SequenceFlow, FlowNode (Gateway, Event, and
Activity), and Data Object. A SequenceFlow is used
to show the order of FlowNode in a process. It may
refer to an Expression that acts as a gating condition.
A Gateway is used to control how SequenceFlow
interact within a process. An Event is something that
happens during the course of a process. It can
correspond to a trigger, which means that it reacts to
something (catchEvent), or it can throw a result
(throwEvent). An Event can be defined by one or
more EventDefinitions. An Activity is a work
performed within a process. An Activity can be a
Task (i.e., an atomic activity) or a Sub Process (i.e.,
a non-atomic activity). A Task is used when the
work is elementary (i.e., it cannot be more refined).

Regarding the organizational dimension of
processes, an activity is performed by a
ResourceRole. A ResourceRole can refer to a
Resource. A Resource can define a set of parameters
called ResourceParameters. A ResourceRole can be
a Performer, which can be a HumanPerformer,
which can be in turn a PotentialOwner.

BPMN4V�-�An�Extension�of�BPMN�for�Modelling�Adaptive�Processes�using�Versions

259

Figure 1: BPMN4V Meta-model for Modelling Process Version.

Regarding the informational dimension of
processes, an ItemAwareElement references element
used to model the items (physical or information
items) that are created, manipulated and used during
a process execution. An ItemAwareElement can be a
DataObject, a DataObjectReference, a Property, a
DataStore, a DataInput or a DataOutput.

In order to take into account the notion of
version in BPMN 2.0, (Ben Said et al., 2014a)
recommends modelling for each versionable concept
both the concept itself and the versions it gathers.
For instance, (Ben Said et al., 2014a) advocates to
model the processes themselves in a class and their
versions in a separate class. Two specific
relationships are added between these two classes:
the is_version_of relationship which makes a link
between a concept and its versions, and the
derived_from relationship which makes a link
between the versions themselves.

(Ben Said et al., 2014a) recommends to handle
versions for seven BPMN 2.0 concepts in order to
model process variability: Process, Sub Process,
Event, Activity, ItemAwareElement, Resource, and
ResourceRole. The idea is to keep track of changes
occurring to components participating to the
description of the way business is carried out.
Therefore, as explained before, for each of these
concepts, BPMN4V provides two classes and two
relationships, shown in grey and blue in Figure 1.

3 DYNAMIC ASPECTS OF
BPMN4V

In order to handle versions of processes modelled as

instances of the BPMN4V meta-model, we
recommend a taxonomy of operations which allows
creating, deriving, updating, validating and deleting
process versions. This section introduces these
operations, giving a state chart indicating when they
are available, and detailing the actions they perform
according to the classes in which they are defined.

3.1 State Chart for Versions

The UML state chart given in Figure 2 indicates
when operations for versions are available with
respect to the version state. Some of them are
available whatever the state of the version on which
they are performed, while others are available only
in some cases. In the state chart, each operation is
described using the notation Event/Operation whose
meaning is “if Event appears then Operation is
triggered”.

Figure 2: UML State Chart for Versions.

When the Create order event appears, the Create
operation is carried out to create both a concept
(e.g., a process) and its corresponding first version.
The state of the created version is working (W). In
this state, a version is not yet a final one, and it can
be updated (Update operation). It can also be deleted
(Delete operation) or validated (Validate operation).
When the Validate operation is performed, the

ICEIS�2015�-�17th�International�Conference�on�Enterprise�Information�Systems

260

corresponding version becomes stable (S). This state
indicates that a version is a final one, on which no
additional updates can be performed. A stable
version can serve as basis for the creation of a new
version using the Derive operation. The created
version has the same value as the version from
which it is derived, and its state is working.

3.2 Operations for Version
Management

In addition to the previous state chart, these
operations require further details. For instance,
Create or Update operations permit to define (add or
delete) elements of the version components. These
components change according to the considered type
of version on which the operation is performed:
version of process, version of activity (sub-process
or task), version of event, version of ItemAware
Element, version of Resource and version of
ResourceRole. Moreover, regarding the Derive and
Validate operations, they can trigger the derivation
or the validation of versions of their components.
Sections below give the semantics of these
operations.

3.2.1 Create and Update Operations

Table 1 gives the definition of Create and Update,
indicating the actions these operations include.

Table1: Create and Update Operations.

VBPMN Concepts Actions

Process/Sub-Process

+/- Activities
+/- Events
+/- Sequence Flows
+/- Gateways

Activity
+/- Information
+/- Resource Role
Define Type

Event
Define Type
Define Information

ItemAwareElement
Define Type
Define Structure

Resource +/- Parameter

ResourceRole
Define Resource
Define Type

For instance, the creation or the update of a
process or a sub-process includes actions supporting
the addition (+) or the deletion (-) of activities,
events, sequence flows and gateways to define the
behavioural dimension of the process or the sub-
process. In the same way, the creation or the update
of an activity includes actions supporting the
addition (+) or the deletion (-) of ItemAware
Elements produced or required by the activity, the

addition (+) or the deletion (-) of ResourceRole (e.g.,
to define the role involved in activity realization),
and the definition of the activity type.

Therefore, Table 1 indicates that the Create and
Update operations change according to the classes in
which they are defined. However, they share the
same general idea that is to give values to properties
and relationships of the considered classes.

3.2.2 Validate Operation

The Validate operation is performed if a working
version becomes stable (i.e., it does not need
additional updates). Validation of a version may
trigger the validation of other versions, which are
linked to it. Figure 3 shows the validation
propagation.

Figure 3: Validation propagation.

For instance, the validation of a process version
triggers the validation of its versioned components
(i.e., versions of activities and versions of events). In
the same way, the validation of an activity triggers
the validation of versions of ItemAwareElement
(data) and versions of ResourceRole it references.

3.2.3 Derive Operation

The Derive operation allows creating a new version
from an existing stable version. The created version
is a working version. Before being updated, it has
the same value as the derived one. Moreover,
derivation of a version may trigger the derivation of
other versions, which are linked to the derived one.
Figure 4 illustrates this derivation propagation.

Figure 4: Derivation propagation.

BPMN4V�-�An�Extension�of�BPMN�for�Modelling�Adaptive�Processes�using�Versions

261

This propagation is due to the composition
relationships existing between Process (FlowElemen
tContainer) and Activity, Event, ItemAwareElement,
Resource and ResourceRole (FlowElement).
Therefore, the derivation of a resource triggers the
derivation of its corresponding ResourceRole and
the derivation of a ResourceRole or an
ItemAwareElement triggers the derivation of the
corresponding activity. In the same way, the
derivation of an activity or an event triggers the
derivation of its corresponding process or sub-
process.

4 BPMN4V-MODELLER

BPMN4V-Modeller is a dedicated tool for
modelling business process versions as instances of
the BPMN4V meta-model. It is an extension of the
already existing Eclipse BPMN Modeller plug-in: it
extends this later by integrating (i) new icons for
representing versions, (ii) new Eclipse views to
show version details and, (iii) new contextual menus
and Eclipse dialogs to implement dynamic aspects of
versions.

This section illustrates the use of BPMN4V
Modeller through an example of adaptive process.
More precisely, the section introduces the Damage
Compensation process example, gives a brief
overview of the BPMN4V-Modeller and illustrates
how we can use it to model versions of the Damage
Compensation process.

4.1 Illustrative Example

Figure 5 hereafter shows two versions of the
Damage Compensation process of an insurance
company. Basically, this process contains five
activities: Receive Request, Review Request, Send
reject letter, Calculate claim amount and Financial
settlement. The first version is given in Figure 5(a).
This version starts when a client files a claim. After
checking the claim, a reject letter is sent if the
request is not accepted. Otherwise, the claim amount
is calculated by the insurance manager using Grid
Calculator, and the financial service prepares and
sends the financial settlement. In addition, the
insurance agency has modelled a second version of
this process to face an increasing number of its
customers. Figure 5(b) shows this new version,
introducing an Expertise activity (a new activity
used when the damage amount exceeds 1000$) and
modifying both the start Claim Filed event and the
Receive Request and Calculate claim amount

activities (their type have changed). To sum up, we
have two versions of the Damage Compensation
process, two versions of the Claim Filed event and
two versions of the Receive Request and Calculate
claim amount activities: the first version of both
Receive Request and Calculate claim amount
activity are used in the first version of the process
while the second ones are used the second version of
the process. In addition, the sequence flows and
gateways have been modified in the second version
of the process. Finally, regarding the Claim Filed
event, in the first version of the process, it is a none
start event indicating that this version starts when
the client gives its Claim File (a paper data); in the
second process version, it becomes a message event,
indicating that the client sends the Claim File (an
electronic data) as a message via the insurance web
site.

Figure 5: Versions of the damage compensation process.

4.2 BPMN4V Modeller Overview

Figure 6 gives an overview of BPMN4V-Modeller.
The central part of the screenshot (part) is the
drawing canvas of the process version schemas. The
right part of the figure (part) defines the set of
widgets that can be used to define process version
schemas: events, activities, gateways and sequence
flows. The left part of the figure (part , and)
corresponds to the added Eclipse views.

More precisely, the drawing canvas provides
multiple tabs, each one being used to model and
display a separate BPMN diagram. Each diagram
represents a particular version of a process. To
highlight the notion of version, we decorate the tab
name, the activity shape and the event shape with
the following icon . This icon is used to mark that
any element (process, activity or event) shown in the
drawing canvas is a version. For instance, in Figure
6, the drawing canvas contains the process VP1-1
(the icon decorates the VP1-1 tab); in addition,
VP1-1 contains two versions of events and five

ICEIS�2015�-�17th�International�Conference�on�Enterprise�Information�Systems

262

Figure 6: BPMN4V-Modeller overview.

versions of activities, each being decorated with the
same icon.

Regarding the added Eclipse views, they mainly
display versions details. Actually, the Versions Data
view gives the corresponding: process name, its id
and its state; it also details the activities and
eventsthat make it up. More precisely, the Versions
Data view presented in Figure 6 part indicates that
the active tab contains the version of process
identified by VP1-1, which is a stable version, and
which corresponds to the first version of the Damage
Compensation process.

Moreover, this view indicates (i) that this version
of process is composed of the first versions of Claim
Filed (VE1-1) and End (VE2-1)events and of the
first versions of the following activities: Receive
Request (VA1-1), Review Request (VA2-1), Send
reject letter(VA3-1), Calculate claim amount (VA4-
1), and Financial settlement (VA5-1) and (ii) that all
these versions are in the stable state.

The Hierarchy view aims to show the derivation
hierarchy of the selected versionable concept of the
active drawing canvas. In Figure 6 part, the
Hierarchy view shows the derivation hierarchy of
the Damage Compensation process since the
selected versionable concept is this process.

Finally, the List of Activities view, presented in
Figure 6 part, shows all the modelled activities
and their corresponding versions.

4.3 Implementing Dynamic Aspects of
Version Management

In order to implement the dynamic aspects of
versions in BPMN4V-Modeller, we propose
contextual menus and Eclipse dialogs. Actually, we
added the Handle Version contextual menu on each
versionable concept. This menu implements the
operations presented before (cf. section 3.2).
Therefore, we provide Eclipse dialogs to update and
to validate working versions and to derive stable
ones. Regarding the Create operation, it can be
performed using either the tool palette to create new
activities, events, etc., or the Create Process dialog
to create new processes.

In order to illustrate the implementation of these
operations more clearly, we detail in the following
how to create, validate, derive, and update versions
of processes using the BPMN4V-Modeller,
considering the two versions of the Damage
Compensation process previously presented.

To model the first version of this process, the
designer has to create a new process using the
Create Process dialog. Then, he has to define the
versions of activities and events that make up the
process, according to two possible scenarios: either
he can create a new activity (or event) from the tool
palette, or he can reuse an existing version of
activity (or event) from the List of Activities view.
Figure 7 gives a UML sequence diagram which
details the interaction between the user and

BPMN4V�-�An�Extension�of�BPMN�for�Modelling�Adaptive�Processes�using�Versions

263

Figure 7: Sequence diagram for creating a new process version.

BPMN4V-Modeller illustrating (i) the creation of a
new process and thus its first version, and (ii) the
definition of two versions of activities for this
process version.

Once the first version is defined, the designer can
use the Validate command from the Handle Version
contextual menu to validate this version. Thus the
version becomes stable and consequently changes
are no longer possible on this version.

Figure 8 presents the result of (i) the creation of
the first version of the damage compensation
process, (ii) the definition of its components
(including versions of events and activities), and (iii)
its validation (the version state moves from working
to stable).

In order to design the second version of the
damage compensation process (cf. Figure 5(b)), the
designer has to first derive the first version of this
process (i.e., VP1-1), and then to perform the
necessary changes. To do so, the designer can use
either the Derive Process Version dialog or the
Derive command from the Handle Version
contextual menu. In each case, the derivation results
in the creation of a new tab that contains a copy of
the derived version.

More precisely, when the designer derives VP1-
1, a new tab named VP1-2 appears in the drawing
canvas. VP1-2 is a working version that corresponds
to the second version of the damage compensation
process and it has the same definition as VP1-1.

Figure 8 part is a screenshot illustrating the
Derive Process Version dialog used to derive VP1-1,
and figure 8 part shows the result of the
derivation of this version.

Moreover, Figure 9 presents a UML sequence
Diagram detailing the interaction between a process
designer and BPMN4V-Modeller for deriving a
version of process using Derive Process Version
dialog.

However, as indicated before, the new created
process version VP2-1 has to be updated to be
consistent with the process definition presented in
Figure5 (b). Updating a process version can be
performed by (i) adding versions of activities (or
events), (ii) deleting existing versions of activities.
(or events), (iii) modifying existing versions of
activities (or events), or (iv) modifying coordination
of the process by adding or deleting gateways and
sequence flows. More precisely, the addition of
versions of activities can be performed using the
Define Process Version of Component dialog. This
dialog displays details about versions of activities
(or events) previously modelled (name, derivation
hierarchy…) and permits to add the selected version
to the active drawing canvas. Figure 10 is a UML
sequence diagram detailing interaction between a
process designer and BPMN4V-Modeller when
updating a version of process using the Define
Process Version of Component dialog.

The modification of existing versions of
activities can be performed using the Update Activity
Version dialog. This dialog displays details about the
selected activity version and permits specific
modifications available to activity versions:
modifying type of activity, adding or deleting
version of information, adding or deleting version of
resources.

ICEIS�2015�-�17th�International�Conference�on�Enterprise�Information�Systems

264

Figure 8: Derivation of VP1-1.

Figure 9: Sequence Diagram for Process Version Derivation using the Derive Process Version dialog.

Figure 10: Sequence Diagram for Process Version Update.

BPMN4V�-�An�Extension�of�BPMN�for�Modelling�Adaptive�Processes�using�Versions

265

Figure 11: Update VP1-2 using Define Process Version of Component Dialog.

Figure11 gives more details about updating VP2-
1. It presents how we add the Expertise activity to
VP2-1. More precisely, the Update command of the
contextual menu, shown in this figure, performs
Define Process Version Component dialog used to
add the first version of this activity.

Due to lack of space, we do not give additional
details about process version update.

5 CONCLUSION

This paper has presented BPMN4V, an extension of
BPMN addressing process adaptation issue using
versions.

More precisely, this paper has illustrated how to
model versions of processes in BPMN 2.0, in order
to describe process variability, taking into account
the behavioral, informational and organizational
dimensions of processes. To do so, the BPMN 2.0
meta-model has been extended to integrate version
modelling capability and therefore to be able to
define variability of activity, event, sub process,
process, resource, resource role and data. Moreover,
the paper has also dealt with dynamic aspects of
process version management, defining state charts
for process versions and the corresponding
operations. Finally, the paper has introduced
BPMN4V-Modeller, a tool supporting the modelling
of BPMN business process versions, implementing
the dynamic aspects of version management, and
defining a graphical notation for process versions.

An example is used to illustrate the creation,
derivation, validation and update of two process
versions (including versions of activities and
versions of events).

The advantages of our contribution are the
following. First, and as defended in the introduction
and in (Zhao and Liu, 2007) (Chaâbane et al., 2009);
(Ben Said et al., 2014a), adding such version
modelling capability to BPMN makes the modelling
of process variability easier. Secondly, the proposed
solution promotes the reuse of versions. Thus the
designer is not required to provide the entire
definition of the modelled processes. He can reuse
versions (of sub process, of activities, of events, etc.)
previously modelled. Finally, our contribution
extends the main process version contributions
found in literature as follows:

 It takes into account not only the behavioural
dimension of processes but also their
informational and organizational dimensions
when dealing with process variability: indeed,
these dimensions have to be taken into account to
have a comprehensive view of process
adaptation,

 It defines the dynamics aspects of version
management, mainly identifying operations for
process version management and indicating
when these operations can be performed,

 It implements these propositions in BPMN4V-
Modeller, a specific tool intended to business
process designers.

ICEIS�2015�-�17th�International�Conference�on�Enterprise�Information�Systems

266

Our future works will take three directions. First, we
will evaluate BPMN4V-Modeller in a specific
evaluation workshop involving BPMN practitioners
and master degree students (having knowledge in
business process management). Second, we will
address inter-organizational process variability,
adding versions to BPMN 2.0 collaborations. Third,
we will integrate the notion of context in our
proposition in order to model another interesting
dimension of versions of processes, the why
dimension, which supports the explicit definition of
situations in which process versions have to be used
(Ben Said et al., 2014b), (Nurcan and Edme, 2005).

REFERENCES

Kradolfer, M., Geppert, A., 1999. Dynamic workflow
schema evolution based on workflow type versioning
and workflow migration. International Conference on
Cooperative Information Systems, Edinburgh,
Scotland, September 1999, pp. 104–114.

Zhao, X., Liu, C., 2007. Version Management in the
Business Change Context. International Conference
on Business Process Management, Brisbane,
Australia, September 2007, pp. 198–213.

Chaabane, M. A., et al., 2009. Versions to Address
Business Process Flexibility Issue. European
Conference on Advances in Databases and
Information Systems, Riga, Latvia, September 2009,
pp. 2–14.

Smith, H., Fingar, P., 2003. Business Process
Management: the Third Wave. Megan-Kiffer Press,
2003

Dumas, M., et al., 2005. Process-Aware Information
Systems: Bridging People and Software through
Process Technology. Wiley & Sons, 2005.

Weske, M., 2007. Business Process Management:
Concepts, Languages, Architectures. Springer-Verlag
2007.

Casati, F., et al., 1996. Workflow Evolution. International
Conference on the Entity Relationship Approach,
Cottbus, Germany, October 1996, pp. 438–455.

Nurcan, S., 2008. A Survey on the flexibility
Requirements related to Business Process and
Modelling Artifacts. International Conference on
System Sciences, Waikoloa, Big Island, Hawaii, USA,
January 2008, pp. 378–387.

Schonenberg, H., et al., 2008. Process Flexibility: a
Survey of Contemporary Approaches. CAiSE
Workshop, Montpellier, France, June 2008, pp. 16–30.

Weber, B., et al., 2009. Dynamic Process Lifecycle
Support: a Survey on Dynamic Changes in Process-
Aware Information Systems. Computer Science,
Research and Development, Vol. 23, n°2, 2009, pp.
47–65.

Adams, M., et al., 2006. Worklets: a Service-Oriented
Implementation of Dynamic Flexibility in Workflows.

International Conference on Cooperative Information
Systems, Montpellier, France, October 2006, pp. 291–
308.

Lu, S., et al., 2009. Defining Adaptation Constraints for
Business Process Variant. International Conference on
Business Information Systems, Poznan, Poland, April
2009, pp. 145–156.

Hallerbach, A., et al., 2010. Capturing Variability in
Business Process Models: the Provop Approach.
Software Maintenance, Vol. 22, n°6-7, June 2010, pp.
519–546.

OMG, 2011. Business Process Model and Notation
(BPMN) Version 2.0. OMG Document Number:
formal/2011-01-03, available at: http://www.omg.org/
spec/ BPMN/2.0, 2011.

Korherr, B., List, B. 2007. Extending the EPC and the
BPMN with Business Process Goals and Performance
Measures. International Conference on Enterprise
Information Systems, Funchal, Madeira, Portugal, June
2007.

Santos, E., et al., 2010. Configuring the Variability of
Business Process Models Using Non-Functional
Requirements. CAiSE Conference on Business
Process Modeling, Development and Support,
Hammamet, Tunisia, June 2010, pp 274–286.

Ben Said, I., et al., 2010. A Model Driven Engineering
Approach for Modelling Versions of Business
Processes using BPMN. International Conference on
Business Information Systems, Berlin, Germany, May
2010, pp. 254–267.

Ben Said, I., et al., 2014a. Extending BPMN2.0 Meta-
models for Process version Modelling. International
Conference on Enterprise Information Systems,
Lisbon, Portugal, May 2014, pp. 384–393.

Ben Said, I., et al., 2014b. Context-Aware Adaptive
Process Information Systems: The Context-BPMN4V
Meta-Model. International Conference on Advances in
Databases and Information Systems, Ohrid,
Macedonia, September 2014, pp. 366–382.

Nurcan, S., Edme, M. H. 2005. Intention Driven
Modelling for Flexible Workflow Applications.
Software Process: Improvement and Practice, Vol. 10,
n°4, 2005, pp. 363–377.

BPMN4V�-�An�Extension�of�BPMN�for�Modelling�Adaptive�Processes�using�Versions

267

