
Sharding by Hash Partitioning
A Database Scalability Pattern to Achieve Evenly Sharded Database Clusters

Caio H. Costa, João Vianney B. M. Filho, Paulo Henrique M. Maia
and Francisco Carlos M. B. Oliveira

Universidade Estadual do Ceara, Fortaleza, Brazil

Keywords: Database Sharding, Hash Partitioning, Pattern, Scalability.

Abstract: With the beginning of the 21st century, web applications requirements dramatically increased in scale. Ap-
plications like social networks, ecommerce, and media sharing, started to generate lots of data traffic, and
companies started to track this valuable data. The database systems responsible for storing all this information
had to scale in order to handle the huge load. With the emergence of cloud computing, scaling out a database
system has became an affordable solution, making data sharding a viable scalability option. But to benefit
from data sharding, database designers have to identify the best manner to distribute data among the nodes of
shared cluster. This paper discusses database sharding distribution models, specifically a technique known as
hash partitioning. Our objective is to catalog in the format of a Database Scalability Pattern the best practice
that consists in sharding the data among the nodes of a database cluster using the hash partitioning technique
to nicely balance the load between the database servers. This way, we intend to make the mapping between the
scenario and its solution publicly available, helping developers to identify when to adopt the pattern instead of
other sharding techniques.

1 INTRODUCTION

With the beginning of the 21st century, web appli-
cations requirements dramatically increased in scale.
Web 2.0 technologies made web applications much
more attractive due to improvements on their interac-
tivity. A whole new set of applications has emerged:
social networks, media sharing applications and on-
line office suites, for example. Those new applica-
tions attracted a huge number of users, many of which
have migrated from local to online applications. Con-
currently, many companies developed SOA-based ap-
plications making easier the integration between dif-
ferent systems and increasing the reuse of functionali-
ties through services. With this scenario, new integra-
tion functionalities have been developed and applica-
tions have began to exchange lots of data.

The amount of data to be persisted and managed
grew in the same proportion as the data traffic of this
new environment grew. Nowadays, large e-commerce
sites have to manage data from thousands of concur-
rent active sessions. Social networks record the ac-
tivities of their members for later analysis by recom-
mending systems. Online applications store the pref-
erences of millions of users. Coping with the increase

in data and traffic required more computing resources.
Consequently, the databases responsible for storing
all that information had to scale in order to handle the
huge load without impairing services and applications
performance.

Database systems can scale up or scale out. Scal-
ing up implies bigger machines, more processors,
disk storage, and memory. Scaling up a database
server is not always possible due to the expensive
costs to acquire all those resources and to physical
and practical limitations. The alternative is scaling
out the database system, which consists of grouping
several smaller machines in a cluster (Sadalage and
Fowler, 2013). To increase the cluster capacity, com-
modity hardware is added on demand. The relatively
new but quickly widespread cloud computing tech-
nology has turned more affordable the necessary in-
frastructure for scaling out systems.

Once the database has the necessary infrastructure
for running on a large cluster, a distribution model
has to be adopted based on the application require-
ments. An application may require read scalability,
write scalability, or both. Basically, there are two dis-
tribution models: replication and sharding. The for-
mer takes the same data and copies it into multiple

313H. Costa C., Vianney B. M. Filho J., Henrique M. Maia P. and Carlos M. B. Oliveira F..
Sharding by Hash Partitioning - A Database Scalability Pattern to Achieve Evenly Sharded Database Clusters.
DOI: 10.5220/0005376203130320
In Proceedings of the 17th International Conference on Enterprise Information Systems (ICEIS-2015), pages 313-320
ISBN: 978-989-758-096-3
Copyright c 2015 SCITEPRESS (Science and Technology Publications, Lda.)



Figure 1: The four partitioning strategies: (a) round-robin, (b) range, (c) list, and (d) hash (DeWitt and Gray, 1992).

nodes, while the latter puts different data on different
nodes (Sadalage and Fowler, 2013). Both techniques
are orthogonal and can be used together.

This paper discusses database sharding distribu-
tion models, specifically a technique known as hash
partitioning. The goal of this work is to catalog in
the format of a Database Scalability Pattern the best
practice that consists in sharding the data among the
nodes of a database cluster using the hash partition-
ing technique to nicely balance the load among the
database servers. The pattern avoids the creation of
hot spots, which means data ranges that concentrate
the read and write operations in one node or in a
group of nodes. This sharding technique is embedded
in some NoSQL databases like AmazonDB (DeCan-
dia et al., 2007) and MongoDB (Boicea et al., 2012),
and in ORM frameworks for relational databases, e.g.,
EclipseLink (Kalotra and Kaur, 2014) and Hibernate
Shards (Wu and Yin, 2010). Our main contribution
is making publicly available the mapping between the
scenario and its solution, helping developers to iden-
tify when to adopt hash partitioning in sharded clus-
ters instead of other sharding techniques.

The remainder of the paper is structure as follows.
Section 2 presents the background and Section 3 dis-
cusses the main related work. Section 4 describes the
pattern using the format presented by Hohpe and B.
Woolf (Hohpe and B.Woolf, 2003) which is used to
name the subsections of the pattern. Finally, Section
5 brings the conclusion and future work.

2 BACKGROUND

As data traffic and data volume increase, it becomes

more difficult and expensive to scale up a database
server. A more appealing option is to scale out, that
is, run the database on a cluster of servers where
several nodes can handle the requests. With a dis-
tributed database architecture, the load is distributed
among the servers that constitute the cluster, thus in-
creasing the performance and availability of the sys-
tem. There are two architectures for scaling out a
database system: distributed database systems and
parallel database systems. Both approaches are used
in high performance computing, where there is a need
for multiprocessor architecture to cope with a high
volume of data and traffic.

The work done by Elmasri and Navathe (El-
masri and Navathe, 2011) defines distributed database
systems as a collection of multiple logically inter-
related databases distributed over a computer net-
work, and a distributed database management sys-
tem as a software system that manages a distributed
database while making the distribution transparent to
the user. In this architecture, there are no shared
hardware resources and the nodes can have differ-
ent hardware configurations. Parallel database man-
agement systems link multiple smaller machines to
achieve the same throughput as a single, larger ma-
chine, often with greater scalability and reliability
than a single-processor database system (Connolly
and Begg, 2005). However, multiple processors share
either memory (disk storage and primary memory) or
only disk storage (in this case, each processor has its
own primary memory).

Many database vendors offer scalability solutions
based on the shared disk approach, like Oracle RAC
(Abramson et al., 2009) does. These kind of solu-
tions link several servers through a high speed net-

ICEIS�2015�-�17th�International�Conference�on�Enterprise�Information�Systems

314



work, but they still have a limiting device. They share
a storage device which acts like a system bottleneck.
In the nothing shared parallel architecture, processors
communicate through a high speed network and each
of them has its own primary and secondary memory.
That type of architecture requires node symmetry and
homogeneity, but in pure distributed database, system
homogeneity is not required. To achieve real hori-
zontal scalability, a pure distributed database system
architecture must be adopted.

2.1 Distribution Models

Once the hardware resources, server nodes, for de-
ploying a distributed database are available, a distri-
bution model should be chosen to leverage the cluster
capacity. Roughly, there are two paths to data distri-
bution: replication and sharding.

2.1.1 Replication

Replication can be performed in two ways: master-
slave and peer-to-peer. In a master-slave scheme, one
node is responsible for processing any updates to the
data and a background process is responsible for syn-
chronizing the data across the other nodes, the slaves.
That kind of replication is recommended for intensive
data read applications. To increase the cluster capac-
ity of processing read requests, more slaves can be
added. However, the write throughput is limited by
the capacity of processing write requests of the mas-
ter node. In peer-to-peer replication, there is no mas-
ter node. All the replicas can accept write requests,
thus improving the system capacity of handling write
requests. On the other hand, peer-to-peer replication
clusters have to deal with inconsistency problems that
may arise.

2.1.2 Sharding

Sharding is a way of scaling out a database via hori-
zontal fragmentation. A horizontal fragment of a re-
lation (table) is a subset of the tuples in that relation.
The tuples that belong to the horizontal fragment are
specified by a condition on one or more attributes of
the relation (Elmasri and Navathe, 2011). Often, only
a single attribute is involved. That is, the horizontal
scalability is supported by putting different parts of
the data onto different servers of a cluster. The objec-
tive is making different clients talk to different server
nodes. Consequently, the load is balanced out nicely
among the servers. Sharding is particularly valuable
for performance since it can improve both read and
write performance. Replication can greatly improve
read performance but does little for applications that

have several write operations. Sharding provides a
way to horizontally scale those operations.

2.1.3 Partitioning Strategies

There are four different strategies for partitioning data
across a cluster: round-robin, range, list, and hash
partioning (DeWitt and Gray, 1992). The simplest
partitioning strategy is the round-robin, which dis-
tributes the rows of a table among the nodes in a
round-robin fashion (Figure 1a).

For the range, list, and hash strategies, an attribute,
known as partitioning key, must be chosen among the
table attributes. The partition of the table rows will
be based on the value of the partitioning key. In the
range strategy, a given range of values is assigned to
a partition. The data is distributed among the nodes
in such a way that each partition contains rows for
which the partitioning key value lies within its range
(Figure 1b).

The list strategy is similar to the range strategy. In
the former each partition has a list of values assigned
one by one. A partition is selected to keep a row if
the partitioning key value is equal to one of the val-
ues defined in the list (Figure 1c). In the latter, the
mapping between the partitioning key values and its
nodes is based on the result of a hash function. The
partitioning key value is used as parameter of the hash
function and the result determines where the data will
be placed (Figure 1d).

3 RELATED WORK

A catalog of software design patterns was first de-
scribed by Gamma et al. (Gamma et al., 1994), a
pioneer work in the computer science field. Subse-
quently, Fowler et al. (Fowler et al., 2002) and Hohpe
and B. Woolf (Hohpe and B.Woolf, 2003) identified
and published software engineering architectural pat-
terns.

Shumacher et al. (Shumacher et al., 2006) present,
in the format of patterns, a set of best practices to
turn applications more secure at different levels. Hafiz
(Hafiz, 2006) describes four design patterns applica-
ble to the design of anonymity systems and can be
used to secure the privacy of sensitive data. Shu-
macher (Shumacher, 2003) introduces an approach
for mining security patterns from security standards
and presents two patterns for anonymity and privacy.
Strauch et al. (Strauch et al., 2012) describe four pat-
terns that address data confidentiality in the cloud.

The authors in (Eessaar, 2008) propose a pattern-
based database design and implementation approach

Sharding�by�Hash�Partitioning�-�A�Database�Scalability�Pattern�to�Achieve�Evenly�Sharded�Database�Clusters

315



Table 1: Common partitioning hash keys and their efficiency.

Hash Key Efficiency
User id in applications with many users. Good

Status code in applications with few possible status codes. Bad
Tracked device id that stores data at relatively similar intervals. Good

Tracked device id, where one is by far more popular than all the others. Bad

that promotes the use of patterns as the basis of code
generation. In addition, they present a software sys-
tem that performs code generation based on database
design patterns. However, their work does not list
the database design patterns that the proposed tool is
based on and does not mention design patterns related
to distributed database systems.

The paper (Fehling et al., 2011) proposes a
pattern-based approach to reduce the complexity of
cloud application architectures. The pattern language
developed aims to guide the developers during the
identification of cloud environments and architecture
patterns applicable to their problems. Fehling et al.
(Fehling et al., 2011) also gives an overview of previ-
ously discovered patterns. In that list, there are six
patterns related to cloud data storage, but none of
them is related to data sharding techniques.

Pallman (Pallmann, 2011) presents a collection
of patterns implemented by the Microsoft Azure
Cloud Platform and describes five data storage pat-
terns which can be used to store record-oriented data.
In (Go, 2014), the Partition Key pattern describes
Azure’s data distribution at a high level, without spec-
ifying the strategy used to actually partition the data.
The pattern described in our paper is focused in the
strategy used to distribute data and is not oriented to
any vendor’s platform.

The white paper (Adler, 2011) suggests a refer-
ence architecture and best practices to launch scal-
able applications in the cloud. The suggested best
practices, which are not organized as patterns, were
derived from the wealth of knowledge collected from
many different industry use cases. Although Adler
(Adler, 2011) discusses database scalability, it only
addresses master-slave replication.

Stonebraker and Cattel (Stonebraker and Cattell,
2011) present ten rules to achieve scalability in datas-
tores that handle simple operations are listed. During
the discussion of the rules, the authors presents im-
portant drawbacks about sharding data in specific sit-
uations. The observations made by Stonebraker and
Cattel (Stonebraker and Cattell, 2011) were impor-
tant for the construction of the pattern presented in
this work.

In addition to the four confidentiality patterns,
Strauch et al. (Strauch et al., 2012) also present
two patterns related to horizontal scalability of the

data access layer of an application: Local Database
Proxy and Local Sharding-Based Router. The Lo-
cal Sharding-Based Router pattern suggests the ex-
tension of the data access layer with the addition of a
router responsible for distributing the read and write
requests among the database servers. Each database
server in the cluster holds a portion of the data that
was partitioned using some data sharding technique.
Nonetheless, that pattern does not suggest any partic-
ular data sharding strategy. It can be used as a com-
plement to our proposed pattern in order to implement
a read and write strategy after the deployment of the
pattern described here.

4 SHARDING BY HASH
PARTITIONING

The goal of the database scalability pattern entitled
Sharding by Hash Partitioning is to distribute, as
evenly as possible, a functional group among the
nodes of a cluster using the sharding distribution
method. The desired result is an homogeneous distri-
bution of the load generated by client requests among
the databases servers.

4.1 Context

Scaling out techniques are used to increase the per-
formance of database systems. The master/slave ar-
chitecture provides read scalability but does not help
much for write intensive applications. To obtain gen-
eral read and write scalability, the sharding technique
should be used. But nothing shared systems scale
only if data objects are partitioned across the system’s
nodes in a manner that balances the load (Stonebraker
and Cattell, 2011).

Clusters that use the sharding method to partition
the data, distribute the data portions among several
database servers to balance queries and update re-
quests nicely. On the other hand, a bad distribution
can originate two issues: concentration spots that hold
the most requested registries, and servers that concen-
trate the majority of update requests. These points of
concentration, known as hot spots (Stonebraker and
Cattell, 2011), can be a data set kept in only one server

ICEIS�2015�-�17th�International�Conference�on�Enterprise�Information�Systems

316



Figure 2: The transaction log table partitioned by range.

or data sets distributed between a few servers.
For instance, suppose a table containing a date

field is chronologically distributed between three
database servers: A, B and C. Server A is responsible
for storing the oldest data, server B is responsible for
storing the intermediate data, and server C is respon-
sible for storing the most recent data. If the client ap-
plication keeps generating new data, the server C will
receive the majority of the update requests. In addi-
tion, there is a great chance of server C receiving the
majority of the queries because, generally, application
users are more interested in recent information. In this
scenario, the attempt to distribute the load across the
three database servers by sharding the data using the
range sharding strategy will fail.

4.2 Challenge

How to distribute data avoiding the creation of hot
spots to obtain a sharded cluster that nicely balance
the requests load across its nodes?

4.3 Forces

When using sharding, partitioning the data among the
nodes to avoid hot spots is not a trivial task. The
appropriate partitioning strategy must be chosen de-
pending on the application data access pattern. Most
of the times, choosing the wrong sharding strategy
will decrease the system’s performance.

Excess communication can happen in those
database systems where data placement was not care-
fully chosen by the database designer (Zilio et al.,
1994). When the round-robin sharding strategy is
used, data is distributed without considering its at-
tributes. Registries that are commonly aggregated to
compose a query result may be scattered across the
nodes generating data traffic overhead.

It is natural to think of distributing the data based
on natural partitioning keys like date fields. There-
fore, the obvious choice would be the range partition-
ing strategy. However, applications in which the users

are interested only in recent information, range par-
titioning can generate hot spots like in the example
shown at the end of Section 4.1.

In addition to balance the load among the database
servers in the cluster nicely, a partitioning strategy
should generate no significant overhead when discov-
ering in which node a registry must reside.

4.4 Solution

The hash partitioning can be used to achieve an even
distribution of the requests load among the nodes of
a distributed database system. A field whose values
are particular to a group of registries must be chosen
as the partitioning key. The choice on the partitioning
should take into account the fact that registries that
are commonly accessed together will share the same
value for the partitioning key.

Queries interested in data that shares the same par-
titioning key value will hit the same node. Conse-
quently, when two or more requests ask for data with
different values for the partitioning key, they will be
directed to different nodes. The same happens when
saving new data in the sharded cluster. A hash func-
tion is applied to the value of the partition key in the
new registry. The result will determine in which node
the data will be stored. Hence, if two new registries
present different values for their partitioning key, they
will be stored in different nodes of the cluster.

Once the partitioning key field is chosen, an index
can be created based on another field to order the reg-
istries with the same partitioning key value. With the
existence of that secondary index, results from queries
that search for registries with the same value for the
partitioning key can be ordered.

4.5 Results

Data placement is very important in nothing shared
parallel database systems. It has to ease the par-
allelism and minimize the communication overhead
(Zilio et al., 1994). Systems that aggregate the nec-
essary information in only one registry are best suited

Sharding�by�Hash�Partitioning�-�A�Database�Scalability�Pattern�to�Achieve�Evenly�Sharded�Database�Clusters

317



Figure 3: The transaction log table partitioned by hash key.

for that approach since it will minimize the network
traffic. Thus, it is important to avoid multi-shard
operations to the greatest extent possible, including
queries that go to multiple shards, as well as multi-
shard updates requiring ACID properties (Stone-
braker and Cattell, 2011). Therefore, sharding data
among clusters nodes is best suited for applications
that does not require joins between database tables.

If the hash partitioning needs to be completely im-
plemented in the data access layer of an application,
an algorithm and a hash function need to be chosen
to realize the hash partitioning method. For instance,
the MD5 (Rivest, 1992) can be the hash function im-
plementation and the Consistent Hashing algorithm
(Karger et al., 1997) can be used to distribute and lo-
cate data across the cluster. Tools that implement the
pattern, like some NoSQL datastores that originally
support sharding and some persistence frameworks,
already have an implemented algorithm.

Even if the datastore or persistence framework be-
ing used already implement the pattern, choosing the
right partitioning hash key is a task of the database
designer. Choosing the right partitioning key is very
important when using the hash partitioning method.
The database designer must choose the right partition-
ing key to keep the workload evenly balanced across
partitions. For instance, if a table has a very small
number of heavily accessed registries, even a single
one, request traffic is concentrated on a small number
of partitions. To obtain a nicely balanced workload,
the partitioning hash key must have a large number of
distinct values, which are requested fairly uniformly,
as randomly as possible. Table 1 shows common par-
titioning hash keys and their efficiency.

4.6 Next

Cloud datastores provide the necessary infrastructure
to scale at lower costs and using a simplified man-
agement. However, the majority of cloud relational
databases does not implement the Sharding by Hash
Partitioning pattern. Indeed, they do not support
sharding natively. In such cases, the datastore func-
tionalities can be extended by implementing the pat-

tern in the application data access layer. Strauch et
al. (Strauch et al., 2012) describe the pattern Lo-
cal Sharding-Based Router which complements the
pattern described in this paper. The pattern Local
Sharding-Based Router proposes an extra layer, de-
ployed in the cloud, responsible for implementing
sharding in cloud datastores that do not support shard-
ing natively. The Local Sharding-Based Router pat-
tern does not suggest any sharding strategy.

4.7 Sidebars

There are NoSQL datastores, like MongoDB (Liu
et al., 2012) and DynamoDB (DeCandia et al., 2007),
that implement the Sharding by Hash Partitioning pat-
tern. Those datastores can be used if an application
access pattern does not require joins between differ-
ent tables, and requires the scalability offered by data
sharding and the workload balance offered by hash
partitioning. That is, if the application will benefit
from the Sharding by Hash Partitioning pattern and
does not need the relation constraints offered by re-
lational databases, the mentioned datastores can be
used. The paper (DeCandia et al., 2007) describes
the hash partitioning algorithm used by DynamoDB.
It is a variation of the Consistent Hashing algorithm
(Karger et al., 1997) and can be used as a reference
for implementing the Sharding by Hash Partitioning
pattern during a framework development or in an ap-
plication data access layer.

There are few relational databases which support
sharding in a real nothing shared architecture. The
ones that do support, generally, are more complex
to maintain. If an application needs to shard data
by hash partitioning, but the relational database used
does not provide this feature, a framework that imple-
ments the Sharding by Hash Partitioning pattern can
be used. EclipseLink implements a data sharding by
hash key policy and can provide this feature to rela-
tional databases that do not support sharding. Alter-
natively, it can simply be used if developers do not
know how to configure databases that support shard-
ing.

In on-premise applications that stores data in the

ICEIS�2015�-�17th�International�Conference�on�Enterprise�Information�Systems

318



cloud, if the Sharding by Hash Partitioning pattern has
to be implemented in the data access layer, this must
be done at the cloud side to avoid network latency
if more than one node needs to be queried (Strauch
et al., 2012).

4.8 Example

To improve the understanding of the Sharding by
Hash Partitioning pattern, a system that logs each
transaction realized by customers of a bank will be
used as an example. A single table stores all the trans-
action log registries. Each registry has a field that de-
scribes any common bank transaction that can be per-
formed by a client of the bank, such as withdrawal,
deposit, or transfer. As expected, the table has a field
that holds the transaction date.

Over time the table becomes very large. The IT
staff decides to shard the table data across nodes of a
cluster to improve performance and obtain scalability.
The staff creates a cluster composed of three database
servers. In the first attempt, the table is chronologi-
cally partitioned, that is, a range partitioning based on
the transaction date is configured. Server A stores the
oldest transactions, and server C stores the more re-
cent transactions (Figure 2). This partitioning scheme
generates hot spots. All new transaction log registries
are stored in server C and most of the bank customers
consult their latest transactions, which are also stored
in server C.

In this case the use of hash key partitioning is rec-
ommended. The bank IT staff decides to shard the
transaction logs table using the customer ID as the
partitioning key. Furthermore, they create an index
based on the transaction date field. Now, the result
of a hash function applied to the customer ID deter-
mines where the transaction registry will be stored
(Figure 3). Due to the large amount of customers,
probabilistically, the data is more evenly partitioned.
When customers consult their latest transactions, the
requests will be distributed across the nodes of the
cluster. The index based on the transaction date will
keep the transaction log registries ordered within a
customer query result.

5 CONCLUSIONS

The data sharding based on hash key partitioning,
identified and formalized as a database scalability pat-
tern in this work, efficiently provides read and write
scalability improving the performance of a database
cluster. Data sharding by hash key partitioning, how-
ever, does not solve all database scalability problems.

Therefore, it is not recommended to all scenarios. The
formal description of the solution as a pattern helps
in the task of mapping the data sharding by hash key
partitioning to its recommended scenario.

As future work we intend to continue formaliz-
ing database horizontal scalability solutions as pat-
terns, so we can produce a catalog containing a list of
database scalability patterns that aims to solve scala-
bility problems.

REFERENCES

Abramson, I., Abbey, M., Corey, M. J., and Malcher, M.
(2009). Oracle Database 11g. A Beginner’s Guide.
Oracle Press.

Adler, B. (2011). Building scalable applications in the
cloud. reference architecture and best practices.

Boicea, A., Radulescu, F., and Agapin, L. I. (2012). Mon-
godb vs oracle - database comparison. In Proceedings
of the 2012 Third International Conference on Emerg-
ing Intelligent Data and Web Technologies, pages
330–335. IEEE.

Connolly, T. M. and Begg, C. E. (2005). DATABASE SYS-
TEMS. A Practical Approach to Design, Implementa-
tion, and Management. Addison-Wesley, 4th edition.

DeCandia, G., Hastorun, D., Jampani, M., Kakulapati,
G., Lakshman, A., Pilchin, A., Sivasubramanian, S.,
Vosshall, P., and Vogels, W. (2007). Dynamo: ama-
zon’s highly available key-value store. In Proceedings
of Twenty-first ACM SIGOPS Symposium on Operat-
ing Systems Principles, SOSP ’07, pages 205–220,
New York, NY, USA. ACM.

DeWitt, D. and Gray, J. (1992). Parallel database sys-
tems: The future of high performance database sys-
tems. Commun. ACM, 35(6):85–98.

Eessaar, E. (2008). On pattern-based database design and
implementation. In Proceedings of the 2008 Interna-
tional Conference on Software Engineering Research,
Management and Applications, pages 235–242. IEEE.

Elmasri, R. and Navathe, S. B. (2011). Fundamentals of
Database Systems. Addison-Wesley, 6th edition.

Fehling, C., Leymann, F., Retter, R., Schumm, D., and
Schupeck, W. (2011). An architectural pattern lan-
guage of cloud-based applications. In Proceedings
of the 18th Conference on Pattern Languages of Pro-
grams, number 2 in PLoP ’11, pages 1–11, New York,
NY, USA. ACM.

Fowler, M., Rice, D., Foemmel, M., Hieatt, E., Mee, R.,
and Stafford, R. (2002). Patterns of Enterprise Appli-
cation Architecture. Addison-Wesley.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J.
(1994). Design Patterns. Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1st edi-
tion.

Go, J. (2014). Designing a scalable partitioning strategy
for azure table storage. http://msdn.microsoft.com/en-
us/library/azure/hh508997.aspx.

Sharding�by�Hash�Partitioning�-�A�Database�Scalability�Pattern�to�Achieve�Evenly�Sharded�Database�Clusters

319



Hafiz, M. (2006). A collection of privacy design patterns. In
Proceedings of the 2006 Conference on Pattern Lan-
guages of Programs, number 7 in PLoP ’06, pages 1–
7, New York, NY, USA. ACM.

Hohpe, G. and B.Woolf (2003). Enterprise Integration Pat-
terns: Designing, Building, and Deploying Messaging
Solutions. Addison-Wesley, 1st edition.

Kalotra, M. and Kaur, K. (2014). Performance analysis of
reusable software systems. In 2014 5th International
Conference on Confluence The Next Generation Infor-
matino Technology Summit, pages 773–778. IEEE.

Karger, D., Lehman, E., Leighton, T., Panigrahy, R.,
Levine, M., and Lewin, D. (1997). Consistent hash-
ing and random trees: Distributed caching protocols
for relieving hot spots on the world wide web. In Pro-
ceedings of the Twenty-ninth Annual ACM Symposium
on Theory of Computing, STOC ’97, pages 654–663,
New York, NY, USA. ACM.

Liu, Y., Wang, Y., and Jin, Y. (2012). Research on the im-
provement of mongodb auto- sharding in cloud envi-
ronment. In Proceedings of the 7th International Con-
ference on Computer Science and Education, pages
851–854. IEEE.

Pallmann, D. (2011). Windows azure design patters.
http://neudesic.blob.core.windows.net/webpatterns/
index.html.

Rivest, R. (1992). The md5 message-digest algorithm.
IETF RFC 1321.

Sadalage, P. J. and Fowler, M. (2013). NoSQL Distilled. A
Brief Guide to the Emerging World of Polyglot Persis-
tence. Addison-Wesley, 1st edition.

Shumacher, M. (2003). Security patterns and security stan-
dards - with selected security patterns for anonymity
and privacy. In European Conference on Pattern Lan-
guages of Programs.

Shumacher, M., Fernandez-Buglioni, E., Hybertson, D.,
Buschmann, F., and Sommerlad, P. (2006). Security
Patterns: Integrating Security and Systems Engineer-
ing. Wiley.

Stonebraker, M. and Cattell, R. (2011). 10 rules for scalable
performance in ’simple operation’ datastores. Com-
munications of the ACM, 54(6):72–80.

Strauch, S., Andrikopoulos, V., Breitenbuecher, U., Kopp,
O., and Leymann, F. (2012). Non-functional data layer
patterns for cloud applications. In 2012 IEEE 4th In-
ternational Conference on Cloud Computing Technol-
ogy and Science, pages 601–605. IEEE.

Wu, P. and Yin, K. (2010). Application research on a per-
sistent technique based on hibernate. In International
Conference on Computer Design and Applications,
volume 1, pages 629–631. IEEE.

Zilio, D. C., Jhingran, A., and Padmanabhan, S. (1994).
Partitioning key selection for a shared-nothing paral-
lel database system. Technical report, IBM Research
Division, Yorktown Heights, NY.

ICEIS�2015�-�17th�International�Conference�on�Enterprise�Information�Systems

320


