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Abstract: Accessing OWL ontologies programmatically by complex IT systems brings many problems stemming from
ontology evolution, their open-world nature and expressiveness. This paper presents Java OWL Persistence
API (JOPA), a persistence layer that allows using the object-oriented paradigm for accessing semantic web
ontologies. Comparing to other approaches, it supports validation of the ontological assumptions on the object
level, advanced caching, transactional approach, unification and optimization of repository access through the
OntoDriver component, as well as accessing multiple repository contexts at the same time. Additionally, we
present a complexity analysis of OntoDriver operations that allows optimizing object-oriented access perfor-
mance for underlying storage mechanisms. Last but not least, we compare our object-oriented solution to low
level Sesame API in terms of efficiency.

1 INTRODUCTION

Large expressive ontologies are a powerful tool for
knowledge modelling. However, their complexity re-
quires proper design and development of end-user in-
formation systems. During information system de-
sign, its creators face the challenge of choosing an
appropriate software library that is reasonably easy to
use and maintain, but that allows exploiting the ontol-
ogy in its complexity (Křemen and Kouba, 2012).

On one side, information systems, that accept
closed-world assumption by their nature, have to deal
with distributed and open-world knowledge repre-
sented in ontologies. On the other hand, ontologi-
cal changes often do not affect the information system
data model assumptions and thus can be smoothly ap-
plied without information system recompilation and
redeployment (e.g. taxonomy/metadata extension).
Furthermore, expressive power of semantic web on-
tologies is significantly higher than that of relational
databases.

For example, an ontology specifies that each
Person has a name. Due to the open world assump-
tion, the ontology is consistent even if a particular
Person does not have recorded his/her name. How-
ever, a genealogical application accessing the ontol-
ogy needs the name to be known, which causes the
application to crash whenever it receives (consistent,
but application–incompatible) data from an ontologi-
cal source, specifying a Person without a name.

This paper presents a solution for these issues –
the Java OWL Persistence API (JOPA), see (Led-
vinka and Křemen, 2014), a persistence layer that al-
lows using the object-oriented paradigm for access-
ing semantic web ontologies. Comparing to other ap-
proaches, it supports validation of the ontological as-
sumptions on the object level ((Křemen and Kouba,
2012) and (Křemen, 2012)), advanced caching, trans-
actions, unification and optimization of repository ac-
cess through the OntoDriver component, as well as
accessing multiple repository contexts at the same
time. Additionally, we present a complexity anal-
ysis of OntoDriver operations that allows optimiz-
ing object-oriented access performance for underly-
ing storage mechanisms. Lastly, we compare our so-
lution to low level Sesame API in terms of efficiency.

Section 2 shows the relationship of our work to the
state-of-art research. Section 3 introduces design and
implementation of a prototype system for ontology-
based information system access. Section 4 analyses
complexity of operations defined in the API1 for stor-
age access. The paper is concluded in Section 5.

2 RELATED WORK

Some object-oriented solutions try to approximate
ontological OWL reasoning (Motik et al., 2009)

1Application Programming Interface

212 Ledvinka M. and Křemen P..
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by means of procedural code, like (Meditskos and
Bassiliades, 2008), or (Poggi, 2009). However, this
significantly limits the expressive power of the on-
tology and is memory-consuming on the information
system side.

There is another research direction, not compro-
mising reasoning completeness, while maintaining its
scalability – simplifying programmatic access to se-
mantic web ontologies stored in optimized transac-
tional ontology storages. This is also where our solu-
tion lies. Two main existing approaches are presented
in the next sections.

2.1 Domain-independent APIs

Many APIs for programmatic access to ontologies
make no assumptions about the particular ontology
schema. This paradigm is exploited in frameworks
like OWL API (Horridge and Bechhofer, 2011),
Sesame (Broekstra et al., 2002) or Jena (Carroll et al.,
2004). These systems are generic, allowing to ex-
ploit full range of ontological expressiveness, trading
it for verbosity and poor maintainability of the result-
ing code. Furthermore, using these tools requires soft-
ware designers to hold deep knowledge of the under-
lying ontological structures. Comparing to these sys-
tems, our solution provides object-ontological map-
ping that helps software designers in keeping the de-
sign readable, consistent and short, see Section 4.2.2.

2.2 Domain-specific APIs

There are already several established solutions, where
the ontology schema is compiled directly into the
object model. This paradigm makes use of an
OOM2. Representatives of this paradigm are e.g.
Empire (Grove, 2010) or AliBaba3. Comparing to
the former, these systems actually access ontolo-
gies in a frame-based (or object-oriented) manner.
Object-ontology mappings bind the information sys-
tem tightly to the particular ontology. This signifi-
cantly simplifies programmatic access and is less de-
manding on the developer expertise in semantic web
ontologies. On the other hand, these solutions bury
most of the ontological expressiveness. Comparing to
these systems, our solution allows to monitor ontol-
ogy changes during its evolution, access both asserted
and inferred knowledge and provide individual types
as well as extra properties through additional Java an-
notations.

A thorough discussion of these architectures can
be found in (Ledvinka and Křemen, 2014) and

2Object-ontological Mapping
3http://rdf4j.org/, accessed 02-12-2014

in (Křemen, 2012). JOPA, introduced in Section 3
aims at taking the best of both types, as shown in Fig-
ure 1. It provides compiled object-based mapping of
the ontology schema similar to the domain-specific
approaches described above, while also enabling ac-
cess to the dynamically changing aspects of the ontol-
ogy (see Section 3).

3 JOPA

JOPA stands for Java OWL Persistence API. It is in
essence an API for efficient access to ontologies in
Java, designed to resemble its relational-world coun-
terpart Java Persistence API (JCP, 2009).

In this section, we introduce the layered architec-
ture of JOPA.

Architecture. From the architectural point of view,
JOPA is divided into two main parts:

OOM, realizes the object-ontological mapping and
works as a persistence provider for the user ap-
plication. The API resembles JPA 2 (JCP, 2009),
but provides additional features specific to ontolo-
gies.

OntoDriver, provides access to the underlying stor-
age optimized for the purposes of object-oriented
applications. OntoDriver has a generic API which
decouples the underlying storage API from JOPA.

Figure 2 shows a possible configuration of an in-
formation system using JOPA, together with some in-
sight into the architecture of JOPA. The application
object model is defined by means of a set of integrity
constraints which guard that the ontological data are
usable for the application and vice versa. Thanks to
the well-defined API between the OOM part of JOPA
and OntoDriver, there can be various implementations
of OntoDriver and the user can switch between them
(and between the underlying storages) without having
to modify the actual application code.

3.1 JOPA OOM

Let us now briefly describe the main features of the
object-ontological mapping layer of JOPA.

The OOM layer is mainly represented by the
EntityManager interface, which corresponds to its
JPA 2 counterpart (JCP, 2009) to a large extent. It
contains CRUD4 operations: find, persist, merge and
remove, but it enhances them with versions supporting
context descriptors (Ledvinka and Křemen, 2014). It

4Create, Retrieve, Update, Delete
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Figure 1: JOPA and related approaches.

also contains operations for transaction management
and cache access.

Mapping. As was stated earlier, the mapping be-
tween ontological data and the application domain
model is based on a contract expressed using integrity
constraints. In practice, these integrity constraints are
compiled into a set of Java annotations that guard their
semantics on the object level. This allows easy valida-
tion of cardinality constraints, as well as domains and
ranges of annotation/data or object properties. In this
respect, JOPA is very similar to Empire(Grove, 2010).
An example of a JOPA entity class can be seen in List-
ing 1. The @Types field contains information about
ontology classes to which individual represented by
an instance of this type belongs.

@OWLClass(
iri="http://example.org/Student")

class Student {
@Id
URI id;
@DataProperty(

iri="http://example.org/name")
String name;
@DataProperty(

iri="http://example.org/email")
String email;
@ObjectProperty(

iri="http://example.org/course")
Set<Course > courses;
@Inferred
@Types
Set<String > types;
@Properties
Map<String , Set<String >> properties;

}

Listing 1: Example of a business entity class declaration
with JOPA annotations representing the object-ontological
mapping.

It is necessary to point out that the identity of a
business object in JOPA is given not only by the indi-

vidual’s IRI5, but also by the ontology class mapped
by its type, i.e. in the underlying ontology the indi-
vidual must be explicitly stated to be of the specified
ontology class. It should also be noted that JOPA does
not support blank nodes and anonymous individuals.
JOPA does not support class subsumption either, due
to the lack of clear relationship between ontological
and object identity, as well as the lack of multiple
inheritance in many object-oriented languages, like
Java. To facilitate working with entity relationships,
JOPA does support operation cascading.

Unmapped Properties. In addition to the fixed set
of modelled properties, JOPA enables the application
to access also the properties which are not part of the
object model. The property values are currently re-
stricted to their string representation and represented
by a map where the keys are property IRIs and val-
ues are sets of property values. The map is annotated
with the @Properties annotation. This way the ap-
plication has, although limited, access to the dynamic
part of ontological data without having to adjust the
domain model. See the properties attribute in List-
ing 1.

Inferred Attributes. Ontologies contain two types
of information:

� Explicit (asserted),

� Implicit (inferred).

Inferred information cannot be changed, as it is
derived from the asserted knowledge by a reasoner
and can change only by modification of the explic-
itly stated information. As a consequence, it is nec-
essary to prevent modification of inferred data. JOPA
supports both asserted (in read/write mode) and in-
ferred (read-only) attributes. This support is realized
by means of the @Inferred and @Asserted annota-
tions. The @Asserted annotation is optional. Every

5Internationalized Resource Identifier
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Figure 2: JOPA Architecture. A clear separation between JOPA and the underlying ontology store layer can be seen. Integrity
constraints are used to represent the contract between the ontology and the application object model.

field not annotated with @Inferred is considered as-
serted and allowed to be modified.

Contexts. Another feature of JOPA is its ability to
work with ontologies distributed in several contexts
(graphs). When the underlying storage supports this
feature, the application is able to specify not only in
which context an instance should be searched for, but
also contexts for individual attributes of the instance.
If the context is not specified, the default one is used.

Transactions and Caching. JOPA supports trans-
actional processing of the ontological data. However,
the mechanism is different from standard relational-
based persistence, because reasoning makes it more
difficult to reflect pending changes to the transaction
that produced them. For example, when a property
value is changed during a transaction T1, only T1 has
to be able to see effects of that change even before
commit. JOPA itself does not employ any reasoning
and offloads this burden to the underlying OntoDriver
implementation. The OntoDriver is free to choose any
strategy for keeping track of transactional changes.

When a business transaction commits, JOPA tells the
OntoDriver to make the pending changes persistent in
the storage.

Since applications often manipulate the same data,
it is reasonable to use cache to reduce the necessity
to query the storage. JOPA contains a second-level
cache (JCP, 2009), which is shared between all open
persistence contexts and enables quick entity lookup.
Another performance improving feature is the support
for lazily loaded attributes6.

3.2 OntoDriver

OntoDriver is a software layer designed to unify ac-
cess to various ontology storages. It achieves this
goal by presenting a single API to JOPA and enabling
the implementation to use whatever framework is re-
quired by the underlying storage, e.g. Sesame API
for Sesame storage or Jena for SDB. In this regard,
OntoDriver is similar to a JDBC7 driver known from

6Lazily loaded attribute values are retrieved from the
data source only upon application request.

7Java Database Connectivity
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the relational world. But in contrast to JDBC, where
all operations are done using SQL8 statements, On-
toDriver provides dedicated CRUD operations, which
give the implementations more opportunity for opti-
mizations, since they know beforehand what opera-
tion is executed.

However, the OntoDriver API does not elimi-
nate the possibility of using SPARQL (Harris and
Seaborne, 2013) queries for information retrieval and
SPARQL Update (Gearon et al., 2013) statements for
data manipulation.

3.2.1 OntoDriver API

The key idea behind OntoDriver is a unified API pro-
viding access to ontology storages. To formally de-
scribe the API, let us first define basic ontological ter-
minology:

Theoretical Background. We consider program-
matic access to OWL 2 DL ontologies, corre-
sponding in expressiveness to the description logic
SR OI Q (D)9. In the next sections, consider an
OWL 2 DL ontology O = (T ;A), consisting of a
TBox T = ftIg and an ABox A = faIg, where
aI is either of the form C(i) (class assertion), or
P(i; j) (object property assertion), where i; j 2 Ni are
OWL named individuals, C 2 Nc is a named class,
P 2 Nr is a named object property. Other axiom
types belong to T . W.l.o.g. we do not consider
C(i) and P(i; j) for complex C and P here. We do
not consider anonymous individuals either. See full
definition of OWL 2 DL (Motik et al., 2009) and
SR OI Q (D) (Horrocks et al., 2006).

In addition to ontological (open-world) knowl-
edge, a set SC = fgig of integrity constraints is used
to capture the contract between an ontology and an
information system object model. Each integrity con-
straint gi has the form of an OWL axiom with closed-
world semantic, as defined in (Tao et al., 2010).

By multi-context ontology we denote a tuple M =
(Od ;O1; :::;On), where each OI is an ontology identi-
fied by a unique IRI and is called context, Od denotes
the default ontology (default context) which is used
when no other context is specified. This structure
basically corresponds to an RDF dataset with named
graphs (Cyganiak et al., 2014). An ontology store is a
software layer that provides access to M .

An axiom descriptor da is a tuple
(i;f(r1;b1):::(rk;bk)g), where i 2 Ni, rm 2 Nr,
bm 2 f0;1g and m 2 1:::k. The bms specify whether

8Standard Query Language
9For the sake of compactness, we neglect datatypes and

literals (D) and use description logic notation.

inferred values for the given role should be included
as well. The axiom descriptor is used to specify for
which information the OntoDriver is queried.

An axiom value descriptor dv is a tuple
(i;f(r1;v1):::(rk;vk)g), where i 2 Ni, rm 2 Nr, vm 2 Ni
and m 2 1:::k. The vms represent property assertion
values for the given individual and property. The ax-
iom value descriptor specifies information which shall
be inserted into the storage.

Please note that for the sake of readability we have
omitted context information from the formal defini-
tions. In reality, a context can be specified for the
whole descriptor and for each role.

OntoDriver API. The core operations of the Onto-
Driver API are as follows:

� f ind(M ;da): 2M � Ni � Nk
r � f0;1gk !

2Ni�Nr�Ni , where da is an axiom descriptor,

– Given an individual, load values for the speci-
fied properties,

– Used by EntityManager.find() in OOM,

� persist(M ;dv) = Od [ fa1:::asg, where a1:::as
are property assertion axioms created from role-
value pairs in dv,

– Persist axioms representing entity attribute val-
ues,

– Used by EntityManager.persist() in
OOM,

� remove(M ;da) = Od n fa01:::a0tg, where a01:::a
0
t

are property assertion axioms for the roles spec-
ified in da,

– Remove axioms representing entity attribute
values,

– Used by EntityManager.remove() in OOM,

� update(M ;dv) = (Od n fa01:::a0tg) [ fa1:::asg,
where a01:::a

0
t are original property assertion ax-

ioms for the roles r1:::rk defined in dv and a1:::as
are new property assertion axioms created for
role-value pairs in dv,

– Remove old and assert new values for entity at-
tributes,

– Used by EntityManager.merge() or on at-
tribute change during transaction in OOM,

� getTypes(M ; i;b): 2M � Ni � f0;1g ! 2Nc ,
where the resulting axioms represent types of the
specified individual i, b specifies whether inferred
types should be included as well,

– Get types of the specified named individual,
– Used by EntityManager.find() in OOM,
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� updateTypes(M ; i;fc1:::ckg) = (Od n fa01:::a0tg)
[fa1:::akg, where cm 2 Nc, the a0m are original
class assertion axioms and the ao are the new
class assertion axioms for the given individual i,

– Updates class assertion axioms for the given in-
dividual by removing obsolete types and adding
new ones,

– Used by EntityManager.persist(),
EntityManager.merge() or on attribute
change during transaction in OOM,

� validateIC(M ;fg1:::gkg) : 2M � 2Ni�Nr�Ni �
Sc!f0;1g, where gm 2 Sc and m 2 1:::k,

– Validate the specified integrity constraints,
verifying reasoning-time integrity constraints
which cannot be validated at runtime (Křemen
and Kouba, 2012),

– Called on transaction commit in OOM.

The actual programming interface written in Java
contains, besides methods representing the above op-
erations, also methods for issuing statements (pre-
sumably SPARQL and SPARQL Update) and trans-
action managing methods. We omit these here for the
sake of brevity.

3.2.2 Prototype of OntoDriver

To evaluate our design of OntoDriver, we have created
a prototypical implementation. For this prototype, we
have chosen to use Sesame API. One of the main rea-
sons for such decision was that there exist Sesame
API connectors for some of the most advanced on-
tology repositories including GraphDB (successor of
OWLIM, see (Bishop et al., 2010)) and Virtuoso (Er-
ling, 2012). The implementation can thus be used to
access a variety of storages. More optimized imple-
mentations of OntoDriver which would exploit spe-
cific features of the underlying storages can be cre-
ated, but the prototype was intended as a general proof
of concept for the layered design of JOPA.

The Sesame OntoDriver uses neither SPARQL nor
the SeRQL (Broekstra et al., 2002) language to per-
form data manipulation. We use the Sesame filter-
ing API, which filters statements according to subject,
predicate and object (i.e. it basically corresponds to
triple pattern matching in a SPARQL query). On the
one hand, this requires for example asking for each
property of an individual separately (or asking for all
of them by making the property unbound). On the
other hand a SPARQL query that would correspond
to the find operation (see above) would be a union of
triple patterns. We expect the performance of asking
for the property values one by one using the Sesame
filtering API to be similar to using a single SPARQL

query with union on triple patterns, because even-
tually both strategies lead to evaluation of multiple
triple patterns with the subject and property bound
and no joins. Nevertheless, we have a more fine-
grained control over the operation itself, because we
are able to specify whether inferred statements should
or should not be included in the query result. This is
an important feature of JOPA and can generally not be
done in standard SPARQL statements. However, we
plan to investigate the possibility of using SPARQL
instead of the Sesame filtering API as well.

Another important point is how the Sesame On-
toDriver deals with transactions. As was mentioned
in Section 3.1, JOPA transfers the burden of mak-
ing changes done in a transaction visible to the
transaction itself to the OntoDriver. The prototype
handles this task by creating local graphs of added
and removed statements. When the store is queried
for some knowledge, the added and removed trans-
actional snapshots are used to enhance the results
returned by the storage to reflect the transactional
changes. These local graphs are of course unique to
every transaction on the OntoDriver level. Currently,
this approach is handicapped by the fact that such lo-
cal graphs do not provide any reasoning support, so
they represent only explicit assertions. A solution
to this drawback would be for example using an in-
memory reasoner, e.g. Pellet (Sirin et al., 2007), for
the local graphs.

We are also considering another possible solu-
tion for keeping the transactional changes. This so-
lution would require temporary contexts created by
the store, which would hold the transactional changes
kept currently in the local graphs. This would enable
us to transfer the reasoning task over to the underly-
ing storage. This solution remains as an idea for the
future development.

4 OPERATION COMPLEXITY
ANALYSIS

The OntoDriver API enables us to examine the com-
plexity of operations it consists of. In this section
we consider this complexity with regards to sev-
eral selected ontology storages. A careful reader
may have noticed that some of the operations in
the API could share the same implementation, for
instance update(M ;dv) can be implemented using
remove(M ;da) and persist(M ;dv). Thus, we con-
centrate the analysis on the following operations:

� f ind(M ;da),

� persist(M ;dv),
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� remove(M ;da).

When done with theoretical complexity analysis,
we will look at the prototypical implementation of
OntoDriver described in Section 3.2.2 and measure
the operation complexity on some real data.

4.1 Complexity Analysis

For the theoretical complexity analysis, we have se-
lected two well known storages, each representing a
different approach to reasoning – one performing total
materialization on data insertion, the other reasoning
at query time and doing no materialization (the differ-
ence being similar to forward and backward chaining
strategies in rule systems):

GraphDB, formerly known as OWLIM (Bishop
et al., 2010), GraphDB is a Sesame SAIL10 with
rule-based reasoner using forward chaining,

Stardog,11 performs real-time model checking with
no materialization.

Each of these strategies has its pros and cons. To-
tal materialization is fast in querying, as there is no
reasoning performed at query execution time. On the
other hand, statement removal and insertion are slow.
In addition it is necessary to specify reasoning expres-
siveness before any data is inserted. Total materializa-
tion can also cause significant inflation of the dataset
size. Real-time reasoning keeps the dataset compact
and it is fast on insertion, however performing reason-
ing at query time can be time consuming.

4.1.1 A Note on Indexes

The most important part of every ontology storage is
its index – it determines how quickly the data can
be accessed. Ontology repositories follow the trend
of data storages from other domains and use B-trees
(Comer, 1979). GraphDB uses a modified version
of B-trees – a B+ tree (Hepp et al., 2007). There is
not much information about the indexing strategies of
Stardog, but we were able to determine that it also
uses a B+ tree from a post in Stardog forum12.

To efficiently access data which are statements
consisting of three parts – subject (S), predicate (P)
and object (O), the storages usually contain multiple
indexes. Since there exist six combinations of the
three statement parts, there could be up to six different
indexes. With increasing number of indexes the space
required to store the data and the indexes obviously

10Storage And Inference Layer
11http://www.stardog.com, accessed 02-12-2014
12The post is available at http://tinyurl.com/ke4ozf7, ac-

cessed 25-01-2015

grows. Another problem of multiple indexes is their
updating when the data is modified. Given the fact
that most storages also support contexts, the number
of possible indexes grows even more.

Therefore, storages usually restrict themselves to
only a few indexes, based on the structure of the most
frequent queries. It is often the case that property
is bound in such queries. Thus, storages mostly use
PSO and POS indexes, with others optionally avail-
able. The PSO index searches statements first by
predicate, then by subject and last by object. The POS
index is similar, only switching object and subject.
Although the indexes are designed for generic RDF
statements, they are adequate in our setup, as the on-
tological axioms manipulated by OntoDriver have the
form of atomic class assertions, or atomic property as-
sertions, both being serialized as single RDF triples.
The PSO and POS indexes are also the default ones
used by GraphDB (Ontotext, 2014) and Stardog (Star-
dog, 2014).

4.1.2 Analysing Complexity of Typical
Operations

In the following paragraphs we will examine time
complexity of each of the operations enumerated at
the beginning of this section with regards to the se-
lected storages, with a short comment on possible im-
plementations of these operations in OntoDriver.

f ind(M ;da). Multiple strategies can be employed
to realize the find operation, but in essence they all
perform a search for property assertion axioms where
the individual and property are bound. Therefore,
the PSO index will be triggered. However, while
GraphDB will proceed directly to finding the corre-
sponding data, Stardog must first perform reasoning
and rewrite the query according to the schema seman-
tics. The complexity can be seen in Table 1.

We would like to stress here that the find operation
is theoretically very favourable in terms of possible
performance, because it does not require any joins,
as it is supposed to return a simple union of property
values for a single individual. Therefore it is straight-
forwardly mappable to the PSO index.

persist(M ;dv). Persisting assertion values speci-
fied in dv requires insertion of the corresponding state-
ments into the storage’s indexes (in our case the PSO
and POS indexes).

In addition, in GraphDB, a materialization of
statements inferred from the inserted knowledge is
performed. Thus, from a set of statements KE , in-
serted into the database, a new set K0

I of statements
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Table 1: Asymptotic time complexity of the selected operations for GraphDB and Stardog. b is branching factor of the
index B+ tree, n is the size of the dataset. The complexity of processing B+ trees is described in (Comer, 1979). CR is the
reasoning cost, which depends on the selected language expressiveness and m is the number of reasoning cycles performed in
materialization of statements inserted into GraphDB.

Storage Tf ind Tpersist Tremove

GraphDB O(logbn) O(
m
å

i=0
CRi� logbn) O(

m
å

i=0
CRi� logbn)

Stardog O(CR)+O(logbn) O(logbn) O(logbn)

is derived, K0
I being in turn inserted into the dataset,

triggering more materialization, until a set Km
I is in-

serted, from which no additional knowledge can be
deduced. This, of course, makes the persist operation
in GraphDB more complex than in Stardog. Again,
the theoretical complexity is shown in Table 1.

remove(M ;da). Doing remove in an ontology re-
quires knowledge of what exactly should be removed.
Thus, JOPA performs epistemic remove, i.e. only val-
ues of properties mapped in the object model are re-
moved. Therefore if the dataset contains property val-
ues which are not mapped by the object model man-
aged by JOPA, these values are retained. In case the
entity contains a field gathering unmapped asserted
properties (see Section 3.1), the unmapped values are
contained in this attribute and, to be consistent with
the epistemic remove, JOPA deletes all statements
where the removed individual is the subject.

remove in Stardog is again relatively straightfor-
ward. Since JOPA does allow only removal of explicit
statements, there is no reasoning required. The pro-
cedure thus consists of finding the relevant statements
and removing them from the index.

The situation is more interesting in GraphDB, be-
cause with the removal of explicit statements, some
inferred knowledge may become irrelevant. GraphDB
resolves the operation with a combination of forward
and backward chaining (Bishop et al., 2010). In
short, all possible inferred data is found from the re-
moved statements first (this is the forward chaining
part). From the results, backward chaining is per-
formed to determine whether the implicit knowledge
is backed by explicit knowledge other than that being
removed. If not, the inferred statements are removed
as well. Asymptotically, the complexity of remove in
GraphDB is the same as persist, see Table 1.

The asymptotic complexities suggest that
GraphDB is more suitable for read-oriented ap-
plications, especially when the expressiveness of
reasoning increases. In these cases the cost of infer-
ence in GraphDB is paid when the dataset is loaded
and at the actual runtime the queries will presumably
be much faster. On the other hand, applications
performing a lot of data modifications will benefit

from the non-materializing approach of Stardog.
Of course, these are only theoretical results which

consider asymptotic complexities and disregard pos-
sible hidden constants. We are currently working on a
benchmark which would validate these expectations.

4.2 OntoDriver in Practice

In this section we briefly evaluate the benefits of On-
toDriver from two important perspectives – perfor-
mance and code metrics.

4.2.1 Performance of JOPA with OntoDriver

After examining theoretical complexity of the On-
toDriver API, we can proceed to measuring perfor-
mance of our OntoDriver prototype. The goal of this
evaluation is to determine performance differences
between ontology access using JOPA and OntoDriver
and using Sesame API directly. Since the OntoDriver
prototype internally uses Sesame API, we hardly ex-
pect JOPA to outperform pure Sesame API solution,
instead we will concentrate on the possible perfor-
mance penalties stemming from the additional logic
JOPA has to do. As an extra result, we will discuss
the real performance w.r.t. our theoretical approxima-
tion of the asymptotic complexity of GraphDB. The
test machine setup is following:
� Linux Mint 17 (64-bit)

� Java 8 update 31 (HotSpot), -Xms6g -Xmx6g

� Sesame API 2.7.14, GraphDB 6.0 RC6

� Intel i5 2.67GHz

� 8GB RAM
A class diagram of the benchmark schema is

shown in Figure 3. The application model is rather
small, but sufficient to exercise most of the features
supported by JOPA. The application model and the
datasets are based on the UOBM benchmark (Ma
et al., 2006), the datasets were generated using a gen-
erator application (Zhou et al., 2013).

Results of the benchmark are shown in Table 2.
The find operation was loading approximately 450 in-
stances of UndergraduateStudent. Each of them
was connected to three courses in average. Thus,
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Table 2: Benchmark results. The times are average from 100 runs of the benchmark. Tload represents the amount of time it
took GraphDB to load the respective datasets.

Dataset Tload=s Tpersist=s Tf ind=s Tupdate=s Tremove=s
JOPA Sesame JOPA Sesame JOPA Sesame JOPA Sesame

UOBM 1 38 4:158 2:209 13:738 13:353 32:28 9:571 36:456 2:740
UOBM 5 213 4:245 2:252 13:830 13:366 32:461 9:993 36:718 2:918
UOBM 10 424 4:255 2:260 13:840 13:293 32:625 10:077 36:433 3:024

Figure 3: Benchmark application model. Although small in
size, it exercises most of the concepts supported by JOPA,
including inferred entity types and data and object proper-
ties with lazy loading.

the total number of loaded individuals with properties
was more than 1800, representing over 5000 state-
ments. The persist test inserted 500 new instances
of UndergraduateStudent, connected to four exist-
ing courses and a new paper, into the ontology. The
update evaluation updated the name and telephone of
each of the previously persisted student, removed ref-
erence to one of his courses and added another one
instead. Finally, the remove benchmark removed the
500 persisted undergraduate students.

Benchmark Results Discussion. The benchmark
results show that JOPA performs comparably when
loading or persisting entities. It is important to point
out that to mimic the behaviour of JOPA on entity
loading, the Sesame API runner was verifying that
the object property values were of the correct type.
However, there is a significant performance gap be-
tween Sesame API and JOPA in update and remove.
Major part in this gap is given by the fact that JOPA
first has to load the entities before updating or re-
moving them. For Sesame API, we simply removed
(and inserted) the required statements without load-
ing them first. Of course, the benchmark is skewed
in this regard, because a real world application would
most likely require the entity loading anyway. Also,
JOPA currently does not support the getReference
method (JCP, 2009), which would be suitable for the
update and remove scenarios. Still, there is a large
margin for improvement in JOPA for these operations.

Table 2 also shows that dataset loading times grow
linearly for GraphDB. Other times do not show any
particular trends. The sample is probably to small to
be compared to our theoretical findings.

In the future, we would like to try comparing dif-

ferent strategies of implementing OntoDriver. We are
also currently working on a performance comparison
of Stardog and GraphDB, using a set of SPARQL
queries specifically designed to correspond to the op-
erations defined in the OntoDriver API.

4.2.2 JOPA and OntoDriver versus Sesame API

One of the most important advantages of using JOPA
with OntoDriver is the ability to treat ontological indi-
viduals with their properties as cohesive objects with
attributes and possibly add behaviour to those ob-
jects, thus increasing readability and maintainability
of the application. This cannot be achieved using
plain Sesame API without writing a lot of wrapper
code. This difference is very similar to what the de-
veloper gains when using JPA instead of pure JDBC.
Due to the lack of space we cannot show a code ex-
ample using the two approaches here, but we believe
that readers familiar with Sesame API, OWL API or
Jena know how tedious and clumsy code using these
frameworks can be.

To provide at least a short insight into the differ-
ence of the amount of code that needs to be written
for basic ontological data manipulation using JOPA
and Sesame API, Table 3 compares the number of
lines of code of classes used to perform the bench-
mark described in the previous section. The entity
classes are not included in the comparison, because
they are reusable objects not specific to the runners.

Table 3: Benchmark runner code length. LOC rep-
resents the number of lines of code in each of the
runner classes. The benchmark project is available
at https://krizik.felk.cvut.cz/kbss/JopaDemo/, the runner
classes are JopaRunner and SesameRunner.

Framework LOC
JOPA 123
Sesame API 296

We believe that even on such a small example we
have demonstrated the benefits of using JOPA with
OntoDriver against low level APIs like Sesame.
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5 CONCLUSIONS

We have introduced JOPA as a solution for object-
oriented access to ontologies. We have described the
architecture of JOPA and its prototypical implemen-
tation, including the OntoDriver component with its
API and implementation using Sesame API. Onto-
Driver represents a software layer which separates
object-ontological mapping in JOPA from access to
different storages, providing a general and concise
API. Based on this API, we have examined complex-
ity of its operations both theoretically with regards to
two well-known storages and practically in a bench-
mark of our prototype.

In the future, we intend to work on implemen-
tations of OntoDriver for other storages and a more
thorough benchmark of these storages in cooperation
with the corresponding drivers.
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