
A Simple Erlang API for Handling DDS Data Types and Quality of
Service Parameters

Wafa Helali, Khaled Barbaria and Belhassen Zouari
LIP2 Lab, University of Tunis, El Manar, Tunis, Tunisia

Keywords: Middleware, Functional Programming, DDS, Erlang.

Abstract: The choice of the programming language impacts the efficiency of the application and the robustness of the
code. The characteristics of Erlang as a functional programming language supported distributed real time
computing allowed us to propose eDDS: an Erlang based middleware compliant to the Data Distribution
Service (DDS) standard that providing a strong Quality of Service (QoS) support. When the performance and
the compliance to the norm have been easy achieved in particular on defining and setting QoS parameters, the
lack of efficient and user-friendly support for data type management has been noticed. In this paper, we will
explain this type checking problem and how we solved it.

1 INTRODUCTION

Programming distributed applications is a complex
activity. These applications are characterized by a
great hardware (physical networks, hardware plat-
form) and software (operating systems, programming
languages, etc.) heterogeneity . The design of such
applications becomes more complex when we talk
about real time distributed applications. Such sys-
tems now present in many areas, especially in the
aerospace, defense, power systems and industrial con-
trol.

To facilitate the development of such applications,
it is recommended to choose the adequate implemen-
tation support. In fact, programming models and lan-
guages impact the ability to easily write clear and re-
liable programs. Like presented in (Emmanuel Chail-
loux, Pascal Manoury and Bruno Pagano, 2001), the
simplicity of a programming language is dependent
on many level of abstraction: Abstraction from the
machineand theoperational model; Abstracterrors:
fault tolerance and error handling; Abstractcompo-
nents: a complex application can be subdivided into
autonomous subprograms or components that can be
reused in other context;Interoperabilitybetween the
languages can be also a kind of abstraction: the possi-
bility to communicate with other programs written in
other programming language.

These elements motivate the choice of the func-
tional programming paradigm (Hudak, 1989) which
brings a high level of abstraction. This paradigm

use functions as base of computations. A function
is defined as first class citizens: it can be stored,
composed and even passed as parameters. Moreover,
functional languages provide the programmer with fa-
cilities to abstract data-types and easily support pat-
tern matching. Some of them are optimized to spe-
cific research and industrial objectives (e.g. handle
concurrency, support distribution, control execution
time, etc.). Functional programs rely on automatic
allocations and the heavy use of recursion. Conse-
quently, they can be written and reused, executed and
redeployed more easily on central, parallel and dis-
tributed architectures. This is the reason why various
functional programming languages are used to pro-
gram large-scale industrial systems such as the Ama-
zon SimpleDB documentation and the Erlang based
Web server yaws, as well as the Facebook instant
messaging service.

The research work presented in this paper mainly
uses Erlang (Ericsson Computer Science Laboratory,
1980) as a framework. This concurrent distributed
real-time language, whose story is already old, still at-
tracts many developers and designers especially from
mobile technologies. We are focused in first step
on how to create a simple API generated automati-
cally to define and set quality of service parameters
in our eDDS middleware: the first Erlang support of
the DDS specification. In other hand, Erlang is a dy-
namically typed language. This characteristic can be
an advantage and an inconvenient at the same time.
In this paper we show how we have benefited from

19Helali W., Barbaria K. and Zouari B..
A Simple Erlang API for Handling DDS Data Types and Quality of Service Parameters.
DOI: 10.5220/0005381600190026
In Proceedings of the 10th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE-2015), pages 19-26
ISBN: 978-989-758-100-7
Copyright c 2015 SCITEPRESS (Science and Technology Publications, Lda.)

this feature and we present our solution to solve the
type checking problem caused by the lack of a strong
typing system in order to make our middleware more
reliable.

The rest of the paper is structured as follows. In
the next two sections we briefly review the basis of
our work in order to put it into context. In the sec-
tion 4, we describe our Erlang DDS API for defining
and setting QoS parameters and then we present the
Erlang type checking problem and how we solve it.
Some closely related work are presented in section 5.
Our concluding remarks are presented in section 6.

2 DATA DISTRIBUTION SERVICE

DDS (Data Distribution Service) is specified by the
OMG (Object Management Group , 2007) to satisfy
the requirements of real-time (large scale) distributed
applications, which have direct interaction with real-
world objects, such as air-crafts, trains, stock trans-
actions, and defense engines. This standard presents
an evolved technology to exchange data in a dis-
tributed context. It is based on a high-level data model
where the unit of transmission is the data instead of
objects reference(CORBA reference passing)(Object
Management Group, 2012) or messages (CORBA by
value and MOM such as JMS).

This underlying model, focused on data, allows
to identify and control the access to all data which
circulate in the system through a Global Data Space
(GDS). Therefore, the integration of applications be-
comes simple and easy: the participants using DDS
can read an write data efficiently and naturally with
a typed interface that allows the developers to spec-
ify only the data that will be transferred or read and
the associated quality requirements , regardless of the
other low level considerations related to the effective
dissemination of this data. The communication be-
tween the distributed nodes is accomplished with the
aid of the following entities: Domain, DomainPartic-
ipant, Publisher, DataWriter, Subscriber, DataReader
and Topic. These entities, depicted in Figure 1 are
described below.Domain is a construct that binds
all the applications entities able to interact with each
other. An application can participate in several do-
mains at the same time. Domain is consequently a
means to easily define independent partitions in the
distributed system. Partitions can be defined to iso-
late applications running on the same physical com-
puter from each other.
The DomainParticipant acts as container for all
other DCPS (Data Centric Publish Subscribe) entities.
It represents the local membership of the application

Figure 1: DDS Entities (Object Management Group , 2007).

in a Domain. It is responsible for creating Publishers,
Subscribers and Topics.
Topics provide the basic connection point between
publishers and subscribers. A topic is identified by
a unique name within a Domain. It is associated to
a specific data type that can be communicated when
publishing or subscribing on this Topic.
The Publisher is the object responsible of data dis-
semination. A publisher can send data of differ-
ent types. It includes severalDataWriters , each
DataWriter is associated with a specific data type. It
is the object which allows applications to update the
data values that will be published under a given Topic.
TheSubscriber receives the published data that cor-
responds to its subscriptions. It makes it available to
the application through manyDataReaders, DDS as-
sociates a DataReader to each specific data type.

3 ERLANG: DYNAMICALLY
TYPED FUNCTIONAL
DISTRIBUTED LANGUAGE

Erlang is a concurrent functional programming lan-
gage developed at Ericsson in 1980 and intended for
the implementation of its telecommunication systems.
It is successfully used in major industrial projects and
large scale applications such as SimpleDB document,
databases of Amazon and the yaws HTTP server, as
well as Facebook. Erlang is both a language and run-
time environment. It provides many libraries grouped
under the name of OTP (Open Telecom Platform).
It possesses qualities that simplify program design
and ensures efficient and comfortable design and de-
velopment of applications: (Cesarini and Thompson,
2009):

• High-level Constructs. Erlang is a declarative
language, dynamically typed. There are no as-
signments nor mutable data structures. An Erlang
program can contain several data types including

ENASE�2015�-�10th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

20

atoms, numbers, and process identifiers as well as
compound data types like lists, tuples and records.
Functions arefirst-class data: a function can be
stored in a list, returned by a function, or commu-
nicated between processes. Erlang functions can
be defined as a set of clauses or equations. The se-
lection of a clause is done by thepattern matching
mechanism.

• Memory Management. The management of
memory in Erlang (allocation and deallocation)
is done automatically. Each process has its own
garbage collector. This makes development pro-
gram easier and faster by eliminating program-
ming errors such as memory deallocation and
buffer overflows.

• Concurrency. Unlike other languages like C or
Java that directly use the threads of operating sys-
tem, Erlang manages the created processes by the
virtual machine (VM). Each process handles its
own memory space and runs independently of the
others. The processes communicate with each
other by using a message exchange mechanism.
Response time of systems based on this mech-
anism is about some microseconds regardless of
the system load .

• Distribution. Erlang processes are created by the
virtual machine. Multiple virtual machines (Er-
lang nodes) can be connected to each other and
the processes running on different nodes commu-
nicate with each other by using the same primi-
tive message sending that used by processes in the
same node.

• Robustness. Erlang provides mechanisms for
handling errors and exceptions: Erlang process
can be connected together, if one crashed, the
other will be informed. An other mechanism pro-
vided by Erlang/OTP is the supervision that can
be used to monitor and handle process termina-
tion. Using these techniques makes Erlang pro-
grams shorter and easier to understand by sepa-
rating the specific code of the application from the
code that manages the dysfunctions.

4 BUILDING SAFE, EFFICIENT
DISTRIBUTED SYSTEM WITH
EDDS

The main role of middleware is to simplify the de-
velopment of distributed applications by providing
an API for an easy and comfortable programming.
eDDS provides a simple API to create DDS entities,

define and set QoS policies. In other hand, middle-
ware should help the developers of the distributed sys-
tems during the development of these applications. In
this section we present how we respect these require-
ments.

4.1 Presentation of eDDS

eDDS is the first Erlang implementation of the DDS
specification. eDDS is built upon CORBA architec-
ture. DDS entities are implemented as CORBA ob-
jects deployed on various communicating nodes. Fig-
ure 2 shows the architecture of eDDS: an intermediate
server (Repsitory) allows publishers and subscribers
to discover each other. It acts as an intermediary that
matches compatible publishers and subscribers (wrt
Topic and QoS). When a client requests a subscrip-
tion for a given Topic, the server locates this Topic
and informs all existing DataWriter for the location
of the new DataReader. The communication between
nodes is based on the Erlang message passing mecha-
nism: the data will be published as an Erlang message
from DataWriters to DataReaders.

Figure 2: The Architecture of eDDS.

4.2 Defining and Setting QoS
Parameters on eDDS

The most important advantage of DDS is the pos-
sibility to tailor and control a wide range of qual-
ity of service parameters (Object Management Group
, 2007). These QoS policies are multiple and di-
verse, they address different areas of middleware be-
havior and several aspects of data like:data avail-
ability (Durability, Lifespan, History); data de-
livery (Reliability, Destination Order, Ownership);
data timeliness(LatencyBudget, Deadline) andmax-
imum resourcesused in the system (ResourceLimits,
Time BasedFilter).

QoS management is one of the key distinguishing
features of the DDS when compared to other pub/sub
standards. These QoS parameters allow to specify ex-
actly how the information should flow between pub-
lisher and subscriber sides: application developers
only indicate ’what’ they want to publish and spec-
ify the QoS parameters that should be respected, but
they are not responsible for ’how’ this QoS should be

A�Simple�Erlang�API�for�Handling�DDS�Data�Types�and�Quality�of�Service�Parameters

21

achieved (Corsaro et al., 2006). These QoS policies
are represented in the specification like IDL structures
that will be transformed as Erlang records after com-
pilation. A record is an Erlang data type structure
used to store a fixed number of elements. The next
example represents the transformation of the presen-
tation QoS parameter in Erlang record after compila-
tion.

The manipulation of Erlang records can be diffi-
cult especially for the developers that are not familiar
with this language. This data structure requires the
use of numerous symbols like ”#”, ”(”, ”{”. Thus, it
is useful for any Erlang program which uses records
to define the methods of treating, reading and writ-
ing the record element. Our idea consists in using an
API that simplify the use of records and make it more
reliable (Trung, 2009).

% name of the QoS policy passed as parameter
type(Record) when is_records (Record,
’DDS_PresentationQosPolicy’)->
{ok,’DDS_PresentationQosPolicy’}.

% fields of the given QoS parameter
fields(’DDS_PresentationQosPolicy’)->
[access_scope,coherent_access,ordered_access].

% set/get access_scope value of the PreQos
set(Record,access_scope,Value)
get(Record,access_scope)

This API is generated automatically from the records
by applying the ”parse” function to the DDS.hrl file
that contains definitions of all DDS QoS policies. The
syntactic analysis is made in two stages: the first step
serves to extract all attributes (file, elements and sub-
fields) which compose the header file. Each element
of this list will be also analyzed using the ”parseRe-
cord” function. The result of applying this function to
the PresentationQos policy is presented in Figure 3.

Figure 3: Generate setget function (step1).

Figure 4: Generate setget function (step2).

In the next step, the result variables (RecordName,
RecordFields) will be used as parameters for the gen-
erative functions which are responsible for creating
all the necessary functions to treat the QoS parame-
ters. Then, it should collect all the creating functions
by using the function ”listflatten” and then write them
on the API file by using the function ”write” of the
”file” module. Figure 4 shows how to generate the
functions related to the Presentation QoS parameter.
To ameliorate this API we generate an other function
that permit to setting all fields of a given QoS param-
eter at the same time like presented in the next listing.

set_PresentationQosPolicy(Record, access_scope,
V_as,coherent_access,V_ca,ordered_access,V_oa).

The next example shows the difference of using this
API before and after amelioration. We purpose that
initial PresentationQoS parameter is ”PreQoS” and
we want to change their three fields (accessscope,
coherentaccess, orderedaccess). By using the new
setting function we can change the QoS parameter in
one line of code. The quality of service parameters in
eDDS are usually represented by complex records and
contain multiple fields. That is why, it is important to
make our API handling this kind of records. Like pre-
sented below, we generate two functions that make

Figure 5: Setting the Presentation QoS parameter.

ENASE�2015�-�10th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

22

setting and getting subfields for complex records.

getSF(Record, Field,sub_field).
setSF(Record, Field,sub_field,V).

The following example present how we use these
functions to set the presentation parameter in the
QoSPublisher policy (we want to change the value of
orderedaccess to false). This PublisherQoS policy is
a complex record: the presentation parameter is also a
record. Without our API the setting operation would
make on two steps: we should create the new pre-
sentation value before make it into the new PubQos
value. This will be reduced at one line of code by
calling the ”setSubField” function (setSF).

Figure 6: Setting the Presentation parameter on the
QoSPublisher policy.

4.3 Benefit of Dynamic Typing: Generic
DataWriter

In computer science, a data type, defines the possi-
ble values that can be given to the data and the op-
erators that can be applied on. Dynamic typing is a
characteristic for many programming languages such
as Erlang. In this paradigm, the verification of types
does not happen at the compilation step but it is left at
run time. This simplest level provides lower develop-
ment costs and flexible programming. It is important
to note that this is different than typeless: both dy-
namically and statically typed programming language
are typed (Tratt, 2009).

In contrast to other implementation of DDS (Java,
c, c++) that require to create a specific DataWriter
(resp DataReader) for each new data type. On eDDS,
we took advantage of the possibility to abstract data
types given by Erlang to develop only one generic

Figure 7: Generic DataWriter.

DataWriter (resp one generic DataReader) for all data
types. More precisely, this DataWriter (resp this
DataReader) has a generic ”write” (resp a generic
”read) function by with an application can write (resp
read) any data for any data type. The participant
application should specify the desired data type as
an argument when creating the DataWriter or the
DataReader. In the next example, we present how to
create DataWriter for the cricle data type respectively
in eDDS and in OpenDDS (a C DDS implementation)
(Object Computing Inc (OCI), OpenDDS,).

• Generic DataWriter in eDDS:

Datawriter=edds:create_datawriter(Pub,
DP,CircleTopic,Qos,Listener,Mask),
edds:write(DataWriter,circlevalue).

• Specific DataWriter in OpenDDS:

DDS::DataWriter_var writer = pub->
create_datawriter(circleTopic,QOS,Lis,Mask);
Circle::CircleDataWriter_var circle_writer
= Circle::CircleDataWriter::_narrow(writer)
circle_writer->

write(circlevalue, DDS::HANDLE_NIL);

4.4 Inconvenient of Dynamic Typing:
Typechecking Problem

4.4.1 Presentation of the Problem

As presented on the previous section, eDDS defines
a generic DataWriter (resp DataReader) for all data
types. However, having a single generic DataWriter
not avoid the need to check the data types. Before
sending any data (resp receiving any data) we must
verify its type. That’s why, type checking of sent and
received data is required. The next example present
this type checking problem: ”write” function will ac-
cept any data type given as parameter. This is due to
that the transmission of data is doing in the form of
bit sequences.

A�Simple�Erlang�API�for�Handling�DDS�Data�Types�and�Quality�of�Service�Parameters

23

Figure 8: Type checking problem.

4.4.2 The Solution: Check Function

Data types are represented as Erlang records. All data
types used in the global data space are registered on a
header file located on the server. However, each par-
ticipated application has its local data type file that
contains data types which will be used by this appli-
cation to publish or receive data. We have created a
validator which use the same parsing technique pre-
sented previously and generates automaticallycheck
functions that take on parameters the data and the
type that will be checked(check (Data, Type)). These
functions can be called by the function write or read
to check data before make it available to the user: data
type must be the same defined on the DataWriter (or
the DataReader). The two Figures ”7” and ”8” present
the principals steps to generate this function. We take
for example the TempSensor data type.

-record(sensor,{
id:: integer(),
temp :: integer(),
press :: integer()}).

In fact, the usefulness of this parsing tech-
nique can not end here. There are an other
type of checking function based on this principe:

Figure 9: Generate check function (step1).

Figure 10: Generate check function (step2).

check type exists(name, HeaderFile)function to
check whether the type name given in parameter al-
ready exists or not. Before creation of any new data
type, the system must verify if there is already data
type have the same name. This function is used
also when creating a new topic and we want to ver-
ify if data type name used is registered in the local
DataTypefile.

check_type_exists(Name, HeaderFile) ->
L=get_recordnames(HeaderFile),
find_element(Name,L).

4.4.3 Evaluation

In this section we will show the importance of using
the check function in our eDDS API to make Erlang
based DDS applications more reliable. We present
below the differences between the two cases: an ap-
plication d’ont use an explicit type checking and an
other that will use an explicit type checking.

• Without Explicit Type Checking. In the next ex-
ample we want to show the risks that can meet
developers of eDDS applications without check-
ing the type of data that will be sent or received.
In Publication Side, We create a CircleTopic that
uses the Circle data type and we associate to it
a DataWriter. We did the same thing in the sub-
scription side and we associate a DataReader to
the CircleTopic. As shown in this example, we did
not sent a circle as expected but a square sample.
We notice that no error is marked in the develop-
ment stage or in the phase execution: The square
date is received by the DataReader.

ENASE�2015�-�10th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

24

Figure 11: Sending data without explicit type checking.

• With Explicit Type Checking. In this case we
will verify the data before publication. We mod-
ified the write function like presented below. It
must recover the data type used by the concerned
datawriter and then we call the check function and
passing as parameters the type name and the data.
If check function returned true, the data will be
send to the datareader. If not, an error message
will be displayed.

edds: write (Writer,Data)->
%...
if (check(Data,Type) == true) ->
’DDS_DataWriter’:write(Writer,Data);
true-> io:format("\n ### Invalide Data ###")
end.

Figure 12: Sending data with explicit type checking.

Like the previous example, We create a
DataWriter and a DataReader associated to
the CircleTopic and we write a square data

instead of a circle data. As noticed below, this
data has not published and nothing received on
the subscription side. For more reliability, it
is recommend to make the same modification
of the write function in the read function on
the subscription side to check the received data
before making it available to the application: the
data should respect the type of the concerned
Datareader.

4.4.4 Discussion

While DDS data types are represented in Erlang as
records, it is logical to think of the BIF isrecord to
verify these types. A simple example presented be-
low shows the difference between check and isrecord
functions. This BIF handles only the simple case of
records. It takes as parameters the data and a record
name and returns a boolean value to indicate if this
data is an instance of this record or not. But this BIF
suffers same drawbacks: it does not work correctly if
in the record declaration we specified also the types
of record fields. Our check function is more accurate.
It will solve this problem. We can take for example
the Sensor record defined previously.

Data1 =#Sensor{i d =1 , temp =30 , press =10}
Data2 =#Sensor{i d =2,temp = temperature,press=10}
is_record(Data1,Sensor) %% true
is_record(Data2,Sensor) %% true
check(Data1,Sensor) %% true
check(Data2,Sensor) %% false

In an other hand, this aspect of dynamic typing and
the fact that not having the verification type during
the compilation step is also recommended by DDS. In
2012, the OMG bring out an extensible specification
of DDS just to adapt this principe (Object Manage-
ment Group , 2012). They motioned that is preferable
to have a dynamic API that allows type definition, as
well as publication and subscription data types with-
out compile-time knowledge of the schema.

5 RELATED WORK

• Erlang Type Checking Systems
There are many attempts and approaches to en-
hance Erlang with type checking system, some
of them are well known on the Erlang commu-
nity. (Frank Huch, 2001) presented an approach
for the formal verification of Erlang programs us-
ing abstract implementation and model checking;
(Chanchal Kumar Roy, Thomas Noll and Banani
Roy, 2006) provide a contribution to the formal
modeling and verification of programs written in

A�Simple�Erlang�API�for�Handling�DDS�Data�Types�and�Quality�of�Service�Parameters

25

Erlang: mapping to the lambda calculus; (Thomas
Noll, Lars ake Fredlund and Dilan Gurov, 2002)
are developed the Erlang Verification Tool;Dia-
lyzer (Erlang, 2007): A Discrepancy Analyzer for
Erlang program which is used in various telecom-
munication projects. It is a defect detection tool
that use a static analysis to detect anomalies+ in
the Erlang code. It’s part of the Erlang/OTP dis-
tribution since 2007;Typer (Tobias Lindahl Kon-
stantinos Sagonas, 2005): An automatic type an-
notator for Erlang program based on type infer-
ence of success typing. It check specified type
against the inferred type. It is part of Erlang/OTP
since 2008.

• The Scala API for DDS
Scala stands for scalable langage, it is new lan-
guage (2003) that blend Object oriented and func-
tional constructs into a statically strongly typed
language with sophisticated type inference. (Cor-
saro, 2012) created a scala API for DDS. In con-
trast of our eDDS that completely based on Er-
lang, Escalier is based on the Open Splice Mid-
dleware. Also This API is very simple to use
specially when creating DDS entities and setting
Qos parameters. Like the principe of eDDS, this
approach used the notion of Type parameterized
of Scala (Martin Odersky, Lex Spoon, and Bill
Venners, 2008) to create a generic DataWriter
(resp DataReader). This principe alows to define
many specifics types with one generally written
class. If we take the same example of TempSen-
sor: the user can write any data not only those its
type is TempSensor. So there is a problem of ver-
ification of data that will be transmitted.

6 CONCLUSIONS

To facilitate the development of distributed real time
systems that require various quality of service aspects,
such as predictable performance, secure communica-
tions, availability and fault tolerance. An Applica-
tion Programming Interface is required to abstract the
platform specific details of the underlying QoS im-
plementation. This paper shows how to create a sim-
ple DDS API by taking advantage of a functional pro-
gramming language such as Erlang to define and set
QoS policy. In fact, we used a record parsing tech-
nique to generate automatically the desired API. This
technique is adopted in many area in eDDS specially
to solve Erlang problem type checking caused by its
dynamically typed characteristic in order to respect
the nature of DDS that provides a strong typed dis-
tributed system. As a future work and in order to im-

prove our API, we can make the possibility to add or
remove fields in a given data type like presented in the
Extensible and Dynamic Topic Types for DDS speci-
fication.

REFERENCES

Ericsson Computer Science Laboratory (1980). ERLANG
programming language. http://www.erlang.org. Ac-
cessed: 24-07-2014.

Cesarini, F. and Thompson, S. (2009).Erlang program-
ming. O’Reilly.

Chanchal Kumar Roy, Thomas Noll and Banani Roy
(2006). Towards Automatic Verification of Erlang
Programs by Lambda Calculus Translation.

Corsaro, A. (2012). High performance distributed comput-
ing with DDS and Scala. InPrismTech Corp.

Corsaro, A., Querzoni, L., Scipioni, S., Piergiovanni, S. T.,
and Virgillito, A. (2006). Quality of Service in Pub-
lish/Subscribe Middleware.Chapter in Global Data
Management.

Emmanuel Chailloux, Pascal Manoury and Bruno Pagano
(2001). Developing Applications With Objective
Caml. Editions O’REILLY.

Erlang (2007). The DIscrepancy AnaLYZer for ER-
lang applications. http://www.erlang.org/doc/man/
dialyzer.html.

Frank Huch (2001). Verification of Erlang Programs
using Abstract Interpretation and Model Checking.
In Proceeding ICFP ’99 Proceedings of the fourth
ACM SIGPLAN international conference on Func-
tional programming, pages 261 – 272.

Hudak, P. (1989). Conception, evolution, and application
of functional programming languages.ACM Comput.
Surv., 21(3):359–411.

Martin Odersky, Lex Spoon, and Bill Venners (2008). Pro-
gramming in Scala. http://www.artima.com/pins1ed/.

Object Computing Inc (OCI), OpenDDS. http://
www.opendds.org.

Object Management Group (2007). Data Distribution Ser-
vice for Real-time Systems Specification. version 1.2.

Object Management Group (2012). Extensible and Dy-
namic Topic Types for DDS. version 1.0.

Object Management Group (2012). Common Object
Request Broker Architecture (CORBA). http://
www.omg.org/spec/CORBA/3.3. version 3.3.

Thomas Noll, Lars ake Fredlund and Dilan Gurov
(Springer-Verlag 2002). Erlang verification tool.

Tobias Lindahl Konstantinos Sagonas (2005). TYPER: A
Type Annotator of Erlang Code.

Tratt, L. (2009). Dynamically typed languages.Advances
in Computers, 77:149–184.

Trung (2009). Record introspection at compile time. http://
erlangexamples.com/tag/record/. Accessed: 28-11-
2014.

ENASE�2015�-�10th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

26

