
Towards a Context-Aware Adaptation Approach for Transactional
Services

Widad Ettazi1, Hatim Hafiddi1,2, Mahmoud Nassar1 and Sophie Ebersold3
1IMS Team, SIME Laboratory, ENSIAS, Mohammed V University, Rabat, Morocco

2ISL Team, STRS Laboratory, INPT, Rabat, Morocco
3MACAO Team, IRIT Laboratory, University Toulouse 2-Le Mirail, Toulouse, France

Keywords: Context-Awareness, ACID Properties, Transactional Service, Adaptation, Transaction Model.

Abstract: One goal of ubiquitous computing is to enable users to access and perform transactions from any location, at
any time and from any device. In a context-aware environment, transaction management is a critical task
that requires a dynamic adaptation to the changing context in order to provide service reliability and data
consistency. In this paper, we propose a new approach for managing context-aware transactional services.
Then we discuss the various researches that have addressed this issue. Finally, we propose a new model for
the adaptability of context-aware transactional services called CATSM (Context-Aware Transactional
Service Model) and the adaptation mechanisms to implement this model.

1 INTRODUCTION

Service-oriented architecture is becoming a major
software framework for distributed applications such
as e-business and enterprise systems. If enterprise
applications use service-based technologies, it is
expected that they provide transaction support.
However, service-oriented architectures have a
number of requirements in a transaction-based
infrastructure; transactions must be able to adjust to
systems that are not necessarily in a perfect
environment, for example, that don’t require a lock
of their resources and do not care if transactions run
for short periods of time or longer periods. These
systems will operate in a flexible, dynamic
environment, but less reliable and that presents
contextual requirements (i.e., requirements and
preferences expressed or implied by the user,
connectivity, bandwidth, etc.) that hinder the
transactions execution. Therefore, it is imperative to
take into account the context information in the
management of transactions.

This paper investigates into the issue of context
awareness and transactional aspects exigencies in
service-oriented platforms and surveys how applying
context-awareness to transactional services can help
to improve data consistency, transactions execution
and quality of service.

Despite the multitude of research works on

transaction management in service-oriented systems,
the notion of context-awareness in the management
of these transactions is not yet addressed. Consider,
for example, a simple transaction that books a room
in a hotel. Current approaches will simply commit
the transaction if the required room is available in
the hotel. They do not take into account the context
information such as a room should be booked in a
hotel which is located nearby. To meet the variables
requirements of transactional services, the need to
relax the classical ACID (Atomicity, Consistency,
Isolation and Durability) properties has been
proposed in many researches since the early 90s.
There was a great effort on extended transaction
models (Elmagarmid, 1992), (Chrysanthis and
Ramamrithan, 1994). This effort has been continued
more recently in the context of mobile computing to
satisfy the constraints of the execution environment
(Segun et al., 2001). Researches have led to different
notions of atomicity (strict, relaxed and semantic
atomicity), consistency (strict or weak), and
isolation (strict or relaxed allowing a flexible
interleaving between transactions and a controlled
sharing of intermediate results) (Younas et al.,
2006).

Several standards specifications have been
proposed, including WS-Transaction specification
(IBM, Microsoft, BEA, 2005) and Business
Transaction Protocol (OASIS, 2002). However, they

553Ettazi W., Hafiddi H., Nassar M. and Ebersold S..
Towards a Context-Aware Adaptation Approach for Transactional Services.
DOI: 10.5220/0005382205530562
In Proceedings of the 17th International Conference on Enterprise Information Systems (ICEIS-2015), pages 553-562
ISBN: 978-989-758-097-0
Copyright c
 2015 SCITEPRESS (Science and Technology Publications, Lda.)

don’t take into account the context information.
Many transactional models and techniques have
been proposed (Schafer et al., 2008), (Lakhal et al.,
2009), (Choi et al., 2008), but they have limitations,
namely, a non-consideration of the context
information and the conception of advanced models
with transactional properties that differ from one
application to another.

This article is organized as follows. We present
in the next section the notion of context-awareness
and ACID properties. Section 3 will be devoted to a
review of related work. We introduce in Section 4
and Section 5 the proposed model for managing
CATS and our adaptation approach. We illustrate in
Section 6 the application of our proposal with an e-
tourism motivating scenario. Section 7 highlights
the adaptation mechanism. Finally, we conclude the
paper in Section 8 with plans for the future.

2 BASIC CONCEPTS

2.1 Context-Awareness

Context-aware computing appeared since the 90s
driven by the work of (Schilit et al., 1994). This term
refers to systems capable of perceiving a set of
conditions of use in order to adjust their behavior in
terms of providing information and services.
According to (Dey et al., 2001), the definitions
ascribed to a context-aware system do not include all
types of context-aware systems. Indeed, under these
definitions, a system that simply collects the context
in order to provide it to an application is not
considered a context-aware system. Thus, the
authors believe that “a system is context-aware if it
uses context to provide relevant information and
services to the user, where relevance depends on the
task requested by the user”.

Unlike traditional transactions, context-aware
transactions must adjust to the required context. By
context, we mean information:
 Related to the execution context, such as

characteristics of the used equipment,
software environment, network connectivity,
bandwidth, battery level of the terminal,
presence in the environment of equipment
such as printers and screens;

 About the user, such as his profile, location,
preferences and choices;

 Related to climatic conditions, the level of
ambient noise, traffic conditions, and
temperature;

 Temporal such as date, time, the historical

activity information.
Therefore, to ensure adaptation to the context,

transactional services must be able to:
 Detect and capture the context information

outlined above;
 Interpret the captured information to meet

user’s requirements;
 Respond to changes in the environment to

provide a dynamic adaptation of transactional
services.

2.2 ACID Properties

A transaction is the execution of a program
containing a sequence of operations (e.g., reads and
writes) performed on resources (e.g., databases,
objects, components, services, etc.). The execution
of a transaction ends with either commit or abort.
The commit of a transaction makes the effects of its
operations permanent while its abort cancels them
(Bernstein, 1997).To control the adverse effects of
concurrent modifications in a data system, the
transaction defines four properties identified by the
acronym ACID (Atomicity, Consistency, Isolation
and Durability). The transaction model generally
associated with the ACID properties is the flat
transaction model (Gray and Reuter, 1993). This one
is particularly suited to transactions running in
parallel, short and with a limited data handling.

However, the diversity of current application
contexts requires to define new transactional models
to support transactions of long duration (hours, days,
weeks), which handle potentially large and
structured data, and for which a degree of
cooperation between participants may be required to
perform a complex task. Therefore, the ACID
properties have limitations. Thus, they must be
released because the property of atomicity is a major
constraint for long-running transactions. Indeed, the
risk of aborting the transaction increases in
proportion to its length. In addition, the cost of
aborted transactions also increases with the duration
and complexity of the implemented process.

One of the main problems with transactional
services is that they frequently suffer from failures.
For instance, let’s consider an e-shopping system
that allows people to browse products catalogs in an
electronic mall, to select, to book and to buy items.
The application execution will not be the same if
transactions are launched from a fixed terminal
office, from a PDA while traveling by metro or from
home using a laptop. Indeed, the characteristics of
the mobile environment can have an impact on the
commit of transactions:

ICEIS�2015�-�17th�International�Conference�on�Enterprise�Information�Systems

554

 The execution time varies due to the limited
resources of the mobile unit and the variable
communication debit of the wireless networks;

 Communication cuts can occur due to a failure
of the battery or outside a network coverage
area;

 Low bandwidth affects the energy
consumption due to the execution time
increase.

Variability and constraints of the runtime
environment can affect the performance of
transactions leading to aborting transactions and to
unexpected execution costs (e.g., communication
price, execution time, etc.).

Furthermore, context-related failures occur when
required context criteria are not met. For instance, in
the case of a restaurant reservation transaction, if the
system books a table in a Chinese restaurant while
the user has specified his Moroccan culinary
preferences, the transaction will be aborted. In this
case, even though the service is available, it does not
meet the required context.

3 RELATED WORK

This section reviews the research works on context
aware transaction management in service-oriented
systems.

(Younas et al., 2010) develop a new model for
context-aware transactions in the context of mobile
services. This model provides a relaxed set of
transaction correctness criteria called SACReD
(Semantic Atomicity, Consistency, Resiliency,
Durability) and a protocol for enforcing them.
Unlike ACID criteria, SACReD does not impose
isolation policy thus allowing transaction to be
partially committed. Resiliency property allows for
alternative services wherein a given service fails or
if it does not meet the required context. However,
the proposed model is not generic and does not
allow its extension to other degree of atomicity. In
addition, the implemented protocol leads to failure
when no available alternative service is found.

(El Haddad et al., 2008) present an approach for
selecting and composing web services according to
their transactional requirements, QoS characteristics
and to the end-user preferences. The approach is not
completely context-aware, since it doesn’t include
all context parameters. Moreover, the approach
simply leads to a process failure when no suitable
service is found.

(Hafiddi et al., 2011) propose a Model-Driven
Engineering approach to achieve the context-aware

service independently of platforms and application
domains. Thus, the basic service focuses solely on
the business logic and all adaptations of the
ContextViews will be defined separately as Aspects
called Adaptation Aspects. However, transactional
requirements of context-aware services have not
been addressed by this work.

(Serrano-Alvarado et al., 2004) introduce the
Adaptable Model Transaction (AMT) according to
multiple execution models on fixed and mobile
hosts. The AMT model allows programmers to
define transactional alternatives for an application
task depending on context changes. Even though the
approach is interesting, transactional service
properties are not taken into consideration.

(Strunk et al., 2009) propose an approach for
modeling adaptation in web service compositions to
ensure a guaranteed quality of service for the whole
composite service. A special adaptation mechanism
is the rebinding of single services while the process
is executed if the services fail or could not reach the
needed QoS level. The approach supports rebinding
in BPEL processes and is based restrictively on QoS
metrics. Other contextual parameters such as user’s
requirements are not included in the design process.

(Muralidharan et al., 2008) develop a
middleware solution called mConnect: a Context
aware real time Mobile Transaction Middleware
which handles the multiplicity of devices and
provides a context agnostic view to the Transaction
(back end) server. Nevertheless, the middleware is
restricted to the computational resources available
with the handheld devices.

(Rouvoy et al., 2006) propose CATE: a
component-based architecture that is based on the
Two-Phase-Commit (2PC) protocol and on a
context-aware transaction service. The adaptation of
CATE is achieved by components reconfiguration to
select the most appropriate protocol with respect to
the execution context. The adaptation approach is
based on the selection of a suitable commitment
protocol among 2PC derivatives and hence is limited
to the classical commit protocols and does not take
into account the context information such as location
and time.

(Tang et al., 2008) propose a context-aware
transaction model and a context-driven coordination
algorithm based on the acceptable final states
concept. The transaction model and coordination
algorithm can dynamically adapt to the context,
significantly improving the success rate of MUC
(Mobile Ubiquitous Computing) transactions.
However, the transactional model is limited to the
compensatable transactions.

Towards�a�Context-Aware�Adaptation�Approach�for�Transactional�Services

555

The proposed approaches for context-aware service
adaptation are based primarily on creating
customized services by specific development of the
context-awareness code. Other works propose
techniques for selecting the service that suits the
user's request depending on the context of use, or
adaptation by service rebinding and dynamic
weaving of aspects that separates the
implementation of non-functional requirements from
the functional ones. However, this adaptation work
has not focused on the transactional aspects of
context-aware services.

4 THE PROPOSED MODEL

In our approach, we propose a new model for
context-aware transaction services called Context-
Aware Transactional Service Model (CATSM). This
approach enables the implementation of context-
aware services based on nested transactions models
(Moss and Hosking, 2006). A transactional service
according to CATSM is hierarchical and is based on
the transaction model shown in Figure1. In CATSM,
the global transaction can be decomposed into a set
of sub-transactions TSi, for example, a travel
planning service can be represented as a global
transaction, while its operations flight booking,
hotel, restaurant and art show reservations can be
represented by sub-transactions.

To cope with the context-awareness aspect, we
associate to the global transaction a Context
Descriptor (CD), which refers to the resources state
and conditions of service execution environment
(See Table1). Context Descriptor is mainly
representing the following sub-contexts:
transactional service, user, device, environment and
wireless network contexts.
 Device Sub-Context: operating system,

navigator type, supported type of data, screen
size, battery level, available memory,
computing capacity, etc.;

 User Sub-Context: profile, requirements,
purpose, etc.;

 Environment Sub-Context: location, time,
weather, etc.;

 Transactional Service Sub-Context: time
interval, response time, availability, response
rate, etc.;

 Wireless Network Sub-Context: Connectivity,
bandwidth, cost, stability, etc.

Table1: Example of context descriptor for device sub-
context.

Parameter State
Battery level High , Moderate, Low
Screen Size Large, Average, Small

Available memory Available, Saturated

For more flexibility and resistance to failures, a
sub-transaction may be associated to alternative
transactions ATSij, for example, in case of failure of
the hotel booking, it is possible to book another
hotel. We note that according to the context
descriptor CDij of each ATSij, only one alternative
will be invoked if the transaction to which it is
associated has failed. In case the alternative context
descriptor matches the current context, ATSij is
initiated instead of the main transaction. A
compensation mechanism is also invoked by adding
to each sub-transaction TSi and each alternative
ATSi a compensating transaction CATSi and CTSi
respectively, for example, payment transactions are
compensated in case of failure.

Figure 1 shows the general structure of the
proposed model:

Figure 1: Structure of a context-aware transactional
service.

The execution mode of the global transaction,
which is a combination of a set of sub-transactions,
is defined according to the context changes. In
CATSM, we associate to each transaction a property
type, namely, replayable, replaceable,
compensatable and critical. These properties
determine the behavioral profile of each transaction.
 Replaceable transaction: A transaction is said

to be replaceable if it may be replaced by an
alternative transaction which will be invoked
depending on the context descriptor;

 Replayable transaction: A transaction is said
to be replayable if it can be retried one or

ICEIS�2015�-�17th�International�Conference�on�Enterprise�Information�Systems

556

more times after its failure. For example, the
operation of sending the reservation document
can be rerun;

 Compensatable transaction: A transaction is
defined as compensatable if it provides
mechanisms to undo its effects. The system
must allow canceling the payment operation in
case of abort of the overall transaction;

 Critical transaction: A transaction is said to
be critical if it requires the abort of the global
transaction after its failure. For example, the
flight booking is a critical transaction.

The commit of the global transaction is
associated with one of the following three types of
atomicity, depending on the application semantic
and its requirements in terms of transactional
properties. The degree of atomicity can be adjusted
dynamically during the transaction execution
through an appropriate commit protocol.
 Strict Atomicity requires that all sub-

transactions vote to commit before the
validation of the global transaction. This must
consist only of critical and non-compensatable
sub-transactions. It is the classic atomicity
property that requires that all sub-transactions
are committed or none is;

 Semantic Atomicity requires that the global
transaction consists of critical sub-
transactions, some of which can be
compensatable. Compensatable sub-
transactions can be committed before the
completion of the global transaction. In case
the latter is aborted, compensating
transactions must be executed to semantically
undo the effects of transactions that have been
unilaterally committed;

 Relaxed Atomicity is obtained in case the
global transaction consists of any combination
of critical or non-critical sub-transactions,
compensatable or not. If one or more non-
critical sub-transactions are aborted, the
overall transaction can still be committed.

5 ADAPTATION POLICY FOR
CATS

Context-aware systems are generally associated with
the specification of rules that define the required
behavior of a system in response to a context state.
Indeed, in our approach we specify rules that clearly
separate the control of adaptation from adaptation
mechanisms. Figure 2 describes the adaptation

process that can be broken down into three phases:
 Context gathering phase: This phase describes

how to take into account the context
information in the service description based
on Context-Based Web Services Description
Language (CWSDL) (Kouadri et al., 2006),
(Mostefaoui et al., 2007). CWSDL was
developed to improve the WSDL standard of
the W3C and provide a platform for retrieving
context information. The context information
is collected from the runtime environment
(users, networks, resources, others services,
etc.);

 Decision phase: Based on the context
information gathered in the first phase and the
rules specification, the application must
decide which reconfiguration operations will
be performed to adjust to new circumstances.
This step corresponds to the application
adaptation strategy;

 Reconfiguration phase: Once the adaptation
rule is chosen, a reconfiguration mechanism
will automatically be responsible for the
modifications.

Figure 2: Adaptation approach by rules specification.

The adaptation policies are described in
Extensible Markup Language (XML) files. The use
of XML provides a hierarchical representation of the
data. These structures can be easily checked,
browsed and distributed. In addition, the language
level of formalism remains affordable by users. Our
rules specification describes (See Figure 3):
 Transactional properties and the desired

degree of atomicity;
 The structure of CATSM: namely, the sub-

transactions and their types, their
compensating transactions, their alternatives
and the associated context descriptors.

The adaptation rules are deducted from CATS rules
specification file. The adaptation policy is based on
the ECA strategy (Event, Condition, Action). The
events mainly concern the context descriptors. We

Towards�a�Context-Aware�Adaptation�Approach�for�Transactional�Services

557

Figure 3: CATS rules specification file.

add constraints by identifying different conditions of
the event. The conditions refer to the degree of
context descriptor changes and to the behavioral

profile of each transaction. Actions are specified
according to different conditions in the event.

In case the current context corresponds to the
transaction context descriptor:
 If the transaction is replayable then it is

replayed according to the number of attempts
(in case of failure);

 If the transaction is critical and replayable
then it is replayed according to the number of
attempts and re-execution parameters are
updated (in case of failure).

In case the current context doesn’t correspond to
the transaction context descriptor:
 If the transaction is replaceable and if current

context corresponds to the alternative context
descriptor then the associated alternative is
executed;

 If the transaction is critical then the main
transaction is aborted (in case of failure). In
this situation, the committed transactions, if
any, will be compensated;

 If the transaction is neither critical nor
replaceable then the transaction is just
ignored.

6 ILLUSTRATIVE SCENARIO:
THE E-TOURISM SYSTEM

Let’s consider a travel planning system. Mr John
plans to attend an art show scheduled in Marrakech.
For this, he intends to book a flight, a hotel room, a
restaurant table, and a place in the art show. He may
also want to indicate potential hotels and restaurants.
Reservations are not of equal importance, and the
restaurant table reservation can for example be
omitted from the transaction. The intermediate
results of some sub-transactions can be validated and
made visible once committed. In case of the abort of
the overall transaction, the partial validated results
require the execution of compensating transactions.
The following figure illustrates this example:

Figure 4: A travel planning service.

ICEIS�2015�-�17th�International�Conference�on�Enterprise�Information�Systems

558

If such a system is designed to be context-aware, the
user once logged in, specifies his preferences in
terms of destinations, will automatically receive the
list of flights, and a list of hotels close to its
destination will be displayed. Once the hotel
reservation is made, the user will automatically
receive a list of restaurants according to his culinary
preferences and to the weather. If it is nice, for
example, the system will suggest a restaurant with a
terrace. Finally, the system displays a list of shows
scheduled in the country of destination and prompts
the user to register. We should note that each
reservation consists of three operations, namely, the
booking operation, the payment transaction, and the
sending of a specific document for every
reservation.

This system is a well-known scenario of a long
transaction that requires extra ACID properties. The
compliance with the rules imposed by the ACID
model is no longer recommended in such a situation
since a simple change of context (e.g., low battery or
a change in the connection state) can induce the
abort of the overall transaction. In this case, context-
awareness presupposes that the system must detect
in advance any changes and automatically adjust to
the environment taking into account contextual
information such as location, user preferences and
other environmental parameters. Thus, it is desirable
in the transaction management, that a transaction can
respond to contextual information and adapt its
behavior to the context changes.

As shown in Figure 5, the flight reservation is a
critical transaction. In other words, this sub-
transaction is a crucial task for the travel planning
application. Let’s imagine that a change in the
context occurs during the flight reservation
transaction due to a disconnection event. According
to CATS specification (cf. Figure 5), flight
reservation is a replaceable transaction that may be
replaced by an alternative transaction which
corresponds to the required execution context. In
this case, the adaptation strategy is to execute
FlightServiceAgency2 on local device and
synchronize once reconnected (i.e., adaptation
action) whenever replaceable = yes (i.e., profile =
{replaceable}), ConnectionState = disconnected,
memory is available to store data and bandwidth is
medium (i.e., adaptation condition).

7 ADAPTATION MECHANISM

This section addresses the adaptation mechanism.
Let’s mention that we don’t deal in this paper with

Figure 5: Example of CATS rules specification.

the architecture of the global context-aware system.
Figure 6 illustrates the different modules that are
involved in the execution of a transaction in the
CATSM.

Context manager: it provides context
information and the mechanisms to collect and
update data in case of context changes.

Rule Manager: is responsible for inspecting the
adaptation rules specification (XML file) and

Towards�a�Context-Aware�Adaptation�Approach�for�Transactional�Services

559

Figure 6: Adaptation mechanism architecture.

converting the adaptation rules into a data format
that will be used in the reconfiguration module.

Reconfiguration module: is responsible for
evaluating and interpreting the rule based on the
context state information provided by the context
manager and the inspecting result of the rule
manager to trigger the execution of the appropriate
adaptation. The rule processing is performed at the
time of loading, time of the transaction initiation or
its failure (e.g., to be either rerun or to run an
alternative) and when a change in the context state
occurs. Based on the context state and the data
retrieved from the rule, the module decides which
strategy will be triggered (e.g., identify the
alternative sub-transaction to run). The
reconfiguration module invokes the transaction
manager which is responsible for operating the real
adaptation (i.e., performing alternative sub-
transactions, updating the re-execution parameters).

Transaction manager: Once the CATSM
structure is identified (i.e., the alternative sub-
transactions and compensating transactions) by the
reconfiguration manager, the main coordinator TSC
handles the processing and the execution of the
global transaction TS, then it submits the sub-
transactions to the sub-coordinators TSCi (See
Figure 7), which are associated with the different
TSi services including flight reservation service,
hotel, restaurant and art show booking services.
Each TSCi is running its TSi service and exchanges
messages with the main coordinator.

Figure 7: Main coordinator and sub-coordinators.

The following diagram sketches the adaptation
mechanism of the proposed protocol.

Figure 8: State diagram of the proposed protocol.

The TSC stores information about the overall
transaction in log files and sends a "Start" message
to TSCi to initiate the sub-transactions TSi. The TSC
goes to "wait" state while waiting for TSCi
messages.

TSCi records information about TSi transaction
in the log file. The TSi execution result (commit or
abort) is recorded in the log file (Local commit or
Local abort) and sent to TSC to make the decision.

TSC receives the votes of all TSCi. If all TSCi
vote to commit, the TSC forces the commit of the
global transaction (Global commit) and sends the
message to the sub-coordinators.

In case one of the sub-transactions is not
committed, if it is replaceable, the corresponding
TSCi initiates the alternative transaction and sends
the result to the TSC. If it is not replaceable but
critical, the overall transaction will be aborted
(Global abort).

If TSCi receives an abort message from TSC for
the global transaction, compensating transactions
will be executed. All execution results are recorded
in the log files.

8 CONCLUSIONS

Context-awareness is a common challenge in
service-based software engineering. Several
researches have been devoted to the design of self-
adaptive applications; however, there has been little
work on the adaptability of non-functional services.

In this paper, we propose a solution to the
problems of transactional applications flexibility in

ICEIS�2015�-�17th�International�Conference�on�Enterprise�Information�Systems

560

order to allow adaptation to different types of
transactional execution models according to the
environment characteristics which are described in
context descriptors and the application semantics.
This adaptation is based on the specification of rules
that provide the ability to replay, the choice of
alternative transactions and compensation actions
depending on the context. For this, we propose a
new model for context-aware transactional services.
This model allows the specification of the
transactional service and is the basis for all
techniques that will be developed. The proposed
approach is based on the requirements specification
in terms of transactional properties which specify on
one hand, the desired degree of atomicity, and
allows on the other hand, the choice of an adaptation
policy based on the alternative mechanism.

In the short term, we intend to design a self-
adaptable transactional service. To model the
transactional service, we will use a meta-model with
a high level of abstraction to control the definition of
all architecture components. In the long term, our
objective is to propose a framework for the
development of CATS based essentially on models
transformation.

REFERENCES

Choi, S., Kim, H., Jang, H., Kim, J., Kim, S. M., Song, J.,
Lee, Y., 2008. A framework for ensuring consistency
of Web Services Transactions. Information and
Software Technology Journal, Vol.50, pp. 684-696.

Chrysanthis, P. K., Ramamrithan, K., 1994. Synthesis of
extended transaction models using ACTA. ACM
Transactions on Database Systems (TODS). Vol.19,
Issue 3, pp. 450-491.

Dey, A., Abowd, G., Salber, D., 2001. Conceptual
framework and a toolkit for supporting the rapid
prototyping of context-aware applications. Human-
Computer Interaction, Vol.16, Issue 2, pp. 97-166.

El Haddad, J., Manouvrier, M., Ramirez, G., Rukoz, M.,
2008. QoS-driven selection of web services for
transactional composition. In ICWS'08, IEEE
International Conference on Web Services, pp. 653-
660.

Elmagarmid, A. K., 1992. Transaction Models for
Advanced Database Applications. Morgan-Kaufmann,
ISBN 1-55860-214-3.

Gray, J., Reuter, A., 1993. Transaction Processing:
Concepts and Techniques. Series in Data Management
Systems, Morgan Kaufmann. ISBN 1-55860-190-2.

Hafiddi, H., Baidouri, H., Nassar, M., ElAsri, B., Kriouile,
A., 2011. A Context-aware Service Centric Approach
for Service Oriented Architectures. In ICEIS’11, 13th

International Conference on Enterprise Information
Systems, Vol. 3, pp. 8-11, Beijing, China.

IBM, Microsoft, BEA., 2005. Web Services Transactions
Specifications. Retrieved from http://www-
128.ibm.com/developerworks/library/specification/ws-
tx/

Kouadri, S. K., Maamar, Z., Narendra, N. C., 2006.
Mobile middleware for context-aware service
composition. Chapter In the Mobile Middleware Book,
Boca Raton.

Lakhal, N., Kobayashi, T., Toyota, H., 2009. FENECIA:
failure endurable nested-transaction based execution
of composite web services with incorporated state
analysis. VLDB Journal.Vol.1, pp. 1-56.

Moss, J. E. B., Hosking, A. L., 2006. Nested
Transactional Memory: Model and Architecture
Sketches. In Science of Computer Programming. Vol.
632, pp. 186-201.

Mostefaoui, S. K., Younas, M., 2007. Context-oriented
and transaction-based service provisioning.
International Journal of Web and Grid Services, Vol.
3, Issue 2, pp.194–218.

Muralidharan, K., Karthik, G. V., Gupta, P., Chowdhury,
A.R., 2008. mConnect: A context aware mobile
transaction middleware. In COMSWARE’08, 3rd

International Conference on Communication Systems
Software and Middleware and Workshops, Bangalore,
India, pp.381-386.

OASIS Committee specifications, 2002. Business
Transaction Protocol, version 1.0.

Philip, A., Bernstein, E. N.,1997. Principles of
Transaction Processing, Morgan Kaufmann, ISBN 1-
55860-415-4.

Rouvoy, R., Alvarado, P., Merle, P., 2006. Towards
Context aware transaction services. In DAIS’06,
International Conference on Distributed Applications
and Interoperable Systems, pp. 272-288.

Schafer, M., Dolog, P., Nejdl, W., 2008. An environment
for flexible advanced compensations of web service
transactions. ACM Transactions on the Web (TWEB),
Vol. 2, Issue 2.

Schilit, B., Theimer, M., 1994. Disseminating Active Map
Information to Mobile Hosts. IEEE Network, Vol. 8,
Issue 5, pp. 22-32.

Segun, K., Hurson, A. R., Spink, A., 2001. A transaction
processing model for the mobile data access system.
Proceedings of the 6th International Conference PaCT
Novosibirsk, Russia, Vol. 2127, pp.112-127.

Serrano-Alvarado, P., Roncancio, C., Adiba, M., Labbé,
C., 2004. Context aware mobile transactions,
Proceedings of the IEEE International Conference on
Mobile Data Management, ISBN 0-7695-2070-7.

Strunk, A., Reichert, S., Schill, A., 2009. An infrastructure
for supporting rebinding in BPEL processes. In
EDOCW’09, 13th IEEE Enterprise Distributed Object
Computing Conference Workshops, pp. 230-237.

Tang, F., Guo, M., Li, M., 2008. An adaptative context
aware transaction model for mobile and ubiquitous
computing. Computing and Informatics, Vol. 27, Issue
5, pp. 785-798.

Younas, M., Chao, K., Lo, C., Li, Y., 2006. An Efficient
Transaction Commit Protocol for Composite web

Towards�a�Context-Aware�Adaptation�Approach�for�Transactional�Services

561

services. In AINA’06, 20th International Conference on
Advanced Information Networking and Applications.
Vol. 1, pp.591-596.

Younas, M., Mostefaoui, S. K., 2010. Context-aware
mobile services transactions. In AINA’10, 24th IEEE
international conference on advanced information
networking and applications, Perth, Australia, pp. 705-
712.

ICEIS�2015�-�17th�International�Conference�on�Enterprise�Information�Systems

562

