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1 STAGE OF THE RESEARCH application’s lifetime. For satisfying these objectives,

the following sequential steps are addressed. At the

The PhD program has commenced on DecemberOutset, an elaborated survey is sketched to aggregate
2012 for three years where the graduation is expectedthe diverse endeavors in this context. This survey
to be in 2016. The main theme of this work is Paves the way for identifying the weak points to be
to improve the energy efficiency of Wireless Sen- tackled. The PhD thesis is structured from three main
sor Networks (WSNs). The thesis has multiple ap- categories:

proaches tackling the main sources of energy con- e Cat I: “Energy-cheap” Data Aggregation. In
sumption in WSNs. These approaches are classi- this category, we have proposed a new data com-

fied into three main rootsEnergy-cheap™ data pression technique based on the so-called fuzzy
aggregation Hardware optimizationand Predictive transform. Moreover, we have improved its accu-
self-adaptation WSNs Currently, we have already racy to be comparable with the well-known data

achieved a reasonable progress as can be seen below. reduction techniques. In the sequel, we are inter-
ested in bridging the fidelity gab between lossy
and lossless compression techniques. Thus, we
can improve the feasibility of adopting high com-

2 OUTLINE OF OBJECTIVES pression ratios with high degree of correctness.
Distributed data aggregation is also tackled via ex-

Generally, the integration of sensor nod®hl§, gate- ploiting the spatio/temporal correlation among the
ways gnd_software forms a sensor network. The spa-  deployed sensors. The dynamic time warping al-
t|a.”y distributed SNsmay have numerous on-board gorithm has been modified to suppress the redun-

sensors whose outputs are wirelessly conveyed via  dant messages.
multi-hop link to a gateway. The software manages
the allocation of node resources in a controlled man-
ner. The ideal characteristics of a typical WSN are
low power consumption, scalability, dependability,
remote configuration 06ENs programmability, fast
data acquisition, security, and fidelity of data flow
over the long term and with little or no maintenance
(Akyildiz et al., 2002).

The crux behind this work is to extend the lifetime
expectancy of wireless sensor networks (WSNs). In ets, without violating the Nyquist-Shannon sam-
particular, we target exploiting the trade-off between lina theorem. will emerge
reducing certain quality-of-service (QoS) measures to pling o ge _

a degree still tolerable by the application (such as, for ¢ Cat lll: Predictive Self-adaptation WSNs. In
example, precision and latency) and maximizing the ~ this category, we implement a proactive sensor
network which overcomes the flaws of reactive

*This research is funded by the German Research Foun-  networks. Reactivity adds a long accumulated de-
dation (DFG GRK 1765) through Research Training Group: lay between detecting an event and responding to
System COI’reCtnes.S under Adverse Conditions (SCARE), it. Hence, we combine the predictive reasoning
http://www.scare. uni-oldenburg.de/ and self-adaptation to improve the procedure by

TSupervisor: Prof. Dr.-Ing. Oliver Theel, Department of : :
Computer Science, System software and Distributed Sys- i’ZQICh sensor nodes deal with the network dynarm-

tems Group, Carl von Ossietzky University of Oldenburg,
Germany, theel@informatik.uni-oldenburg.de The remainder of the paper is organized as fol-

e Cat II: Hardware Optimization. In this cate-
gory, we have commenced by the sensing module
where reliable virtual sensing has been proposed
to reduce the overhead of “energy-expensive” sen-
sors. Afterward, the energy consumed by the re-
ceiver during idle listening will be tackled. We
are interested in designing a subconscious mode
in which the receiver frequency is reduced. How-
ever, a challenge of detecting the incoming pack-
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lows. Section 3 elaborates on the problem of energy  Figure 1 depicts a comprehensive taxonomy of the
efficiency and our definitions in this context. Sec- various energy consumption sources in WSNs. The
tion 4 briefly presents the previous endeavors for tack- green boxes reveals the targeted sources to be tackled
ling the WSNs energy problem. Section 5 presents in this work. Specifically, energy conservation is ac-
our methodologies (summarized in Tabel 1) for mit- complished via deliberately trading-off the WSN life-
igating the headache of energy efficiency in WSNs. time versus other QoS parameters such as precision
Finally, section 6 discusses the expected outputs ofand latency.

the PhD thesis.

Table 1: Indexing the proposed energy efficiency methods.

4 STATE OF THE ART

Section Title Category

5.1 Fuzzy Data Compression | : : ;
52  Reliable Virtual Sensing i A rationale methodology commences with scanning

53  |EEE 802.15.4 Refinement I the literature to identify the gabs. Accordingly, a new
54  DTW-based Data Aggregation | taxonomy has been established mcludlng_t_he recent
5.5  Predictive Self-adaptation WSNs m endeavors (Abdelaal and Theel, 2014). Initially, en-
ergy management in WSNs has been divided arto
ergy harvestingandenergy conservatiarmhe former
denotes scavenging the surrounding energy sources
3 RESEARCH PROBLEM to fully (or partially) energize the sensor nodes. In
most cases, the harvested power is relatively defi-
Energy efficiency is a fertile research area. The cient. Furthermore, external power supply sources, in
WSN literature has been Submerged with many en- many cases, exhibit a non-continuous behavior which
ergy conservation and harvesting techniques. Nev-Can cause system malfunctioning. However, "green
ertheless, most of these approaches are applicationWSNs™ are feasible through improving the harvest-
dependent, preventing any sort of standardization.ing mechanisms and minimizing the consumption.
Moreover, some energy dissipation sources, such As can be seen in Fig. 2, the energy saving ap-
as transceiver’s Operating frequency' have not beenproaCheS can be ClaSSi:ﬁed aCCOFding to its scope into:
strongly addressed. Adopting novel ideas, as thoselocal andGlobaltechniques. The former elaborates
presented in this work, could highly improve the the methods for mitigating the energy consumption
WSN's lifetime. due to local energy-waste sources such as data redun-
Symbolically, the energy consumption problem dancy, non-optimal HW/SW congurations, etc. The
can be denoted as shown in Eq. 1. Under the assump/atter comprises a collection of distributed energy sav-
tion Asmof allocating an amount of energy for each ing techniques which involve optimization of commu-
SN a systenBys(operating in the environmefiny) ~ nication and networking protocols.
has to satisfy the user’s specificatioBpec These Due to the lake of space, we could not elaborate on
demands could be defined as an integer linear pro-these energy efficiency techniques. However, inter-
gramming problem as given in Egs. 2-4. Specifically, €sted readers could find more details in (Abdelaal and
Eq. 2 minimizes the total energy consumption of a Theel, 2014). Next, we present our proposed ideas for
WSN consisting ok nodes with two criteria: locally reducing the energy consumption of the sensor

nodes.
Asmt- (Env| Syg sat Spec Q)

k
minimize > PuserulSN)+PuasedSN) ) 5 METHODOLOGY

provided that
n(SN) > o Yse WSN 3) Based on this classification, many ideas have emerged
100%3> B > 100— W% VsSeWSN  (4) to optimizt_a the.noq_es’ operation. Actually, local de}ta
compression significantly affects the energy profile,
o _ ) however, the previous techniques are either ill-suited
the minimum timed required to complete the as- ¢, hargware implementations or overly dedicated.
signed task as expressed in Eq. 3. Therefore, the thesis embarks on a novel compres-
e The WSN performancp (defined in terms of the  sion concept which exploits the advantages of existent
QoS parameters) should satisfy the minimum ap- techniques and avoids their shortcomings.
plication requirements. Hence, a small spgce
could tolerate the trade-offs as defined in Eq. 4.

e The lifetime ) of eachSNhas to conform with
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Figure 1: Taxonomy of energy consumption sources in WSNs.
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Figure 2: Taxonomy of energy conservation techniques in /SN

5.1 Fuzzy Compression however, the FTC should be compared to ensure its

outweigh. Therefore, the FTC is then contrasted
In this section, we start the first category of the PhD to the lightweight temporal compressiotechnique
hierarchy. A local data compression technique based(LTC) in (Bashlovkina et al., 2015). In this paper,
on the so-calledFuzzy transform(F-transform) has  a new algorithm, referred to as FuzzyCAT, has been
been proposed. The F-transform usually converts aapplied to minimize the recovery error even with high
continuous (or discrete) signal into ardimensional ~ compression ratios via hybridizing the approximating
vector (Perfilieva, 2004). In (Abdelaal and Theel, function. Figure 4 demonstrate the fluctuations track-
2013a), the fuzzy compression technique (FTC) was ing in light of the readings second derivative. The
adapted in line with the measured phenomena. Learn-sample signal is shown on top, and the fuzzy sets con-
ing the data significance via thresholds was a straight- structed by FuzzyCAT for that signal are displayed
forward technique which can be upgraded in possible on the bottom. On the half periods where the signal
extensions. Figure.3 depicts a uniform basic function is smooth, the regular membership functions are ap-
composed of a set of triangular membership compo- plied. In the half period where fluctuations were de-
nents. The shape of such basic function determinestected, narrower basic functions are applied (in blue).
the approximating function. Thus, FTC is a suitable

compressor for linear and nonlinear sensor data.
The results showed an adequate lifetime gain, :
- t
A, A, A,
i A, A, DA AT AN NN A
I-pl.e,
I-pl.de,
pl..s..0
plo..f..)
0 y
o , xo=a X x,=b
X=a X X X =b Figure 4: Adapting the basic function via tracking the fluc-
Figure 3: Structure of the basic function. tuations.
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Figure 5 compares the performance of the regular =
FTC and the FuzzyCAT algorithm on a segment of the = oos
temperature signal from the Berkely lab dataset (lab, Z |
2014). Both algorithms were set to compress the 1000 S
data points into 26 coefficients, while FuzzyCAT adds £ °"|
three additional basic functions per half period when = o s st
needed. The scaled pink line, representing the dif- Packet Epoch
ference between the signal reconstructed by the reg- Figure 7: Transmission power consumption.

ular FTC and FuzzyCAT, reveals that the algorithms

yielded identical results on most of the segment, only % o

deviating on the intervals with high fluctuations. The = °%]]

FTC yields compression ratio of 38.46, with normal- ga 0,015

ized RMSE of 8.72%. The adaptive transform added g ook

9 extra membership functions, decreasing the com- ©

pression ratio to 28.57 and bringing the normalized 2 %%

RMSE down to 4.22%. Adding extra membership o K n . i g
functions cut the RMSE by more than half - a 52% de- Packet Epoch

crease, while the resulting compression ratio was only Figure 8: Processing unit power consumption.

25% percent smaller than the original. Thus, Fuzzy-

CAT exhibits a compelling advantage over the regular ggicity of transmissions is valuable because it allows
F-transform. (1) to implement scheduling algorithms thus minimiz-

Figure 6 shows a fidelity comparison between ing idle listening and packet collisions and (2) to eas-
FTC, LTC, and FuzzyCAT methods. Note that de- ily detect lost packets: the sink expects a packet and
pending on the error margin, LTC can yield different sends a NACK message if the packet did not arrive in
reconstruction errors with the same compression ra-time. Neither feature can be used with LTC since the
tio. LTC performs best, when CR is under 50, after packets are sent irregularly (Raza et al., 2012).

which the FUZZyCAT is I|ke|y to perform jUSt as well. As possib'e extension in this arena demands
For a CR above 75, FuzzyCAT and FTC outperform widening the picture to figure out the pros and flaws
the LTC technique. of lossy and lossless techniques. Specifically, a WSN

Figures 7-8 depict the results of a set of experi- is technically efficient whenever it functions up to
ments on TelosB nodes. has confirmed the superiority its expected lifetime (successful energy conservation)
of FuzzyCAT over the LTC technique where transmis- along with achieving high degree of data fidelity.
sion cost of the FuzzyCAT is 96% less than that of the Generally, the lossy compressors outperform the loss-
LTC at the expense of 10.28% processing increase. less counterpart in terms of the compression ratios.

Analyzing the FuzzyCAT superiority reveals that Nevertheless, their accuracy is still a headache stands
the algorithm requires conveying a single array of against boosting the compression ratio. Hence, we
compressed measurements per data acquisition winintroduce a general module for pre-conditioning the
dow, whereas the LTC transmits a separate packet forsensor data prior to compression. Thus, the "down-
each approximated linear segment. Thus, FuzzyCAT ward spiral” between compression ratios and recov-
efficiently spreads the overhead involved in sending ery accuracy could be broken. The crux is to quick-
each packet. This property of FuzzyCAT also re- sort the sensor data prior to being lossy-comprised.
sults in periodicity of transmissions, unlike the un- This idea bases on the fact that lossy compressors
predictable nature of LTC’s sending patterns. Peri- prominently resemble the behavior of low pass fil-
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ters. The recovery mechanism comprises encoding Table 3: Dictionary-based compression.
the data indices using a lossless approach. Two meth- —
ods have been examined including reversible data hid- symbol | Probability (%) | Code

ing and byte-pair encoding. Fig 9 depicts encoding 000 50 00
the data indices within a matrix through tracking the 010 16.7 01
horizontal and vertical steps. These steps are then 011 16.7 10
converted into binary representation by following Ta- 110 8.3 11

ble 2. Forinstance, the red steps in Fig 9 is encoded as
0001100100000110000000100000110010001. Data . . -
hiding is used to indirectly shorten this bit stream into €N€rdy consumption and event-miss probabilities.
only 32 bits. This method divides the stream into two . .

variabledJ andV. Afterward, it embeds into U ex- 5.2 Virtual Sensing

ploiting the frequent zeros (Kim, 2009).
The work in this section belongs to the second cate-

Original Indices gory of the PhD hierarchy. The amount of energy con-
sumed by sensor node’s components is application-
dependent. For instance, environmental monitoring

ady | A dq | adg| Az | as azla'/

s may utilize passive, energy-efficient sensors and may
e A require periodic transmission of the collected data.
2l In this setting, radio communication consumes the
o | majority of the residual energy (Oliveira and Ro-
E as P drigues, 2011). In other settings, the sensor unit may
S la, dominantly contribute to battery depletion, as it may
£ (1) utilize active sensors, such pgadars and laser
n |3 T rangers, or “energy-hungry” passive sensors, such
a, as chemical and biological sensors (Li-zhong et al.,
a | L 2011), (2) demand high-rate and highly accurate A/D
! converters, e.g. for acoustic or seismic transducers

Figure 9: Indirect encoding of the sensor data indices. ~ (Akyildiz et al., 2005), or (3) prohibit energy-saving
sleep modes due to long data acquisition.

Table 2: Definitions of the various matrix transitions. Virtual sensing is a novel technique for decreas-

Symbol | Transition ing the sensing unit energy consumption.a_md simultr_;t—
, neously slashing the event-miss probability. Techni-

0 Vert_|cal ) cally, virtual sensing digitally manipulates the outputs

1 Horizontal & directed downward of low-power hardware sensors to obliquely mon-
11 | Horizontal & directed upward itor a phenomenon which could be directly mea-

sured via “energy-hungry” sensors. The energy gain

A dictionary-based approach could save more bits is cultivated from deactivating the main “energy-
at the expense of skipping infrequent probabilities. hungry” sensor and instead monitoring the required
Table 3 depicts an example of dictionary composed phenomenon via the virtual sensor. Triggering the
of the most frequent symbols. Other probabilities main sensor is done to guarantee a degree of relia-
such as 001, 100, and 101 is rounded to the closestbility.
value in the dictionary. Following this method, the In (Abdelaal et al., 2014), a technique, referred
bit stream is compressed from 37 bits to only 24 bits. to asEAVS has been proposed and a case study of
The proposed technique will be examined for low fre- gas leaks detection was given. The gas sensor could
guency data (i.e. temperature and humidity readings) be replaced by a set of light and temperature sensors
and high frequency data (vibration data sets). More- and a chemical film whose color is altered with the
over, real experiments with the TelosB sensor nodesexistence of gases. Figure 10 shows a flowchart of
could verify the accuracy improvement. such virtual sensor. As can be seen, the sensing mod-

Several WSNs applications, on the other hand, ule’s structure is changed in light of the virtual sen-
suffer from the high consumption of the sensing unit. sor detection. Moreover, the virtual sensors dynam-
Accordingly, adaptive sampling techniques were in- ically sleep to further conserve energy. Probabilistic
troduced to mitigate this burden at the expense of in- model checking was customized to estimate the gain
creasing the event-miss probability. Hence, we devel- in terms of the saved energy and the detection latency.
oped a novel idea to prune the relationship between Figure 11(a) compares the energy consumed by the

13
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Figure 11: Evaluating the virtual gas sensor.
Reset the OFF period X L X
to the initial value be taken into account by the decision logic.
Figure 10: Virtual sensing flowchart. In (Abdelaal et al., 2015), a novel approach is

proposed to improve the virtual sensing reliability.

sensing module gas leak probability of 0 (c&seno we focused on the quality of one particular set of
gas leaks) and 1 (cade always gas leaks). Logi- sensors and show how this set can replace an en-
cally, the latter is the worst case, however, the energy €rgy hungry sensor under certain quality aspects. An
consumption is highly reduced. Figure 11(b) demon- ontology on sensor-environment relationships is uti-
strates the lifetime of a SN with different probabil-  lized to automatically generate rules before deploy-
ities. It gradually decreases with increasing the gas ment to switch between real and virtual sensors. We
leak probability. Our approach increase the lifetime illustrate the general approach by a case study: we
by 58 times more than that of the naive technique de- Show how reliable virtual sensing could reduce the
scribed in (Somov et al., 2011). NevertheldsayS energy consumption and event-miss probabilities of
relatively suffers from the stretching in the response object tracking applications. Seismic sensors and a
time compared with a naive sub-system. The aver- dynamic time-warping algorithm shaped the virtual
age response time is defined as the average period reobject tracking sensor. Later, our approach will be
quired for the sensor to react to a sudden change inextended to show how the quality of a complex set of
the quantity of interest. As can be seen in Fig. 11(c), heterogeneous sensors can be estimated using a sen-
EAVShas a long response time in cabelue to the  SOr relationship ontology.
doubling theOFF periods. Notwithstanding, the re- Figure 12 shows an object tracking system con-
sponse time becomes shorter when the leaks are moreists of real and virtual sensors. The outcomes from
frequent. The worst case, BAVS is approximately ~ Omni-directional seismic sensors (sequergeare
10 minutes compared with 2 minutes in (Somov et al., to trigger a well-known pattern matching algorithm,
2011) (without leaks). However, the response time of called adynamic time-warpingThe key idea underly-
our approach can be shortened by reducingQkr& ing the virtual sensov is to stretch (or compress) the
periods. seismic trace until it best matches one of the reference
Reliability of such systems composed of vir- tracesinthe codebodBs,..,B;). The quality estima-
tual and real sensors should be guaranteed. Attion mechanism utilizes secondary sensors to monitor
a first glance, the replacement of real sensors the quality of sensors. Based on this quality, the rules,
Shy virtual sensor¥ = f(hy,...,h,) appears to be generated by the ontology, determines the well-suited
reasonable and simple. However, utilizingirtual sensor. The switching decision between real sensor
sensors could be a precision shortcoming where aSand virtual sensoY is affected by the sensing re-
sensing quality se® = {qs,...,qn} may have a nega- liability and precision. In our concrete case, we can
tive impact on the detection probability of important model the relationships between the participating sen-
events. Especially when these replacements consist osor as shown in Fig. 13. The modeled relationships
an orchestration of heterogeneous sensors like mag-are transformed into formulas to estimate the current
netic, radar, thermal, acoustic, electric, seismic, or op- qualities.
tical sensors. Thus, the quality of these sensors hasto DTW precision has been examined prior to be
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Figure 12: System structure with real and virtual sensors.
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S . highly on the application scenario and the energy con-
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Figure 13: Ontology of the Virtual object tracker. §0-0361 B R T T L P O
2 .
£0.034F .
incorporated into the virtual sensor. At the outset, £
an Arduino UNO board has been utilized to sample £0032
seismic patterns from a LDT piezoelectric vibration g
sensor. Different measuring scenarios of speed O.Sg 003 « Transmission + Processing
m/sec have been considered. Figure 14 depicts sam-Z | ..
ple of precision results obtained from contrasting the = esoqstes ssscee o
codebook to some targeted and non-targeted patterns .26 ‘ ‘ ‘ ‘ ‘ ‘
The vertical line denotes the normalized DTW dis- 0 10 20 Time3s(t)amp (S:co) » °
tance between the measured patfetrand the code- Figure 15: Power consumption of the virtual sensor.
book patterns. Knowing thddTW(A A) = 0, pat-
tern Aindoor iS matched withAgyidoor to clarify the Due to the lack of sucp-radars, we examined the

process of selecting the best match. Obviously, the proposed method via an event-driven simulator de-
DTW algorithm has successfully matched the indoor veloped for large-scale wireless networks, calieel
and outdoor pairs via adopting the minimum DTW WSNetimulator (Chelius et al., ). A benchmark for
inter-distance. the reliability parameters versus the lifetime and the
Figure 15 depicts the energy consumed via one event-miss probability is constructed via large-scale
round for performing theliteDTW algorithm and  simulation. The environmental properties are simu-
transmitting the minimum distances. Within 63 lated by two-dimensional sinus waves for tempera-
rounds, the processing consumes approximately 35%ture and vibration. The evaluation is performed for
more energy than transmission due to the time over- quality dimension margins in the rang@00,1.00]
head of the DTW algorithm. Hence, a possible with a step size of A for both dimensions to compare
extension of this work may explore indexing as a lifetime and event-miss probability depending on the
method for reducing the number biteDTW execu- quality requirements of the application.
tion. Transmission, in the proposed scenario, onlyoc-  In Fig. 16 and Fig. 17, the impact of the qual-
curs whenever an object is detected or for triggering ity thresholds on thegr-radar lifetime and the over-
the main sensor. Finally, a comparison between theall event-miss probability is depicted. A polynomial
average energy consumed by the radar sensor and theurve fitting is also traced to clarify the data points
virtual sensor is essential. Based on the results pub-trend. For high quality thresholds, the virtual sen-
lished in (Kozma et al., 2012), the virtual sensing has sorV frequently triggers the sens& reducing the
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lifetime. Nevertheless, invoking the main sensor typ- the receiver circuit is the sum of the individual com-
ically avoids any event-misses. For low thresholds, ponents’ power plus transitions overhead. During idle

less calls are provoked increasing the lifetime. How-
ever, the event-miss probability may only increase if
the seismic sensor functions outside its operating en-
vironmental properties.
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Figure 16: Lifetime of the virtual object tracker versus the
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5.3 IEEE 802.15.4 Refinement

The idle listening is targeted to reduce its energy
waste. Technically, the idle listening is a transceiver
mode of operation through which the receiver com-
ponents are switched on for eavesdropping the traf-
fic. The nodes have to continuously monitor the
wireless medium for detecting the arrival of pack-
ets. Particularly, the non-predictable channel usage
prolongs the traffic monitoring periods since they do

Mixer

Amplifier %

Frequency
synthesizer

Frames

I—Isamples
ADC to host

CPU

P

(Baseband&MAC
processor)

[PLLF——

Figure 18: A simplified block diagram of an IEEE 802.15.4
receiver.

listening, the receiver is switch&dN waiting for the
incoming packets or even doing the clear channel as-
sessment (CCA). Therefore, the RF front-end and the
ADC operate at full workload. The decoding load of
the CPU is mitigated. However, it cannot be switched
OFF due to performing carrier sensing and packet
detection. As a result, it needs to operate at full
clock-rate. As an example, the CC2420 transceiver
consumes 18.8 mA during reception and a congruent
amount for eavesdropping per unit time (Dargie and
Poellabauer, 2010).

Sources of energy consumption in digital CMOS
circuits are Leakage power (1%), Short-circuit power
(10-20%), Switching powerRgy: approx. 80%)
(Wehn and Mnch, 1999). Obviousls, dominates
the power dissipation of the CMOS circuits. There-
fore, our aim in this work is to develop trade-offs
between power consumption and QoS parameters to
minimize thePs,, during IL periods. Equation 5 de-
termines the amount of switching power in terms of
the supply voltag&/pp, the clock frequencyck, the
probability of a signay to make a transition(y) and
the capacitive loa€(y).

1

5 ©)

faVidp a(y)C(y)

signal y

F>sw =

Accordingly, three chances stand for reducing the dig-
ital circuits power consumption: either reducing the
switching activityy signal ya (y)C(y) of a signaly, re-

not know when the data packets are generated fromducing thevpp or down-clocking.

source nodes.

Generally, the energy drawn through receiving
packets is approximately equal to that during idle pe-
riods (Adinya and Daoliang, 2012). Analyzing the
receiver’s circuit, would clarify this relationship. Fig-
ure 18 depicts the receiver circuit diagram of the
CC2420 transceiver which is based on the low-IF ar-
chitecture. During reception, the RF signal is ampli-
fied by the low-noise amplifier (LNA) and downcon-
verted in quadrature to a 2 MHz IF. The IF signal is fil-
tered and amplified and then digitized by two ADCs.
The digital signal is decoded to extract the packet
components and channel information. The power of
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In this work, we are interested in reducing the
transceiver clock frequency during idle listening pe-
riods. The idea here is inspired by the work done in
(Zhang and Shin, 2012) to improve the IEEE 802.11
standard. The crux is to implement a subconscious
idle listening mode to avoid switching costs (to sleep
mode) and the distasteful energy misuse. In this
mode, the receiver’s clock rate is scaled down dur-
ing idle listening. Packet detection is separated from
decoding through prefixing the IEEE 802.15.4 packet
with an additional preamble, called M-preamble. A
cross-correlation threshold of the M-preamble iden-
tifies packet arrivals and alarms the processor to re-
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store the full clock rate. Figure 19 depicts the recep- axis iteratively until an optimal match (according to
tion and transmission mechanism after implementing some suitable metrics) between the two sequences is
E-mili for the IEEE 802.11 protocol. For the recep- found. The DTW algorithm demonstrates non-linear
tion, the full clock state is activated after detecting behavior which produces a more intuitive similarity
the M-preamble. For transmission, the M-preamble is measure compared with the Euclidean distance.

sent with dummy bits prior to the normal IEEE 802.11 Figure 20 visualizes the matching between a ref-

packet. erence and a test pattern arranged on the sides of a
m x n matrix where the elements are tbdW dis-
M-preamble detected  po\ynciocking? tancedl, m as expressed in Eq. 6. Several paths could
| jrestore full rate : X
L [FleoaaiAx i be drawn from(1, 1) to (n,m). However, the optimum
— alignmentPopt = (p1, P2, .-, Px) Minimizes the total
(a) Receiving a packet with E-MiLi inter-distances as denoted in Eq. 7.
Restore M-preamble Downclocking?
full rate_ | dummy bits  / Pattern B
IL ¢ 1 | ;- 1 m
T T F F FRfFRRRRrrnr T Toock ticks
(b) Transmiting a packet with E-MilLi N | doi | dop [ dos | das | dos | dug —®
Figure 19: IEEE 802.11 reception and transmission via E- a ldola. 14 ald
. . 5,1 5,2 5,3 5.4 5,7 5,m
mili (Zhang and Shin, 2012).
dy; ® € | dis | dye | day | dap

The contribution in our work is to: 1) Implement
the proposed technique to refine the IEEE 802.15.4
protocol, 2) optimize the M-preamble to mitigate the
burden of increasing the standard preamble length, 3)
improve the M-preamble detection method to reduce 1 ¢ |, dis [dig | dis [ dig|diy|din
the expected latency. Next, a new distributed method
for reducing the data flooding is proposed.

ds,; d | dis [ dsy | dys | die | dig [ dsp

Pattern A

dyy | oy | oy | dos | dag | oy | dom

Figure 20: Warping distance optimization.

5.4 DTW-based Data Aggregation

dnm—{ lag — by | ifn=m=1

In this section, we discuss a novel energy-efficient @ —bm| +Whm  otherwise (6)
data aggregation technique based on the spa- Wh m = min(dn—1,m,dnm-1,dn-1,m-1)
tio/temporal correlation among the sensor nodes. The

crux here is to partition the network into clusters. The . k

readings in each cluster is filtered in accordance with Popt = min {gldn.m} (7)

the correlation degree. A well-known pattern match-
ing algorithm, calledlynamic time warpingDTW) is The search space is governed by a set of design
proposed to measure such correlation (Muller, 2007). constraints. Firstly, the patR should continuously
However, the DTW algorithm could burden the sen- advance one-step at a time to avoid discarding impor-
sor nodes with its computational overhead. Hence, tant features. Moreover, the path should be monoton-
a new algorithm, referred to diseDTW, is proposed ically non-decreasing to hamper feature recurrence.
which has much less overhead than the standard DTWFinally, the start and end points should extend from
algorithm. Afterward, a clustered network of TelosB (1,1) to (n,m) to align the entire sequence. In some
sensor nodes will be implemented to evaluate the pro-applications, a global rule defines a warping window
posed technique performance in terms of accuracy,RC [1:n] x [1:m] to speed up the algorithm. Never-
energy consumption, latency, and throughput. The theless, confining the search spac&tis debatable,
ideas here belong to the second category of the PhDsince the patR,: may traverse cells outside the spec-
hierarchy. Below, the basics of DTW algorithm is ified constraint region. Thereof, we deliberately ig-
briefly given and then the idea behititeDTW is nored this constraint for matching optimization.

elaborated. ) )
5.4.2 liteDTW: DTW Refinement

5.4.1 Dynamic Time Warping

In this section, we explain our proposed technique for
The standard DTW has been widely used for optimal minimizing the time/space complexity from(@x m)
alignment of two time series through warping the time to an extent viable for hardware implementation. The

17
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idea is to integrate two complementary approaches:data compression. However, we prefer our Fuzzy
one for reducing the code complexity and memory transform-based compression (FTC) due to its high
utilization and the other for decreasing the window speed and adequate precision. Initially, the direct F-
size. Both approaches, as discussed below, upgraddéransform resembles a “center of gravity” defuzzifi-
the standard DTW algorithm to a new version called cation process through which the linguistic variables
liteDTW. (low, medium, high, etc.) are mapped onto real num-
. . bers. Hence, each vector elemBpis inferred to con-
Linear DTW. In the propo_se(.j.scenano, the com- stitute the weighted average 0tX;) € (Xe_1,%k11)-
plete Popr matrix are not of significance, whereas the The small approximation error introduced through
normalized distancg, as a scalar value is of interest  apstraction is relative and has no influence on the
to contrast with other distances. Therefore, a linear gyerall performance, since both sequences exhibit a
time/space complexity implementation of the DTW nearly same error. Thus, The cross-correlation be-
rent and previous columns in memory as the costma-  Figyres 22 and 23 depict samples of comparison
trix is filled from left to right. Figure 21 shows a petween the standard DTW algorithm and fite
three-iteration matching process with one column in epT\Wfor comparing\ T4 andT 1 with other patterns
common. By only retaining two columns in each tjlizing a thousand data points. ObvioudliteDTW
iteration, the optimal warfp,pt can be determined.  has an identical precision as the naive DTW although
Algorithm 1 clarifies the linearization mechanism. liteDTW solely matches fifty fuzzy-compressed sam-
Through lines 2-5, the first two columns are pro- ples. For instance, both algorithms generate a mini-
to the left and the variablp is set to 1 to compute  shown.in Fig. 23. NevertheledgeDTW has a mem-
the DTW .for one column durmg th(_e.next iteration. In - ory footprint of 800 bytes whereas the naive DTW de-
overhead from @n x m) to merely Q(n x 2) which theliteDTW is an efficient tool for virtually detecting

highly reduces the required memory footprint. objects.
Iteration 1 Iteration 2 Iteration 3 S o R
3 o—-o = + DTW
3 * liteDTW
2 §-1
— —> -4
1 ! 2 s 3 ..
0 :c;% 2 . o L
0 1 I 2 23 £ . .
Z -3 !

Figure 21: Two-columns version of the DTW algorithm. TI T2 13 T4 T5 NIL NT2 NT3

Pattern Index
Algorlthm 1: Two-columns version of the DTW al- F|gure 22: Precision of liteDTW versus DTW f&T4
gorithm. matching.

Require: Reference patterA € R", and test patterns
BeR™p=0
1: for ssuch that < s<m—1do > (m-1)
iterations
for i such that 06X i < ndo
for j suchthap < j<2do
Determined;

g : « DTW
Selectd; j € Popt; ) o liteDTW
d[n x 2] «+ left_shift(d[n x 2]); T3 T4 T5 NTI NT2 NT3 NT4

p+1; > Evaluating only one column Pattern Index

. . Figure 23: Precision of liteDTW versus DTW forl
* X(AB) « 3 (Popr) /K matching.

Normalized Distance (log)

© N hwd

Fuzzy Abstraction. The main idea is to lessen the
data dimension prior to DTW execution. Various
techniques have been introduced in the literature for
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5.5 Predictive Self-adaptation WSNs mechanism monitors the internal and external context
variables. Afterward, predictive analysis generates an

In this section, we present the third root of the PhD accurate forecast. A reasoning module receives these
thesis. The core idea here is to improve the energyinformation to make the r|ght decisions. The final
efficiency through optimizing the adaptation mecha- Step is to execute the new target reconguration using
nism. Previously, most protocols have fixed param- & models@runtime approach.

eters. Fixing parameters at design-time, requires to

anticipate for the worst-case dynamics of the network I e
. . . Monitoring Prediction

to ensure the required QoS at all times. This can
result in a conservative selection of parameter val-
ues and QoS over-provisioning during the times the -

. . S . . Reasoning
network is not experiencing its worst-case dynamics. Adaptation Engine
Over-provisioning can result in a superfluous use of
resources. Figure 25: Diagram of the predictive self-adaptive mecha-

Recently, parameters of most WSNs protocols can Nism-

be re-configured during run time. These mechanisms The work done in (Anaya et al., 2014) is similar

typically adapt parameters only after a local change of L N
performance has been observed. This reactivity mayto.Our proactivity definition. _Her_lce, we would,extend
this work through the following items.

result in a long phase, between the occurred dynam-
ics and required change of parameters, in which the e Designing a detailed energy consumption model
performance of the network might be unacceptable  to assess the gain in terms of energy consumption
or resources might be wasted. Figure 24 visualizes : and latency.

the research problem via following the timeline of a ¢ |mplementing the predictive self-adaptive mecha-
reactive adaptation mechanism. Whenever a degra-  nism on real sensor nodes to evaluate the overhead
dation occurs in the targeted QoS parameter (such as  in terms of complexity and processing latency.
lifetime, latency, etc.), the mechanism requires a pe-
riod of time to diagonals the problem and to make the
right decisions. These accumulated delays could have

a negative impact on the network performance. e Exploring the mechanism conversion from cen-
tralized into distributed reasoning engine.

QoS ¢ Investigating the back-to-back adaptation. When
adapting a component in a system, this triggers a

chain of reactions that cause further adaptations in

— — other components. Complex problems may result
t from these chain reactions such as infinite trigger-
ing of new adaptations or inconsistent congura-

CI — [ ,—] tions in different components.
1 j | | t

e Investigating the most suitable predictors to be
used with such proactive mechanisms.

Adaptation mechanism

Figure 24: Timeline of QoS parameters degradation and a

reactive adaptation mechanism. 6 EXPECTED OUTCOME

Predictive Self-adaptation is an excellent candi- The literature is now full of energy efficiency ap-
date to overcome the flaws of such reactive tech- proaches, however the arena is still open and de-
niques. A WSN is proactive in that the sensors by mands more effort to further improve the energy ef-
themselves or in collaboration preprocess their inter- ficiency. The final thesis is expected to comprise a
nal (transmit power, MAC duty cycle, etc.) and ex- well-designed techniques for mitigating the headache
ternal (such as environmental parameters) conditionsof energy consumption in WSNs. Till now, we have
to fulfill the assigned tasks. Proactive adaptations of published four papers (Abdelaal and Theel, 2013b),
the system are required to anticipate events and to op{Abdelaal and Theel, 2014), (Abdelaal and Theel,
timize system behavior with respect to its changing 2013a), (Abdelaal et al., 2014). Additionally, two ar-
environment. ticles are currently under review (Bashlovkina et al.,

Figure 25 depicts a simplified diagram of the pre- 2015), (Abdelaal et al., 2015). In 2015, we expect to
dictive self-adaptive mechanism. At the outset, the produce more than three articles.
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