
Model-driven Development of RESTful APIs

Vitaliy Schreibmann and Peter Braun
Faculty of Computer Science, University of Applied Science

Würzburg-Schweinfurt, Sanderheinrichsleitenweg 20, Würzburg, Germany

Keywords: REST, RESTful, API, Model-driven Software Development.

Abstract: We propose a model-driven approach for creating RESTful APIs. Today, REST APIs are developed by using
frameworks and libraries that support software developers on the level of the chosen programming language,
i.e., a lower level of abstraction. We argue that the development process can benefit from a model-driven
approach, where an API is modeled on a higher level of abstraction by using a new formal language that was
designed in particular for this application domain. From this model, the source code of the API is gener-
ated automatically, along with necessary code on the business logic and database layer. The benefits of this
approach include higher productivity, better maintenance, higher quality, and documentation for free.

1 INTRODUCTION

In the year 2000 Roy Fielding proposed as part of
his thesis (Fielding, 2000) a new architectural style
for distributed systems, called Representational State
Transfer (REST). It comprises of several high-level
principles on how to design a distributed system. For
example, according to the client/server principle, a
communication act is always initiated by clients that
send requests to servers. Another principle is state-
less communication, which means that the server is
not aware of any application state of one specific
client. The last principle we mention here is hyperme-
dia, which recommends to let the server drive clients
through the states of an application by using hyper-
links.

Although REST influences the software architec-
ture of a complete distributed system (Costa et al.,
2014; Fielding and Taylor, 2002), it is mostly reduced
to the Application Programming Interface (API) be-
tween clients and servers, where REST must be seen
in contrast to other techniques for communication in
distributed systems, for example Remote Procedure
Calls (RPC) (Coulouris et al., 2005) or SOAP (Papa-
zoglou, 2008). For a comparison of SOAP and REST,
see (Pautasso et al., 2008). In the community, the term
RESTful is used to express that an API complies with
the major principles of REST, although this term has
not been defined exactly so far (Richardson and Ruby,
2007). Ongoing research by (Klein and Namjoshi,
2011) attempts to formally prove RESTful behavior

for the two constraints hypermedia and stateless com-
munication.

The main advantage of REST is its simplicity in
using an API, compared to other approaches such as
SOAP. This is one reason REST interfaces are be-
coming increasingly popular for developers of Web-
based and mobile applications. Other reasons are the
clear intentions of the API and guidance through hy-
permedia for API users. In contrast, the design and
implementation of REST interfaces on the server-side
is rather difficult, time-consuming, and error-prone,
because there is a huge conceptual gap between the
ideas of REST on the level of Fielding’s thesis and
their implementation. In our opinion, the reasons for
this are twofold:

1. Since REST is an architectural style, it is open
for interpretation. For a developer it is simple
to select only few principles of REST but miss-
ing the decisive ones. For example, many exist-
ing APIs are called RESTful only because they
are built on the concept of resources and proper
HTTP verbs but neglect the hypermedia principle
(Fielding, 2008).

2. Developers lack a comprehensive tool-chain for
design, documentation, and testing REST inter-
faces. Available frameworks and libraries on the
level of programming languages only focus on a
low level of implementation. For example, they
support dispatching of incoming requests to an
implementation based on the URI in an easy way

5Schreibmann V. and Braun P..
Model-driven Development of RESTful APIs.
DOI: 10.5220/0005411200050014
In Proceedings of the 11th International Conference on Web Information Systems and Technologies (WEBIST-2015), pages 5-14
ISBN: 978-989-758-106-9
Copyright c
 2015 SCITEPRESS (Science and Technology Publications, Lda.)

and allow to read and define HTTP header infor-
mation. These tools do not ensure implementing a
RESTful interface, because they only simplify the
usage of the HTTP protocol but do not enforce
Fielding’s constraints.

This paper addresses the problem of providing
an API according to the principles of REST in an
easy way. Our goal is to bridge the gap between
high-level concepts of REST and the low-level of im-
plementation of an interface in a specific program-
ming language. For this, we use a model-driven ap-
proach, in which the technical domain is limited to
a sub-set of RESTful interfaces. We will argue that
this sub-set is sufficient for most use cases. Model-
driven software development (MDSD) is a technique
to generate source code from an abstract model (Stahl
et al., 2006). Instead of using a Turing-complete pro-
gramming language with statements, conditions, and
loops, MDSD enables developers to think on a higher
level of abstraction. In our case, developers have to
deal with basic concepts of RESTful APIs, such a
resources, application states, and caching strategies
only to name a few. The model is defined by us-
ing a textual domain specific language (DSL), named
RDSL. From this model, a software generator creates
a deployable RESTful interface.

Using such a model-driven approach not only re-
duces the complexity during development of RESTful
interfaces but also improves quality assurance by gen-
erating automated test cases and simplifies usage of
this API by generating libraries for accessing it from
different types of clients.

The rest of this paper is structured as follows. In
Chapter 2 we discuss other approaches to facilitate the
development of RESTful APIs. Chapter 3 explains
why it is reasonable to further restrict the flexibility of
developers without necessarily narrow the number of
use cases. In Chapter 4 we introduce a meta-model for
RESTful APIs and in Chapter 5 we show examples of
RDSL. Finally, in Chapter 6 we discuss our approach
and give an outlook to further development.

2 RELATED WORK

Frameworks and libraries aim at supporting develop-
ers in creating RESTful APIs on the level of pro-
gramming languages. For example, the Dropwizard
framework (Dallas, 2014) is built on top of already
existing tools and libraries such as Jetty, Jersey, Jack-
son, and Hibernate to provide a ready-to-be-used tool-
box for backends and clients. These tools and frame-
works support developers in writing a RESTful APIs
but do not enforce it. Unfortunately, developers are

required to have programming skills and a thorough
understanding of the principles of REST in order to
develop a proper interface.

Several attempts were made to generate REST-
ful services, but these approaches only focus on re-
sources and methods to create, read, update, and
delete (CRUD operations) these resources. (Pérez
et al., 2011; Schreier, 2011) have developed their own
REST meta-models using Amazon S3 as reference
API, overlooking the importance of the hypermedia
constraint.

Apimatic1 and RAML2 try to covers all aspects
concerning REST from API definition on the back-
end to generation of SDKs for frontends. With Api-
matic the developer has to interactively define re-
sources and their attributes using a Web-interface.
Apimatic then generates an API providing CRUD op-
erations on these resources and SDKs to be used in
clients on Android and iOS. RAML is the first high-
level language for developers to define, create, test,
and publish RESTful APIs. RAML uses YAML as
markup language and is based on the idea of defining
resources and their representations as JSON schemas.
Currently, neither Apimatic nor RAML support the
concept of hypermedia but hypermedia is essential to
increase flexibility and comparability of an API. In
addition, with properly applied hypermedia, clients
become flexible, stable against changes, and could
evolve beyond pure data consumers.

(Lanthaler and Gutl, 2010) compared different
Web service description languages including WSDL
and WADL. WSDL 2.0 is able to describe REST
based services but in our opinion they increase
complexity against the straightforward principles of
REST. WSDL 1.0 and WADL could also formally de-
scribe REST but not RESTful APIs due to the lack of
hypermedia support in the specification. As a con-
sequence, the research of (Tavares and Vale, 2013)
omitted hypermedia in their meta-model and in the
transformation process to WADL. Similar WADL de-
scriptions were produced by (Laitkorpi et al., 2009)
including the hypermedia constraint in their model-
to-model transformation. Replacing WADL with
RDSL simplifies the definition of REST APIs for
users and RDSL could define features WADL never
could such security, resource states, API documenta-
tion, and testing

We decided to omit the support for legacy sys-
tems in favor of straightforward creation of complete
and deployable REST APIs, which should allow to
replace any legacy system in the future. In the first
iteration of this project the focus is on structural mod-

1https://apimatic.io/
2http://raml.org/

WEBIST�2015�-�11th�International�Conference�on�Web�Information�Systems�and�Technologies

6

els with the intention to extend it with a behavioral
model similar to the work of (Porres and Rauf, 2011).

3 TOWARDS REASONABLE
CONSTRAINTS FOR RESTful
APIs

Currently, the development of a RESTful API is
based on frameworks and libraries. For example,
JSR 3393 specifies Java annotations to map incoming
HTTP requests to specific classes and methods. The
annotation@GET in combination with an annotation
@PATH("/orders") placed at a method defines that
this method should be called in case of a HTTP GET
request to the URI with/orders as last path element.
However, this approach does not prevent developers
to wrongly use GET requests for updating resources,
although it violates the safety requirement of HTTP
(Fielding et al., 1999, Section 9)

To prevent non-RESTful implementations, we
suggest to add further constraints on the design and
implementation level in addition to the constraints de-
fined by Fielding on the architectural level. These
constraints result from our experience in implement-
ing several RESTful APIs over the last years. In con-
trast to Fieldings’s Web REST, API developers have
to provide a certain degree of security and flexibility
and also incorporate every functionality the API user
could think of. Naturally, by introducing more con-
straints we limit the flexibility of developers, which
has the consequence that not all RESTful APIs in the
meaning of Fielding can be modeled by our approach,
compare Figure 1.

In the following we introduce and discuss exam-
ples of these constraints. The fixed usage of HTTP
methods prevents to model an API, which would op-
erate outside the CRUD principle. In addition, the
pagination and query features also limit the user with
a fixed amount of returned data per request and the re-
source filtering depends on the included query param-
eters. However an experienced developer can extend
the generated sources to implement the targeted use
case but we believe to have covered most of the use
cases.

3.1 Usage of HTTP Verbs

The meaning of HTTP verbs should be fixed and de-
velopers should not be free to choose wrong verbs.
The four basic operations to create, read, update, and
delete resources and mapped to the four HTTP verbs

3https://www.jcp.org/en/jsr/detail?id=339

RDSL-API

REST-API

Fielding Web REST

Everything else

Figure 1: The position of our RDSL-API in relation to cur-
rent API designs.

POST, GET, PUT, and DELETE. With regard to the
HTTP specification, this mapping is unambiguous
and not arguable any more. We will enforce a strong
coupling of HTTP verbs and business logic.

3.2 Usage of HTTP Status Codes

Every HTTP request is answered by the server with
an HTTP status code that informs the client about
the success of the last request. The HTTP specifica-
tion recommends several status codes for typical sit-
uations, for example code 200 if a GET request was
processed as expected or code 404 if the requested re-
source is not available. However, in several situations
developers are free to select from few codes. For ex-
ample, in case of a PUT request, the server could re-
ply with code 200 or code 204. The latter code addi-
tionally expresses that the response does not contain
any content. It should be the decision of the API de-
signer to choose whether the server should reply with
code 200 (and with the updated resource as content)
or 204 (without any content). The developer should
not be able to use code 200 without content.

In case of an error code, it could be advantageous
for the client to get more information about the reason
for this error. Neither the HTTP specification nor any
of the REST principles advise this case. It should be
left to the API designer to decide whether a resource
representation with further information should be in-
cluded in the response.

We propose to prohibit wrong usage of HTTP
codes while allowing the API designer to select from
a set of allowed status codes dependent on the HTTP
verb.

3.3 Providing Paging for Collections

Consider an example of a collection of resources that
is available at a specific URI path. If the number of

Model-driven�Development�of�RESTful�APIs

7

resources becomes too large, fetching the whole col-
lection resource at once becomes too expensive for
the client. The server should provide a so-called pag-
ing mechanism to allow clients to fetch only a limited
number of resources in a single request. We propose
to restrict the API designer to choose between two
common approaches frequently used:

1. The first approach is to accept two query parame-
ters as part of the URI to let the client define the
maximum number of resources (page size) and the
first index it wants to receive (offset).

2. The second approach is to use cursors, which is
a concept already known from database systems.
With cursors, the server and not the client defines
the page size. The position of the page to be
returned cannot be selected by the client but the
server drives the client in fetching batches of re-
sources. As a consequence, the client must always
start by fetching the first page.

Both approaches for pagination follow the princi-
ples of REST if implemented correctly. This would be
the case, if the server provides hyperlinks to the pre-
vious or following page as part of the response header
(not the response body). On the opposite, the devel-
oper can also implement any of these approaches in a
wrong way by responding without these information.

However, although we restrict the API designer to
use one of these two approaches, we still allow him
to define the names of the query parameters for page
size, offset, or cursor and to define default values.

3.4 Definition of Resources

The core of a RESTful API are resources and their
attributes. Clearly, the API designer must have full
flexibility to model resources according to the appli-
cation domain and use cases. We do not restrict but
extend the flexibility compared to programming lan-
guages by providing new additional data types. For
example, we introduce a data type for location in-
formation so that the API designer does not have to
model this as an array of two double values for lon-
gitude and latitude. We also provide a data types for
dates and images that belong to resources.

3.5 Summary

From these examples, it can be seen that the designer
of a RESTful interface has many choices when it
comes to the implementation using low-level libraries
and frameworks. This flexibility might lead devel-
opers to choose wrong paths and dead ends, which
might finally result in a non-RESTful interface. Our

approach is to define further restrictions as part of the
meta-model for RESTful APIs while leaving many
decisions open to the API designer at the same time.
However, these decisions are on a higher level of ab-
straction and it will be easier for the API designer to
decide on them.

4 A META-MODEL FOR THE
REST DOMAIN

We created an abstract model of the technical domain
of REST based on our understanding of Fielding’s
constraints (Fielding, 2000) and the recommendations
from (Amundsen et al., 2013; Webber et al., 2010;
Richardson and Ruby, 2007). The UML based meta-
model applies further constraints to the modeling of
RESTful APIs. In contrast to other meta-models, our
approach focuses on application states and transitions
between them. The meta-model serves as abstract
syntax of the RDSL developed in Xtext and underpins
the code generator written in Xtend.

Hypermedia based APIs can be defined using fi-
nite state machines, with pairs of resources and HTTP
verbs as states and hyperlinks as transitions between
states. As part of a response the server sends hyper-
links to drive clients through the states of the applica-
tion. Using finite state machines to model application
behavior is similar to modeling the design of Web or
mobile applications, where techniques such as wire-
frames or screen-flows are frequently used. An ap-
plication state can be assigned to a screen and screen
transitions are comparable to state transitions, which
are the result of user interactions (Thimbleby, 2010).

To concentrate on the state transfer without ne-
glecting other constraints, we divided our meta-model
in two parts: the application state and the resource
representation.

4.1 Application States

The most important component in our meta-model,
Figure 2, is built from resources, HTTP methods, and
application states. An application state is a pair of
one HTTP method and one resource and represents
one valid REST request, which uses a URI to access
one resource. An application state is connected to one
or more transitions, which link to a target state.

The implementation of the security concept is one
of the most time consuming and complex undertak-
ings in the REST field. In our meta-model the API
designer has to define the permission feature on the
level of application states and has to deal with au-
thorization (e.g. role-based access control or access

WEBIST�2015�-�11th�International�Conference�on�Web�Information�Systems�and�Technologies

8

Transition

Permission

Application State

Constraint HTTP Method

Resource*

*

*

Figure 2: Simplified meta-model component for expressing
hypermedia and application state constraints.

control lists) and authentication (e.g. HTTP Basic or
OAuth) topics. With the constraint feature it is possi-
ble to define rules for accessing application states.

In the model an API designer is able to define
global user profiles and override this settings later for
all resources separately. The scope of this settings can
vary from full access for specific users or roles to re-
stricted data access, for example for guest users with-
out authentication. The user authentication and au-
thorization can be implemented by taking advantage
of HTTP security headers or external OAuth APIs.

4.2 Resources

Our resource concept, shown in Figure 3, takes ad-
vantage of UML features such as inheritance and as-
sociations, resulting in the following resource types:
sub-resource, single resource, and resource collec-
tion. (Schreier, 2011) identified additional resource
types but we were able to shorten the list significantly.
For example, we merged Schreier’s filter, paging and
list resources into the collection resources with query
and pagination capabilities. To model the entry point
of an API we extended the list of resource types and
introduced a new dispatcher resource, which can be
still treated as single resource with a list of hyper-
links instead of data. The intention behind the limited
amount of resource types is to minimize the complex-
ity of the API, increase its the acceptance for develop-
ers, and raise the interoperability to other REST APIs.

Between the three resource types the single and
the collection resource differ the most. A single re-
source contains data attributes, while a collection re-
source stores multiple resource representations.

The query and pagination features of collection re-
sources allows the API user to filter the response and
limit the received amount of data. To specify a query
filter, the API designer has to define a list of permitted
parameters and the relative path to the query method.
The pagination could be implemented either as a cur-
sor based or as a page based pagination as discussed in
Sec. 3.3. The actual content of a resource collection

could contain only hyperlinks to single resources or
embed representations inside and reduce the amount
of client calls.

Despite some differences, every resource type has
to support a set of common features such as caching,
media type, and others with the goal to enforce REST-
ful design of the produced API. Therefore, we intro-
duce a base elementResource, which includes these
features and represents a view of a resource. By us-
ing independent views, we can implement use cases in
which the API has to provide different resource rep-
resentations depending on the active user or user role.

4.3 Predefined Behavior

We included our understanding of REST into the pre-
sented meta-model, which covers all relevant aspects
necessary to model a RESTful API. As mentioned
previously in Section 3, we limit the API designer
in his degree of freedom, for example by predefin-
ing URI formats. In the proposed model, the API de-
signer does not need to define URI paths to access re-
sources. The structure of URIs is defined as part of the
semantics of the meta-model and later applied by the
software generator. Similarly, the API designer can-
not influence the functional behavior of HTTP verbs.
Depending on the selected method and involved re-
source component, it can be decided on method pa-
rameters, business logic, and proper HTTP responses.
For example, in case of method POST the response
returns the location of the created resource and there
is no room for further interpretation.

5 REST DOMAIN SPECIFIC
LANGUAGE

Based on the meta-model presented in the last sec-
tion, we introduce a domain-specific language (DSL)
for REST named RDSL to define an instance of the
meta-model. We decided to use a textual language
rather than a graphical one in the first step because of
its simplicity for novice developers. Graphical repre-
sentations can be a supplement for understanding the
overall concept of the model. We use the Eclipse plu-
gin Xtext (Eysholdt and Behrens, 2010) for defining
the grammar of the DSL and the programming lan-
guage Xtend (Bettini, 2013) to implement the soft-
ware generator. Xtext also supports the development
of DSL-specific editors that provide syntax highlight-
ing as well as checking of syntax and static semantic.

Obviously, modeling of a RESTful application
based on finite state machines can also be done us-
ing a graphical editor and we are currently working

Model-driven�Development�of�RESTful�APIs

9

Resource

Sub R. Single R.

Dispatcher R.

Collection R. Pagination

CursorSize/Offset

Query

Parameter PathMedia TypeAttributeData Type

Caching

Validation Expiration

*

*

*

*

Figure 3: Meta-model with the resource and correlated elements.

on an Eclipse plugin for that based on the Graphical
Editor Framework of Eclipse (Rubel et al., 2011).

In the following we introduce the programming
language independent RDSL in three steps using a
simple example. An API can be completely described
in one file of RDSL.

5.1 General Information about the API

Within this Base resource, it is defined that all re-
sources will use a unique identifier of data type long.
The default media type is set to JSON. At last, dif-
ferent versions of this API can be distinguished by
appending a number to the media type.

BasePath"api"

AbstractResourceBase{
Long id askey
MediaType "application/json"
ApiVersion "1" as MediaType

}

Listing 1: Base configuration.

Next, general information about necessary authen-
tication and authorization of users is defined in the
Security block. User authentication by HTTPBasic
is activated, which is linked to resourceUser (which
is defined later) using the two attributesuserName
andpassword. For user authorization, a role based
access control model (RBAC) is used, which is the
only one we have implemented so far. Allowed names
for the user roles are defined, as well as the default
role for a new user. If a client sends a request with-
out authentication, the anonymous user is assigned to
role other. By doing so, anonymous access can be
permitted for specific states later.

Security {

Authentication by HTTPBasic (User::userName, User::
password)

Authorization by RBAC (User::userRole){
Rolesadmin, user, other
DefaultRoleuser
RoleWithoutAuthentication other

}
}

Listing 2: Example for global security definitions.

Finally, as part of the general information, several
permissions are assigned to roles. In the first block it
is defined thatall, which is a short-cut for all roles,
can access all resources (*) with a GET request. In the
second block, it is defined that clients with roleadmin
can access all resources using all HTTP requests.

State(∗,GET) {
Grant Permissionto all
}

State(∗,∗) {
Grant Permissionto admin

}

Listing 3: Example for global permissions for states.

5.2 Resources

The next RDSL section handles resources. First, a
resource namedUser is defined to extendBase with
some additional attributes. Caching is defined to be
done using a validation model using ETags. In or-
der to let the API provide various resource represen-
tations for different user roles, an additional resource
view namedDefaultUserView is defined that con-
tains all attributes of resourceUser but hiding at-
tributepassword for all users except those who bear
the admin role. It has to be noted that it is not nec-
essary to define a URI path element for resources,

WEBIST�2015�-�11th�International�Conference�on�Web�Information�Systems�and�Technologies

10

because the software generator creates them auto-
matically using an approach comparable to (Conway,
1998).

ResourceUserextendsBase {
String userName
String password
String userRole
Caching byETag

}

ResourceViewDefaultUserView< Userfor user, other{
Hide password

}

Listing 4: Example for defining a resource and a resource
view.

The last example in this section shows how to de-
fine a collection resource. For this collection, caching
is deactivated. A query is defined to accept a URI
query parametername that is used to filter by users’
name. Sorting is activated to work on the same re-
source attribute. This information is used later in the
generator to create SQL statements. Paging of type
SizeOffset is activated and the names of the query
parameters are defined.

ResourceAllUsersas collection ofUser{
Cachingnone
Query SelectByNameon path "" {

Parameter"name" map to "userName" default ""
Sorting by parameter "order" on "userName"
optional default "asc"

}
Paging by SizeOffset{

PageSize"size" default 20
PageOffset"offset" default 0

}
}

Listing 5: Example for a collection resource.

5.3 States and Transitions

Finally, the last RDSL section defines the finite state
machine of the application. Each state is defined as
pair of a resource name and an HTTP verb. The
embeddedTransition statements specify hyperlinks
that are added to the HTTP response header. For ex-
ample the nameupdateUser defines the relation type
andUpdateExistingUser is the name of the target
state. The software generator resolves the URI to be
inserted into the response from the resource used as
part of the target state. It is possible to add further
Grant statements to assign permissions to user roles.
A Constraint statement defines logical expressions
as further guards to access this state.

StateGetOneUser (User,GET) {
Transition "updateUser" to UpdateExistingUser

Transition "deleteThisUser" to DeleteExistingUser
}

StateUpdateExistingUser (User,PUT) {
Grant permission to user
Constraint $id.userName == $subject.userName
StatusCode204
Transition "getUser" to GetOneUser

}

StateDeleteExistingUser (User,DELETE) {
Grant permission to user
Constraint $id.userName == $subject.userName
Transition "getAllUsers" to GetAllUsers

}

StateGetAllUsers (AllUsers,GET) {
Transition "createNewUser" to CreateNewUser

}

StateCreateNewUser (AllUsers,POST) {
Transition "getAllUsers" to GetAllUsers

}

Listing 6: Example for states and transitions.

5.4 Software Generation

The software generator gets an RDSL model as input
and creates all necessary artifacts for a complete back-
end that contains the API, the business logic, and the
source code of the persistence layer. Right now, the
persistence layer for MySQL and RIAK are already
available. Fig. 4 gives an overview of all the compo-
nents that we plan to develop within this project. Cur-
rently, we are working on generators for the network
layer for mobile applications on iOS and Android.

As platform for the backend we use Java as pro-
gramming language and Maven as build tool. The
Java specification requests (JSR) 339 define a frame-
work to implement RESTful APIs in Java. The ref-
erence implementation is Jersey (Gulabani, 2013)
which is used in combination with other open source
libraries and frameworks for processing XML and
JSON. Jersey allows to define own HTTP methods to
overcome the shortcomings of the current HTTP 1.1
specification, for example we implemented PATCH
(Dusseault and Snell, 2010), LINK and UNLINK
methods (Snell, 2013).

The software generator was written in Xtend and
is tightly coupled to the Xtext plugin (Bettini, 2013).
Fig. 7 partially shows as example of the generated
Java source code of methodgetOneUser which cor-
responds to the stateGetOneUser from the previous
example. The Xtext plugin extracts this information
from the text file following the provided DSL and for-
ward them to the Xtend plugin as model, which can
be embedded in the code generator templates.

Model-driven�Development�of�RESTful�APIs

11

M
o
d
el

G
en

er
at

o
r

iOS Android Tests
Java-
Script

Admin
Interface

MySQL MongoDB Riak

API ConsoleRESTful API

Business Logic

Figure 4: Intended multitier architecture of the generatedcomponents from the proposed model.

To generate an access point to the resourceUser
following information can be extracted from the
model: resource name, resource type, resource iden-
tifier, user role, and the expected response. For in-
stance, the pathusers is created automatically from
the name of the resource and thePermission annota-
tion handles security features for this state as defined
in the model. For accessing the database, the data ac-
cess object pattern is used together with a resource
identifierid defined in the Listing 1. Hyperlinks de-
fined in the Listing 6 asTransitionsare embedded
in the generated classUserResponse and included in
the response. This class allows developers to build a
RESTful response without worrying about the proper
status code or the correct way to include hyperlinks.
Developers have to decide to put hyperlinks either in-
side the response body or the response header but this
resource matched class takes care of this task.

@Path("/users")
public classUserServiceextendsAbstractService{
@GET
@Path("/{id : d+}")
@Produces({"application/json; version=1"})
@Permission(userrole = UserRole.Admin)
public Response getOneUser(@PathParam("id") Long

id){
User user = DataAccessObjectFactory.getInstance().

createUserDAO().load(id);
...
return UserResponse.create(uriInfo).withResult(user).

build();
}
...
}

Listing 7: Part of the generated source code for a GET
request on resource User.

6 SUMMARY

In this paper we introduced a novel approach for
creating RESTful APIs by specifying a model on a

higher level of abstraction and generating the source
code for the complete implementation of a backend
out of it. By this, we overcome two open problems in
the development of RESTful APIs.

At first, developers do not need in-depth knowl-
edge about the architectural style of REST as pre-
sented in (Fielding, 2000). It is not possible to design
an API that contradicts any of them. The code-on-
demand, client-server, and layered system constraints
can not be broken because of the HTTP usage. The
stateless communication is ensured by modeling an
encapsulated application state with all the necessary
information in it. To reach another application state
one transition is required and clients have to send their
complete information anew. The cache constraint
requires the implicit or explicit labeling of caching,
which can be done using the caching structure in our
meta-model and theCaching keyword in the model.
The uniform interface constraint is ensured with the
limited amount of methods, their restrictions, and the
presence of hypermedia in the response. The API
modeler can only use publicly known HTTP meth-
ods. The finite state machine based modeling ap-
proach protects the hypermedia constraint from Field-
ing. Therefore, the presented meta-model in Sec. 4
responds to all constraints of REST.

Second, software developers of a RESTful API do
not need any knowledge about the specific libraries
and frameworks. They benefit from the higher level
of abstraction of RDSL and can design the API on
the level of application states and resources. How-
ever, developers are of course restricted in their flexi-
bility to design an API. We are aware of the fact that
it is not possible to describe all RESTful APIs with
RDSL. For example, we only provide two ways to
implement a paging mechanism for resource collec-
tions, although there exist many more that are also
RESTful. We will learn more about the severity of
this restriction in next projects and extend the meta-
model if necessary.

WEBIST�2015�-�11th�International�Conference�on�Web�Information�Systems�and�Technologies

12

6.1 Reflections on the Approach

The project is still under development and bound to
the generation of straightforward REST APIs with fo-
cus on data and ability to manipulate it. The API mod-
eler can add attributes to resources, which will also be
included in the JSON representation. Furthermore,
the generators produce only Java source code right
now. In a production environment, support of other
languages and platforms might be necessary. Imple-
menting new generators and managing them requires
moderate additional work.

Without a proper client the usage of REST and es-
pecially hypermedia provided in the response is not
guaranteed. The server response is defined by our un-
derstanding of REST and it includes hyperlinks to re-
lated resources or actions. Clients could skip this ad-
ditional information and ignore the hypermedia prin-
ciple completely. One of the biggest issues is the com-
pleteness of RDSL, which can not be assured. With
new features (e.g. client source code, testing, de-
veloper console) there is a chance of a rule-breaking
modification, which could result in rewriting the DSL,
the generators, and everything depending on it. This
was confirmed by two students, who tried to add the
support for NoSQL database and API testing.

6.2 Outlook

Ongoing work focuses on the development of a graph-
ical editor as Eclipse plugin in order to define at least
the finite state machine of the application. Future
work will be done mainly in the area of generat-
ing source code for mobile applications. As already
shown in Fig. 4 we target the mobile platforms iOS
and Android. The goal is to generate libraries to sim-
plify the communication to the RESTful API by pro-
viding business classes and methods to wrap all HTTP
requests. Another goal is to generate a Web-based
administration interface for inspecting and modifying
the current status of the backend.

REFERENCES

Amundsen, M., Richardson, L., and Ruby, S. (2013).REST-
ful Web APIs. O’Reilly Media, Inc., Sebastopol, CA,
USA.

Bettini, L. (2013). Implementing Domain-Specific Lan-
guages with Xtext and Xtend. Packt Publishing, Birm-
ingham, United Kingdom, first edition.

Conway, D. (1998). An algorithmic approach to english
pluralization. InProceedings of the Second Annual
Perl Conference, San Jose, USA.

Costa, B., Pires, P., Delicato, F., and Merson, P. (2014).
Evaluating a representational state transfer (rest) ar-
chitecture: What is the impact of rest in my archi-
tecture? InSoftware Architecture (WICSA), 2014
IEEE/IFIP Conference on, pages 105–114, Sydney,
NSW.

Coulouris, Dollimore, J., and Kindberg, T. (2005).Dis-
tributed Systems: Concepts and Design (4th Edition)
(International Computer Science). Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA.

Dallas, A. (2014).RESTful Web Services with Dropwizard.
Packt Publishing, Birmingham, United Kingdom, first
edition.

Dusseault, L. and Snell, J. (2010). PATCH Method for
HTTP. RFC 5789, Internet Engineering Task Force.

Eysholdt, M. and Behrens, H. (2010). Xtext: Implement
your language faster than the quick and dirty way.
In Proceedings of the ACM International Conference
Companion on Object Oriented Programming Sys-
tems Languages and Applications Companion, OOP-
SLA ’10, pages 307–309, New York, NY, USA. ACM.

Fielding, R. T. (2000).Architectural Styles and the Design
of Network-based Software Architectures. PhD thesis,
University of California.

Fielding, R. T. (2008). REST APIs must be hypertext-
driven. URI: http://roy.gbiv.com/untangled/2008/rest-
apis-must-be-hypertext-driven. Last visited
12.12.2014.

Fielding, R. T., Gettys, J., Mogul, J. C., Frystyk, H. N., ,
Masinter, L., Leach, P. J., and Berners-Lee, T. (1999).
Hypertext Transfer Protocol – HTTP/1.1. RFC 2616,
Internet Engineering Task Force.

Fielding, R. T. and Taylor, R. N. (2002). Principled design
of the modern web architecture.ACM Trans. Internet
Technol., 2(2):115–150.

Gulabani, S. (2013).Developing RESTful web services with
Jersey 2.0. Packt Publishing, Birmingham, United
Kingdom.

Klein, U. and Namjoshi, K. S. (2011). Formalization and
automated verification of restful behavior. InProceed-
ings of the 23rd International Conference on Com-
puter Aided Verification, CAV’11, pages 541–556,
Berlin, Heidelberg. Springer-Verlag.

Laitkorpi, M., Selonen, P., and Systa, T. (2009). Towards
a model-driven process for designing restful web ser-
vices. InWeb Services, 2009. ICWS 2009. IEEE Inter-
national Conference on, pages 173–180.

Lanthaler, M. and Gutl, C. (2010). Towards a restful service
ecosystem. InDigital Ecosystems and Technologies
(DEST), 2010 4th IEEE International Conference on,
pages 209–214, Dubai. IEEE.

Papazoglou, M. P. (2008). Web Services - Principles
and Technology.Pearson Education Limted, Harlow,
United Kingdom.

Pautasso, C., Zimmermann, O., and Leymann, F. (2008).
Restful web services vs. ”big”’ web services: Making
the right architectural decision. InProceedings of the
17th International Conference on World Wide Web,
WWW ’08, pages 805–814, New York, NY, USA.
ACM.

Model-driven�Development�of�RESTful�APIs

13

Pérez, S., Durao, F., Meliá, S., Dolog, P., and Dı́az, O.
(2011). Restful, resource-oriented architectures: A
model-driven approach. InProceedings of the 2010
International Conference on Web Information Systems
Engineering, WISS’10, pages 282–294, Berlin, Hei-
delberg. Springer-Verlag.

Porres, I. and Rauf, I. (2011). Modeling behavioral restful
web service interfaces in uml. InProceedings of the
2011 ACM Symposium on Applied Computing, SAC
’11, pages 1598–1605, New York, NY, USA. ACM.

Richardson, L. and Ruby, S. (2007).Restful Web Services.
O’Reilly, Sebastopol, CA, USA.

Rubel, D., Wren, J., and Clayberg, E. (2011).The
Eclipse Graphical Editing Framework (GEF). Eclipse
(Addison-Wesley). Addison-Wesley.

Schreier, S. (2011). Modeling restful applications. In
Proceedings of the Second International Workshop on
RESTful Design, WS-REST ’11, pages 15–21, New
York, NY, USA. ACM.

Snell, J. M. (2013). HTTP Link and Unlink Methods draft-
snell-link-method-10. Technical report, Internet Engi-
neering Task Force. Expires: 02.02.2015, Last visited
12.12.2014.

Stahl, T., Voelter, M., and Czarnecki, K. (2006).Model-
Driven Software Development: Technology, Engineer-
ing, Management. John Wiley & Sons, Inc.

Tavares, N. A. C. and Vale, S. (2013). A model driven ap-
proach for the development of semantic restful web
services. InProceedings of International Conference
on Information Integration and Web-based Applica-
tions & Services, IIWAS ’13, pages 290:290–
290:299, New York, NY, USA. ACM.

Thimbleby, H. (2010).Press On: Principles of Interaction
Programming. The MIT Press.

Webber, J., Parastatidis, S., and Robinson, I. (2010).REST
in Practice: Hypermedia and Systems Architecture.
O’Reilly Media, Inc.

WEBIST�2015�-�11th�International�Conference�on�Web�Information�Systems�and�Technologies

14

