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Abstract: The paper is devoted to the discussion of the main principles of the non-perturbative quantum-mechanical 
approach to the description of a single atom interaction with multicomponent laser fields. The main 
advantage of the theory is that the authors use a basis of “an atom in the field” eigenfunctions which are the 
exact solution of “an atom in the field” boundary value problem the Hamiltonain of which coincides with 
the one from the Schrodinger equation written in the velocity gauge. The theory is applied to analytical and 
numerical investigation of the high-order harmonic generation and the terahertz radiation generation 
phenomena.  

1 INTRODUCTION 

High order harmonic generation (HHG) is one of the 
most promising tools for generation of coherent 
ultraviolet and X-ray radiation (Popmintchev, 2012). 
The elementary act of harmonic generation lies in 
the scale of a single atom interaction with a laser 
field. There are a lot of theoretical approaches which 
are used to describe the HHG (see the introduction 
part of the (Andreev, 2012)). Intuitively the process 
can be understood in the frame of the “simple man 
model” (Krausz, 2009): an electron is ionized by an 
intense laser field, accelerated inside the oscillating 
laser field and gained kinetic energy, then it comes 
back to a bound state emitting a burst of photons 
with an attosecond pulse duration. 

The terahertz (THz) radiation generation also has 
a lot of potential applications in molecular 
spectroscopy, imaging etc., that is why it is under an 
active study now. The process of atomic or 
molecular gas interaction with a multicolor laser 
field is one of the most effective tools for the 
generation of high intensity broadband pulsed THz 
radiation (Cook, 2000). The fundamental act of 
interaction with a laser field accompanied with the 
THz generation lies in the atomic (Karpowicz, 2009; 
Zhou, 2009; Zhang, 2012; Andreev, 2012; Andreev, 
2013) or media (Kim, 2007; Couairon, 2007) scales. 

That is why different physical mechanisms have 
been used to describe this phenomenon: the four-
wave mixing process (Cook, 2000), the photocurrent 
of free charges (Kim, 2007; Babushkin, 2011), the 
plasma current oscillation (Debayle, 2014) and intra-
atomic nonlinearity mechanism (Andreev, 2013).  

Here we discuss the quantum-mechanical non-
perurbative theory of a single atom interaction with 
a multicomponent laser field which could 
simultaneously describe the HHG and the THz 
radiation generation phenomena. The main 
advantage of the theory is in the absence of the 
smallness parameter E/Eat (Eat= 5.1•109 V/cm being 
the intra-atomic field strength value). As a result, the 
theory can precisely describe the phenomena 
appearing in sub- and near-atomic laser fields. The 
main principles of the theory are discussed below 
(for more details, please, see (Andreev, 2011)). 

2 BASIC PRINCIPLES OF THE 
THEORY 

The process of a single atom interaction with a laser 
field can be described with the Schrodinger equation 
which has the form of: 
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where ( )A t


 is the vector potential and ( )U r


 is the 

intra-atomic field potential. 
To solve the eq. (1) we used a non-traditional 

basis of “an atom in the external field” wave-
functions  ,N r t 

 which is the exact solution of the 

boundary value problem of an atom in the external 
field: 
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The operator of the boundary value problem (2) 
coincides with the Hamiltonian of eq. (1), so these 
two equations have the same symmetry properties. 
The eigenfunctions  ,N r t 

 can be analytically 

expressed in terms of eigenfunctions  nu r


 for the 

free-atom boundary value problem: 
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Similar to a set of free-atom eigenfunctions  nu r


 

which form a complete basis of the orthonormal 
functions, the eigenfunctions of the boundary value 
problem (2) for “an atom in the external field” form 
also a complete basis of orthonormal functions 

 ,N r t 
. There is a one-to-one correspondence 

between these two bases. Note that the 
eigenfunctions  ,N r t 

 coincide exactly with the 

eigenfunctions  nu r


 when the instant value of the 

external field amplitude is equal to zero. Hence, 
these two bases coincide at the time points when 
I(t)=0; and what is more important they coincide 
before the laser pulse arrival and after its 
termination. 

As we have mentioned above, the eigenfunctions 

 ,N r t 
 have the same symmetry properties as the 

wavefunction of the Schrodinger equation (1). 
Therefore, it looks quite natural to use the basis of 
these functions for solving the eq. (1). However, due 
to the time derivative in the left-hand-side of 
equation (1) the equations for the probability 
amplitudes of such expansion will inevitably include 
the integrals over the products of these 
eigenfunctions and their time derivatives. But the 
operator of the boundary value problem (2) is time 

dependent; hence, the eigenfunctions of this problem 
and their time derivatives are not orthogonal. To 
overcome this problem we can initially expand the 
wavefunction  ,r t 

 into a series of eigenfunctions 

 nu r

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and then make use of the one-to-one correspondence 
of these two bases. Moving from eq. (1) to a set of 
equations for the probability amplitudes we should 
calculate the following integral: 
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Decomposing  nu r


 through the set of  ,N r t 
 we 

can find this integral analytically: 
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and then write a set of differential equations for the 
population amplitudes of discrete states and 
continuum quasistates: 
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where Ek are the energy eigenvalues.  
To calculate the spectrum of atomic response we 

should calculate previously the atomic current 
density: 
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In the far-field zone the spectrum of atomic response 
coincides with the spectrum of atomic current 
(Landau, 1981), which is: 
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where  na t  are the probability amplitudes of 

atomic states, pqd


 are the matrix elements of the 

dipole operator and  pq p qE E    . 

Notice that in all the equations above the atomic 
states were designated by the one-letter symbol (n). 
However, the atomic states of the three-dimensional 
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spherically symmetric boundary value problem 
depend on three quantum numbers: a principle 
quantum number n, an orbital quantum number l, 
and its projection m. By writing only a one-letter 
symbol we mean all the three quantum numbers 
from the previous formulas.  

The equations (3, 5) enable to calculate the 
photoemission spectrum at given parameters of the 
laser field interacting with an atom and describe the 
features of the HHG spectrum (the short wavelength 
part of the photoemission spectrum) as well as the 
THz spectrum (the long wavelength part of the 
photoemission spectrum). However the set (3) 
include the infinite number of equations. The infinite 
set of equations (3, 5) cannot be solved neither 
analytically nor numerically. On the other hand, at 
any finite amplitude of the laser field only some 
finite number of atomic levels makes an appreciable 
input in the atomic response. The main advantage of 
the “an atom in the external field” basis is the 
following: the input of each state can be numerically 
calculated before we solve the set of equations for 
probability amplitudes. We can exactly estimate the 
accuracy of calculations with the help of truncated 
basis at any amplitude of the laser field. It should be 
also noted that the number of states in “an atom in 
the external field” basis is truncated, but each 
eigenfunction of this basis is the infinite series over 
the eigenfunctions of the “free atom” basis and the 
coefficients of this decomposition depend on the 
laser field amplitude. 

2.1 Matrix Elements of the V Operator  

Let us have a look at the matrix elements of the V 
operator. To calculate it analytically we will write 
the free-atom boundary value as a multiplication of 
its radial part  ,n lR r  and its angular part , ( , )l mY   : 

   , , , , ( , )n l m n l l mu r R r Y  


.  The matrix element of 

the transition between two states described by two 
sets of quantum numbers 1 1 1n l m  and 2 2 2n l m  has 

the form of  
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where  ( ) ,
q
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c
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  ( )lj t  are generalised 

Bessel functions,  e t


is the unit polarization vector 

of the laser field. Assuming that the vector-potential 
can be presented by the following  
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where 0iA is the amplitude of the vector potential of 

the components of the laser fields, i  are the 

temporal widths of the pulses, i , i , i , 0it  are 

the frequencies of the components of the laser fields, 
their chirps, phases and delays, respectively;  we can 
set the control parameter of the theory as 
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q
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c
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Figure 1: Matrix elements for discrete-discrete transitions 
as a function of the field strength 0  

Using the hydrogen-like wave-functions  , ,n l mu r


 

we can analytically integrate (6) and investigate the 
properties of the matrix elements. Figure 1 
represents the behaviour of some matrix elements 
calculated between the discrete states as a function 
of the control parameter value. It is clearly seen that 
the matrix elements demonstrate non-linear and non-
monotonical behaviour. As a result, the atomic 
response has also the non-linear dependency on the 
laser field amplitude which is qualitatively different 
in subatomic and near-atomic regions. The 
expansion of the matrix elements into the series of 
the laser field amplitudes includes all the powers of 
the ratio E/Eat. So, any multiquantum process is 
accounted in a consecutive manner. 

Some matrix elements calculated between 
discrete and continuum states as a function of 
electron energy calculated at two values of the 
control parameter are presented in figure 2. It is 
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clearly seen that the non-monotonical behaviour of 
the matrix elements strongly depends on the value of 
the laser field strength (the value of the control 
parameter). Moreover, in the region of high electron 
energy the value of the matrix elements decreases 
and we can estimate the upper boundary of the of 
photoelectron energy region which must be taken 
into account for the calculation of the system of 
equations (3) with a given accuracy.  

 

 

Figure 2: Matrix elements for discrete-continuum 
transitions as a function of the photoelectron energy 
calculated at a given value of the control parameter 

5
0 5 10   (a), 0 0.8  (b).  

2.2 Matrix Elements of the J Operator  

The mathematical formalism provides us with a 
possibility to calculate the angular-frequency 
spectrum (AFS) of the atomic response for the case 
of an arbitrary mutual orientation of the atomic 
angular momentum and the laser field polarization 
vector. The polarization of the AFS components 
depends on both the angular momentum direction 
and the polarization of the incident field. In the non-
polarized ensemble of atoms the response field 
polarization depends only on the polarization state of 
the laser field. 

In order to investigate the convergence of the 
usage of the truncated basis of wave-function let us 

have a look at the atomic current calculated for only 
one level (ground state-ground state 0 0j


) 

transition.  
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Figure 3: Matrix elements for J operator as function of 
field strength 0 . 

Despite the fact that the initial and the final states of 
this transition are fixed, the value of this matrix 
element depend on the impact of the exited states. 
Figure 3 shows the dependence of this matrix 
element calculated for the case of the hydrogen atom 
(1s ground state), with taking into account only one 
exited state (2p – a curve with squares, 3p – a curve 
with circles), two exited states (2s and 3p – a curve 
with   triangles), three exited states (2s, 2p, 3p – a 
curve with rhombuses). Figure 3 demonstrates fast 
convergence of the sum (7) since the curve 
calculated with taking into account the first exited 
state of the atom (the curve with squares) almost 
perfectly represents the behavior of  the matrix 
element calculated with taking into account the 
impact of three states (the curve with rhombuses). 

3 APPLICATION OF THE 
THEORY 

Figure 4 represents the typical photoemission 
spectrum calculated for the case of an Ar atom 
interaction with a two-colour laser field formed by 
the fundamental and the second harmonics of the 
Ti:Sapphire laser, the parameters of which have the 
form of 01 02 0.1,   1 2 26.6 ,fs  
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02 01 0,t t  0,i  0,i  the angle between the 

polarization of the components of the field being 

equal to 
21

48

   (Andreev, 2013). We assume here 

that the fundamental harmonic is polarized along the 
z-axis, and the second harmonic is polarized in zy-
plane. It is clearly seen that the spectrum consists of 
both odd and even harmonics which have non-zero 
projections on the two perpendicular axes. The 
information about the polarization properties of the 
generated harmonics can be directly extracted from 
the photoemission spectrum with the help of the 
Stokes parameters. 

 

Figure 4: The photoemission spectrum of an Ar atom 
interacting with the two-colour laser field formed by the 
fundamental and the second harmonics of the Ti:Sapphire 
laser: the integral intensity of response (triangles) and the 
intensities of the two orthogonally polarized components 
(squares and circles). The parameters of the two-colour 
laser field are the following: 01 02 0.1,  

1 2 26.6 ,fs   02 01 0,t t  0,i i   21
48

  . 

(Inset) The THz part of the photoemission spectrum 
(Andreev, 2013). 

The inset in the figure 4 demonstrates the THz (long 
wavelength) part of the photoemission spectrum. 
The signal has also non-zero projections on the two 
perpendicular axes. 

The theory described above was applied for the 
investigation of some features of the HHG and the 
THz radiation phenomenon. We theoretically 
explained the saturation of the cut-off frequency in 
near-atomic laser field (Andreev, 2011; Andreev, 
2013). The value of the cut-off frequency coincides 
with the experimentally measured one (Andreev, 
2013). We also theoretically investigated the HHG 
(Andreev, 2013) and the THz radiation generation 
(Andreev, 2013) in the ionization-free regime in the 

case of a two-colour laser field interaction with an 
atom. What is more interesting in this investigation 
is that the HHG spectra are not limited to below-
threshold and near-threshold harmonics which are 
effectively generated in the same region of the laser 
field intensities (Sofier, 2010; Yost, 2009). The 
specific features of the THz radiation emitted by the 
extended gas interacting with a two-color laser field  
is been investigated in (Stremoukhov, 2015). It is 
shown that spatial oscillations of the THz radiation 
efficiency appearing during the dispersion effects in 
the gas change the conical structure of the THz 
radiation. The theory was also applied for the 
interpretation of the resent experiment of the 
effective generation of high intensity high ellipticity 
harmonics in two-colour orthogonally polarized 
laser fields (Lambert, 2015) 

4 CONCLUSIONS 

The basic principles of the quantum-mechanical 
non-perturbative theory based on the usage of the 
bases of “an atom in the external field” 
eigenfunctions are described and discussed in the 
application to the description of the HHG and the 
THz radiation generation phenomena. It is shown 
that the usage of these bases of functions enables 
taking into account the symmetry properties of the 
problem and, thus, brings the numerical 
investigation of the light-atom interaction to a new 
level. What is more important, with the help of the 
theory ones can calculate the atomic response for the 
case of an arbitrary mutual orientation of the atomic 
angular momentum and the laser field polarization 
vector. The recent applications of the theory are 
named and discussed shortly.  
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