
Open Resources as the Educational Basis for a Bachelor-level
Project-Based Course

Ville Isomöttönen and Tommi Kärkkäinen
Department of Mathematical Information Technology, P.O.Box 35, FI-40014, University of Jyväskylä, Jyväskylä, Finland

Keywords: Open Data, Open API, Project-Based, Innovation Ability, Creativity.

Abstract: This article presents an innovation-based course concept for project-based learning. In this course, student
groups are asked to ideate and implement a software product based on Open Data and Open API releases. By
emphasizing students’ own product ideation, the course requires and enhances self-directed learning skills and
prompts the students to see the unlimited possibilities in becoming and being a practitioner of the computing
discipline. Relatedly, the course provides a tool to improve student self-efficacy, as the students, coached
through challenges, come to know that they are able to produce software using various open interfaces.

1 INTRODUCTION

Along with the decades-long project education
in computer science and software engineering
(Tomayko, 1998), various options for project-based
courses have been conceptualized (Fincher et al.,
2001; Clear et al., 2001; Burge and Gannod, 2009).
These taxonomic works discuss aspects such as indi-
vidual vs group projects, the problem scale and cur-
ricular levels of projects, and levels of realism, just
to name a few. Recent course conceptualizations
also include team work in multi-cultural (Pears and
Daniels, 2010) and multi-disciplinary (Burnell et al.,
2003) settings. In general, project education reflects
educational thinking that ‘function drives the form’
(Fincher et al., 2001), i.e., the educational goals for a
project can be reached by selecting applicable course
attributes.

The present paper describes and reviews a project
course concept where students innovate a software
product. The theme of this bachelor level course is
‘Open Data and Open APIs (Application Program-
ming Interfaces)’, which are on the increase among
societal interfaces. This theme was initially regarded
as topical and thereby potentially interesting to the
students. Later, the course coordinators began to pay
attention to the innovation ability of the students, and
the course is now considered to be a means to il-
lustrate to the students their potential as practition-
ers of computer science and software engineering.
The course under study is located at the University
of Jyväskylä, Finland.

Several scholars agree that there is a need to include
innovation ability into higher education curricula, and
research on this topic is ongoing. Yunfei and Qin
(2009) posit that innovation ability is a natural at-
tribute of every person and that it can be cultivated by
education. Fila et al. (2012) discovered that students
associated innovation mostly with creativity, while
their study also calls attention to other dimensions
such as desirability and feasibility. The study by Yang
and Cheng (2010) in turn suggests that interaction be-
tween individuals across project teams enhances cre-
ativity. In the present paper, the specific research aim
is to identify and discuss challenges that students,
who are expected to be inspired by the opportunity
for creative software development in groups, arrive at
a course fully based on the students’ own ideation in
a setting where the work is not done for the teacher or
an external client or sponsor.
The present work is part of the diagnostic phase of an
action research project. Action research, coined by
Lewin (1946), addresses local concerns to induce a
social change and improved understanding of the so-
cial situation. Educational action research is typically
conducted by or with authentic participants; through
such insider roles, action research is considered crit-
ical and practical (Carr and Kemmis, 1986). The
need to add a project course at the bachelor level was
identified by educators who observed a multitude of
learning challenges among students during a master’s
level authentic customer project in the local curricu-
lum. Adding the second/third-year practical course
was an attempt to smooth the students’ study path to

46 Isomöttönen V. and Kärkkäinen T..
Open Resources as the Educational Basis for a Bachelor-level Project-Based Course.
DOI: 10.5220/0005432100460056
In Proceedings of the 7th International Conference on Computer Supported Education (CSEDU-2015), pages 46-56
ISBN: 978-989-758-108-3
Copyright c
 2015 SCITEPRESS (Science and Technology Publications, Lda.)



the customer collaboration project. The Open Data
and APIs provided a realistic setting for this early
curriculum course, and thereby introduced a fruitful
educational environment. So far we have run the
course twice and are identifying the main educational
achievements and issues to be addressed. This pa-
per is presented in a lessons learned-style, much like
a self-ethnography wherein authentic participants in-
vestigate observations that have raised their research
interest (Kaihlavirta et al., 2015)—the action research
contextualization will be emphasized in future work.

2 BEING ‘OPEN’ IN THE
DIGITAL ERA

When a resource is open, it is available for others to
use. It is freely accessible, usable, modifiable, and re-
distributable as-is or as a derived work. Similarly, an
open activity or process can be followed and affected
by others during its execution. However, when the at-
tribute of openness is attached to different things, we
end up with multifaceted and varying conceptualiza-
tions, such as open data, open source software, open
service, open innovation, open education, open infor-
mation society, open government, open science and
research, etc. (see, e.g., (Jaakkola et al., 2014b)). To
be known as open, a resource or outcome of a pro-
cess is typically attached with an open license. For
a piece of software, this can mean complete freedom,
even to close the derivative works, as with the permis-
sive MIT license. Another well-known alternative is
to enforce the derivative works to be similarly avail-
able as the original source code, as with the copyleft
GPL licenses (see Tuunanen et al. (2009) and refer-
ences therein).

Open data is accessible and usable for further pro-
cessing and refinement. According to Domingo et al.
(2013): ‘Open data is the concept that defines the pub-
lication of government or private company data with-
out copyright restrictions. The data should be format-
ted so that citizens can reuse it at their discretion to
create new, innovative services or applications.’ How-
ever, the overall rights for even a raw data resource
should be governed by a content license, such as one
from the creative commons family1. Moreover, open
(and sometimes big) data is often not enough, but
one should be able to turn it into interesting patterns,
models, and visualizations (Han et al., 2011) that pro-
vide answers to some specific questions of true value
(Hand, 2013). In the Finnish national context, the de-
velopment of the open data movement has been sum-

1https://creativecommons.org/licenses/

marized by Jaakkola et al. (2014a).
Recently, many tools and methods for utilizing

open data have been proposed: visual exploration of
open data (Otjacques et al., 2012), a flexible envi-
ronment for Web data integration (Castanier et al.,
2013), a domain-specific language (DSL) for open
data visualizations over the Web (Morales-Chaparro
et al., 2014), and a high level library to help de-
velopers build safe mashups over APIs in HTML5
(Telikicherla and Choppella, 2014), to mention a
few. Open data can also be utilized in existing or
novel games, as suggested by Friberger and Togelius
(2012). Concerning the Semantic Web tools, the inte-
grated knowledge base of open data is referred to as
the Linked Open Data (LOD) (see Auer et al. (2014)
and articles therein). Arguably, such massive data
sources increase complexity of applications but also
their potential benefits.

Activities to create, publish, and utilize open data
are becoming more and more popular. In many cases,
availability of open data can be linked to an open in-
novation process fostering collaboration between pri-
vate companies (especially in the creative industry),
governmental or public actors, citizens, and academia
(scholars and students), once again to create new
products and services through purposive inflows and
outflows of existing or newly created knowledge (e.g.,
(Huizingh, 2011; Conradie et al., 2012)). The exis-
tence of a local co-creative platform can be an impor-
tant precondition for publishing some existing data,
even if to reach the actual innovative outcomes re-
quires continuous efforts and allocation of time from
all the participants.

It should be noted that to be able to be innova-
tive may require a basic understanding of the actual
term innovation, which, for undergraduate students,
could be challenging (Fila et al., 2012). Similarly,
as argued by Dahlander and Gann (2010), scientific
inquiries related to open innovation reveal a lack of
clarity regarding the term’s meaning, especially in the
business context. However, the paradigm of open in-
novation has been proposed by Chesbrough (2003),
with the encouragement of knowledge inflow and out-
flow to ensure that tasks are completed efficiently and
effectively. He sees open innovation as the key to de-
veloping novel products and services in the modern
business world. He proposes six principles to achieve
open innovation, two of which are relevant here: 1)
work with smart people inside and outside the com-
pany (university students of CS should qualify), and
2) a firm (or a student team) does not have to originate
the research (or data and software) to profit from it.

The innovation process and outcome can be closed
or open. For instance, an open source software com-

Open�Resources�as�the�Educational�Basis�for�a�Bachelor-level�Project-Based�Course

47



ponent can come from a private software company
taking part in the open source development. Simi-
larly, the user-centric design process of, for example,
texture for a new curtain model, might end up as a
new product sold under a (closed) trademark. As edu-
cators in the digital era, we should encourage students
to make the outcomes of their Open Data/API projects
open (Huizingh, 2011). So far, the main focus of the
course studied in this paper has been inbound open
innovation (i.e., utilization of existing open resources
to produce an own software deliverable).

The present section contextualized our study in
reference to the use of open resources, while we are
aware of the other kind of literature describing var-
ious options for implementing a project course (e.g.
(Fincher et al., 2001; Clear et al., 2001)). The pecu-
liarity of the course studied here is the high degree of
student responsibility expected in the early curricu-
lum. Comparison between this aspect and early cur-
riculum project models in the literature merits a sepa-
rate study.

3 THE COURSE

3.1 Workload, Learning Objectives, and
Facilities

The project course spans 12 weeks and students are
rewarded with 4 to 6 ECTS credits: the intention is
that each student will earn 5 credits. The course is
intensive and challenging; the software product pro-
totypes illustrating at least a proof of concept are
ideated and implemented in the given time frame
through newly formed groups.

The initial learning objectives were to introduce
and conceptualize group processes and software pro-
cess issues to the students through realistic project
work at the bachelor level. After two course itera-
tions, these objectives have been complemented with
the ones emerging from the innovation-based course
concept; that is, prompting self-directed study pro-
cesses among the students and improving student self-
efficacy. These latter kinds of learning objectives are
the main focus in the present paper.

Related to the possibility of improving self-
efficacy, ideating and producing software from
scratch sets a technical learning goal for the students.
Pre-requisite courses include CS1 and CS2, and all
the students are thus expected to have basic program-
ming skills. In our CS1 course, students program a
graphical game using a particular library. A few stu-
dents have taken a web programming course and our

CS2 has an elective continuation part briefly introduc-
ing web programming. The introductory program-
ming courses (CS1 and CS2) are the minimum pro-
gramming background for the project, however. From
this premise, technical support by which students’
problem situations are reviewed and resolved, often
by directing students to useful learning resources and
software component resources, is an important facili-
tating element of the course (see Section 3.2).

Each group is provided with a lockable work room
equipped with personal computers for each student
to support students’ realistic and autonomous work.
The course thus differs from studio-based learning en-
vironments where students’ work is guided through
fixed practice sessions (see, e.g. Suri (2007)). The
faculty’s PC support is available to the students, and
they are granted local administrative rights to install
and configure software independently. Typically, pro-
gramming code is managed in a version control sys-
tem, and each student pulling from the remote reposi-
tory can run the needed server applications and so on
in the local computer (localhost). The intended group
size is four students, though, due to course popula-
tion, a few groups have also comprised 3 or 5 stu-
dents.

3.2 Teaching Resources

The course is taught by two supervisors. A depart-
mental teacher (the first author) supports students
with group work issues and software process issues,
while a senior student works as a technical supervisor.
The senior student recruitment is based on a strong
personal interest in the course topic (creative software
development based on the open theme).

Absorbing the overall architectural idea of how to
work with APIs and integrate data and software com-
ponents into new products is important for the stu-
dents. It is this competence that the technical su-
pervisor of the course needs to possess. Many API
releases are supported with an open source wrapper
code. Then, what remains as a task of the program-
mer, in order to receive the data needed, is studying,
integrating, and potentially modifying the wrapper.
Similarly, parsing various data formats used in open
data and API context, such as JSON, is often an ef-
fortless task, while open source components also tend
to exist for parsing less popular data formats such as
PC-Axis. In light of these examples, students are to
be informed of the conventions and existing techno-
logical possibilities of small-scale open source (web)
development. The technical supervisor, attending all
the per group supervision sessions, importantly facil-
itates the students’ technology adoption process.

CSEDU�2015�-�7th�International�Conference�on�Computer�Supported�Education

48



The aim is to develop a course climate where the
personnel reflect strong interests in their specific ex-
pertise areas, to inspire students to develop profes-
sional interest in the course topics. In our experience,
the course has been manageable for two persons with
up to 7–8 groups and a maximum of four students in
each.

3.3 Joint Course Events

The course structure is displayed in Figure 1. The
top line describes events concerning all the students.
The course begins with a start-up meeting during
which the course idea, course events, and documen-
tation are explained to the students. This meeting
also provides students an introduction to Open Data
and APIs, by giving examples of the related appli-
cations found on the Web and a comprehensive list
open resources. Both national and international (EU)
open data and API links are listed, and known ser-
vices with API releases, such as Spotify, Twitter, Bib-
sonomy, and Trello, are noted. To enable students to
picture about the scope of their project, exemplary re-
sources are discussed through speculative examples
(“Trello could be complemented with a component
that first exports users’ work hours markings and then
imports a sum of them with visualization”). Students
are also guided to independently seek other fresh data
releases based on their own interests. They are also
told that HTML scraping could be needed to receive
data within the interesting topic. Students are grouped
by the teacher at the start-up meeting. Because the
course pedagogically focuses on group work issues,
the aim is to group student who have not worked to-
gether previously. This way each group’s dynamic
has a fresh and equal start.

The next shared event is the project lecture
where group work concepts, including norms, sta-
tuses, roles (Brown, 1988), and justice in group work
(Isomöttönen, 2014), are discussed. The topic of soft-
ware processes is also included. Here, discipline in
the software development is carefully explained and
linked to project safety. A particular emphasis is also
given to iterative software process, which has been
found to fit realistic student projects (Brown, 2000;
Isomöttönen, 2011). On the third week, a shared ses-
sion is arranged where the groups describe the project
topics they have ideated. This session is intended
to reinforce the innovation theme across groups and
share considerations on the use of data resources and
the designs of software products. Near mid-course,
an expert lecture on open source software licenses is
provided to increase student awareness on the licens-
ing issues and enable them to agree on the licensing

of the group products.
At the end of the course, groups present their soft-

ware products during an ‘open day’ for the depart-
ment’s personnel and other students. In place of tra-
ditional presentations, students present in their project
rooms and allow the audience to try the software prod-
ucts and discuss design and implementation. This
way of presenting fosters dialog among the attendees.

3.4 Minimal but Important
Documentation

The mid-line in Figure 1 describes the documenta-
tion required during the course, which is minimal. At
the beginning of the course, student groups prepare
short synopses for 1) what they have agreed as their
project topic and 2) how they are going to manage
their work. These are intended to help the students
be aware and take responsibility. In the synopsis on
the project topic, student groups provide an abstract
for the topic but also address the important feasibility
questions below:
� further ideas and visions,

� target group (utility aspect),

� licenses and terms of conditions of the intended
data usage,

� data formats,

� technical environment (programming languages,
platforms, libraries, etc.),

� licensing of the product (under what open source
license the product is released), and

� boundaries of the project, i.e., what parts of
the ideated project are most relevant and to be
achieved during the project.

These questions are reviewed in per group supervi-
sion sessions. A potential gray zone in data usage
is thus avoided since the students are guided to find
out and comment on the conditions of their data us-
age. Should there be any open questions, these will
be naturally raised since the synopsis questions are
reviewed. Because student work is by default owned
by the students, they naturally decide on the licens-
ing of the products. In the synopsis, groups make an
initial agreement on an open source license for their
product. The licensing question is later supported by
an expert lecture (see Figure 1), after which the stu-
dents are prepared to make an informed decision, tak-
ing into account the licenses of the used components.
In the course based on the students’ own ideation, the
university does not require any transfer of rights.

Given the emphasis on the students’ own prod-
uct ideation, the projects are based on the students’

Open�Resources�as�the�Educational�Basis�for�a�Bachelor-level�Project-Based�Course

49



Figure 1: Course events and tasks during 12-week creative software development effort.

proposals with no initial inclusion/exclusion criteria
on APIs, data, or application type. For instance, the
product can be a web service or a game, as well as a
desktop application, and we have also suggested the
use of Arduinos and Raspberry Pis in the context of
open resources. Students must nevertheless consider
a target group, which implies that the projects become
realistic as compared to programming exercises with
no user interest. The open theme enables small-scale
products starting from ones making single data source
utilizable through data manipulation and visualization
(cf. small tools for data journalism), while often the
ideated products are larger. For this reason, student
groups prioritize and define boundaries for what they
aim to achieve during the project (see synopsis items
above). We want to prompt students to be creative,
while the synopsis document and weekly supervision
discussions help groups set their goals realistically
during the project.

At mid-course, self-evaluations on group work
and software process are conducted, each student
completing a survey form. The teacher inspects the
evaluations and raises their main points during a
group discussion session; the group situation revealed
by the evaluations is openly discussed. When the
projects are complete, each student prepares a per-
sonal learning report, reflecting on group work and
software process issues in light of both lectured the-
ory and conceptualizations that emerged during the
project. The teacher gives a written response to each
learning report to enhance student learning.

The inclusion of very little documentation means
that all tasks are substance tasks that advance the ac-
tual ideation and software product development. This
makes it almost impossible for students to limit their
involvement to completing some secondary tasks; po-
tential ‘passenger’ roles become visible and can be
raised as group issues. For project management, the
students use VCSs (with no exceptions, this has been
Git) and project management software, such as Trello.
It should be noted that limited documentation does
not indicate low teacher workload, as sensitive group

discussions (Section 3.5) are very challenging for su-
pervisors and require preparation and continuous re-
flection.

3.5 Emphasis on Dialog Through
Group Discussions

The bottom line in Figure 1 illustrates that teach-
ing this course means coaching through group dis-
cussions. Thus, a discussion session attended by the
course teacher, the technical supervisor, and the stu-
dent group, is arranged each week for all the groups.
The group situation, software process, and various is-
sues in product ideation and implementation are dis-
cussed in these sessions. Informal discussions were
considered suitable for the creativity-based course,
and are a tool to introduce theory in the presence of
authentic practical work; emergent problems are con-
templated in terms of theory. During a particular ses-
sion, the written self-evaluations provide the basis of
discussion, which aims to guarantee that all the stu-
dents are heard through personal writings during the
project.

In this short course, the main learning objectives
are introduced at the beginning through lectures and
are then intensively addressed in the group discussion
sessions throughout the course in the context of ac-
tual individual projects. The main pedagogic princi-
ple is based on the realist epistemology (see Bhaskar,
1978; Moore, 2000). Thus, it is based on an assump-
tion that there are important objectifications that can
explain to the students their project successes and
challenges, and that these objectifications must be
raised during the project to foster conceptual under-
standings among the students. It is important to note
that the innovation-based open-themed projects have
provided a good forum to introduce truly authentic
project work where group issues, for instance, emerge
naturally and can be conceptualized to the students re-
alistically. Taking group work as the example case,
the pedagogy of the course was described in detail in
another study (Isomöttönen, 2014). As mentioned, in-

CSEDU�2015�-�7th�International�Conference�on�Computer�Supported�Education

50



stead of group processes and software process issues,
this paper focuses on educational achievements and
challenges arising from the course concept.

3.6 Pass/Fail gGrading

Considering the sensitive issues (e.g., justice in group
work) discussed during the course and the aim to
promote the students’ innovation ability, grading is
pass/fail. Without competitive or external pressure
of numeric grading, students are prompted to over-
come their difficulties in adopting self-directed, cre-
ative, learning processes and to fully focus on concep-
tualizations that explain their group experiences. Pos-
itive experiences with a project-based course without
numeric grading have been reported by Daniels et al.
(2004). Promoting student interest in course content
instead of ‘just passing the course’ is also in line with
the Klug’s (1976) work. He linked (numeric) grading
with a degree system that does not necessarily match
with the learner’s personal intellectual development.

In our course, students track their work hours.
However, passing the course is not based on quanti-
tative inspection of student work hours or amount of
programming code. These attributes approximate stu-
dent role in the group, but they do not explain the ef-
fect of group situation on the student’s possibility to
participate. The passing is based on active participa-
tion, which is fairly easy for the teacher to interpret
with the selected course arrangements: the frequent
meetings between the supervisors and groups and the
related discussions on group processes. During these
discussional sessions, reasons for low participation
are objectively addressed in terms of group work pro-
cesses, following that the students themselves become
aware if their difficulties result from group work or if
they are truly not participating in the course. In the
first case, various solutions for improving the group
situation are sought for. For instance, by improv-
ing intra-group communication the division of work
could be improved to match the skill levels of group
members.

On the basis of the exposition above, ‘failing’ and
‘dropping out’ can be said to mean same thing in this
course. Accordingly, two dropped out students of the
course agreed to drop out for low participation which
was due to reasons external to the course. It should
also be noted that group difficulties do not directly
mean dropping out; rather, through active participa-
tion the difficulties undergone can be reflected on for
the sake of conceptual learning.

4 LESSONS LEARNED

Based on the experiences collected, Open Data and
Open APIs enable both a unitary course theme and
full innovation by students. In the context of en-
trepreneurial learning, Kyrö (2005) has stated that
room for possibilities and creativity must be provided
by the teacher; in our experience, these are easy to
implement with the open theme where software de-
velopment and creativity easily elide.

4.1 Main Success: Ability to Create a
Software Product in a Student
Group

All the groups have been able to implement software
products that are proofs of concept for the ideated
uses. Some products have been mature and ready for
deployment. Preliminary analyses of students’ learn-
ing reports indicate that the students are able to re-
flect their experiences on the group work concepts
and become aware of the meaning and purpose of
the software process in software development work.
After two course iterations, of the 43 students who
have started the course, two have dropped out, as
they noticed their low participation. Besides the two
dropouts, no-one has failed. As noted in Section 3.6,
in this course where active participation is the main
criterion for passing, failing and dropping out mean
same thing. Other two students were given a small
additional assignment to give them a genuine chance
to improve on their skills in the presence of different
skill levels in the group, the issue that led to uneven
participation and could not be satisfactorily resolved
in the course of the short project. In our experience,
the open theme provides a feasible contextualization
for the 12-week project-based course.

Various project topics have been ideated and im-
plemented. One group developed a zombie game us-
ing Open Street Map information as the game field
(as suggested by Friberger and Togelius (2012)). An-
other group developed a service where listings for
cheap apartments for rent (suitable for a student bud-
get) were collected from several service providers and
shown on a map of the local area with links to fur-
ther information. Another of the location-based appli-
cation placed elk accidents on the map with various
UI controls for filtering the information. One group
developed an application that calculated and visual-
ized expenses related to car, train, or bus travel. An-
other project enabled the user to place various United
Nations data sets in a three-dimensional world map
where they could visualize differences between coun-
tries using height and color.

Open�Resources�as�the�Educational�Basis�for�a�Bachelor-level�Project-Based�Course

51



Of the eleven projects finished so far, nine are web
services, one is a desktop application, and the remain-
ing one a game started as a desktop application. Data
usage scenarios include scraping, having data locally,
and using data through API calls. As for the scope
of projects, students typically (in minimum) aim at
finishing the main use case where the integration of
components that request, parse, manipulate, and show
about data is already in place, and by which the prod-
uct idea can be demonstrated to an audience.

Students overcome considerable technological
learning challenges on top of starting the project with
a newly formed group. Many of the students are unfa-
miliar with Linux, which is a straightforward operat-
ing system for many frameworks used in small scale
Web application development (the typical technologi-
cal context for the student ideated projects). Students
often learn a new programming language, such as
Python, while they use C# and Java during their intro-
ductory programming courses. They typically write
code for running a server and build UIs with HTML5
and JavaScript, with a particular CSS library, such
as Bootstrap. Some groups choose to adopt modern
frameworks, such as AngularJS. The students learn to
seek and select recent tools particularly applicable for
their projects. This process is supported by the techni-
cal supervisor. Overall, students learn to build useful
software products by integrating various data sources
and technologies, meaning that many of the products
reflect the ‘mashup’ character in recent Web develop-
ment.

4.2 Challenges and Suggested
Improvements

When students begin this course, which requires both
creativity and implementation of a ‘proof of concept’
product in a short time frame, they are undertaking a
learning process where issues are bound to emerge.
These are reviewed below.

4.2.1 The Challenge of Self-directed Learning

Students tend to struggle with relating to a course re-
quiring self-direction and individual responsibility in
a group. After being exposed to the highly structured
introductory university courses during their prerequi-
site studies, they face a course in which they do not
work for the teacher at all. Therefore, we must con-
sider system level in terms of schooling background,
and, in particular, the first, usually highly structured,
university courses. In the present computer science
context, for instance, we wish to answer the question

What is the effect of evenly educating and

highly structured introductory programming
courses on students’ perceptions of self-
direction required in the actual profession?

Beginner’s difficulties with programming are ex-
tensively documented. If highly structured and
evenly educating introductory courses are needed,
then courses such as the one presented here could
help prompt self-direction early after the introductory
courses. Students’ first experiences with university
courses are in any event likely to reinforce a ‘depart-
mental view’ of their positions as learners (Parlett,
1977).

We also put forward the question above on the
grounds that, during the project course, students are
heavily informed of the active learner position re-
quired and the related pedagogic purpose, yet we have
observed that a great deal of coaching resources are
expended on this concern of self-direction. We are
also fully aware of and using the coaching practice
that prompts students to adopt concrete project rou-
tines early to decrease the known confusion stage at
the beginning of projects.

To improve students’ awareness of the require-
ment of self-direction, we plan to better describe the
roles of all stakeholders at the beginning of the course.
This means that we will increasingly inform students
about the role of the teacher, which is not that of a
customer (but a facilitator). In this connection, we
will also emphasize how the course setting is different
from other courses that require coursework through
weekly lectures and exercises and provide example
programs that can be followed as references for the
course assignments.

4.2.2 The Challenge of New Technology

Students may feel overwhelmed by the requirement
to ideate, implement, and showcase a software prod-
uct from scratch in 12 weeks. They often seem un-
clear on the effort needed to implement a useful soft-
ware by integrating data resources using technolo-
gies that are new to them. We argue that this re-
lates to students’ experiences of self-efficacy, such
that low self-efficacy hinders students’ ability to adopt
work in the innovation-based environment. In prin-
cipal, students are usually not troubled by the task
of ideating, whereas their in-progress professional
self-efficacy related to adopting new technologies can
present severe obstacles in project initiation. We ob-
serve that students who are further in their bachelor
studies struggle less with this issue.

So far our attention to technical issues during the
starting session has been a review of couple of exam-
ple programs in the sense of promoting student cre-

CSEDU�2015�-�7th�International�Conference�on�Computer�Supported�Education

52



ativity, showing examples of open resource usage, and
providing initial tip list of web development and other
frameworks and libraries.

We now plan to concretize more the software de-
velopment effort for the students at the beginning of
the course. This could mean adding a separate crash
course lecture that shows example applications to-
gether with programming code, and carefully explains
the design and the code to the students. This would
allow us to provide a correct picture of the course
challenge among the students immediately when the
course starts, and illustrate the course as a doable ef-
fort. At the same time, we would be able to demon-
strate scraping and typical uses of APIs early for all
the students, and potentially reduce less experienced
students dependence on more experienced ones. Fur-
ther, potential emotional reactions to independent
technological learning requirement should also be ex-
plicitly discussed at the beginning of the course to
help students understand that these feelings are nat-
ural.

4.2.3 The Challenge of Variations in Student
Characteristics

After two course iterations, we have noticed the need
to address differences in skill level in forming the
groups. We acknowledge here that differences in skill
level can lead to enriched learning experiences dur-
ing group work (Oakley et al., 2007), which is why
we have not given a lot of attention to this aspect in
grouping so far. However, the project’s goal setting
on the basis of similar skill levels in a group would
be important in light of how students may be over-
whelmed by the requirement of technological learn-
ing (cf. Section 4.2.2). With great differences in skill
level, the skillful students’ high goals may force less
skillful students to be dependent on others through-
out the project. We want to avoid such phenomena
stealing attention from the task of innovation itself.
We plan to roughly group students according to study
year and hobbyism in the future.

Another challenge relating to student characteris-
tics is how they relate to (in this case, creative) soft-
ware development work. Regardless of the empha-
sis on creativity and innovation, the course is one of
many required in the degree system. For us, the im-
portant question is to what extent we should push stu-
dents toward passionate work. This concern emerges
from students reporting discomfort with a highly pas-
sionate group member and a desire to take a more
moderate approach to work. Practical courses re-
flect working life, and the question of how to emo-
tionally and motivationally relate to the work in the
group context could be raised during the project lec-

tures among other group work topics.

4.2.4 Lack of a Proper Release Challenge

An unfavorable pattern can emerge when students
overcome their group work and self-direction chal-
lenges and show abilities to ideate and implement a
product, only to see the completed project as ‘just
a course assignment’ without big-picture relevance.
This perspective can leave the course without pur-
posive outflow of newly created products (Huizingh,
2011). Different from our master’s level customer
project, these is no final release of project deliver-
ables. In addition, in the context of the local CS cur-
riculum, there is no larger business study component
underpinning the course that would inspire students
to continue with their projects as the course ends.

Here, our plan is to consult with students about es-
tablishing a showcasing site with links to GitHub or
other platforms used by students for their product de-
velopment. Such a site could be connected with a lo-
cal open data community, meaning that student work
would become ‘involved’. The open data contests in
Finland (see (Eteläaho, 2014)) could be exploited for
this purpose as well. The important question here is
how to deal with differences in the maturity of the
products (i.e., how will students perceive these differ-
ences if the products are publicly available).

4.2.5 The Intellectual Property Challenge

When exploring various resources for their work
(data, APIs), students encounter a ‘jungle of terms of
conditions (TOCs)’. This particularly occurs when a
student group uses data sources that are ‘semi-open’
in nature, with some specific and often ambiguous
clauses stating the conditions of use. The intention is
to act legally. Unclear situations have been currently
resolved with the teacher requesting expert comments
from the department personnel known to possess the
competences needed. Alternatively, where students
have scraped web content, the teacher has guided
groups to contact the service providers to request per-
missions for using the data, which has been a suc-
cessful procedure. The groups have either received
permissions or an answer that has helped them to re-
vise their project goals. Altogether the IP issues have
introduced a great challenge, kind of a delay element
from the teaching perspective, as the interpretation of
TOCs and various small clauses can require juridic
expertise.

Preferably, those groups who deal with complex
license and TOC texts could be provided with a ‘con-
sultation hour’ from the university jurist. The project

Open�Resources�as�the�Educational�Basis�for�a�Bachelor-level�Project-Based�Course

53



course is one alternative for the mandatory practi-
cal study component in the students’ bachelor stud-
ies, and the responsibility for answering juridic ques-
tions that arise during the course naturally rests on the
course provider. Having an explicit course arrange-
ment for this purpose would make the course begin-
ning more fluent and underline IP issues as an impor-
tant learning topic. Another option would be to guide
the students to limit their project ideation to resources
whose conditions are phrased without any ambigui-
ties. However, in our view, this latter option would
limit how the course concept can foster student inno-
vation ability.

In our experience, the use of various data re-
sources and APIs increases both students’ and su-
pervisors’ useful knowledge on intellectual property
rights and licenses, for what reason we recommend
that also the course teachers attend the expert con-
sultation hours outlined above. These topics are
also similar to recommended topics in CS by the
ACM/IEEE Computing Curricula (‘Social Issues and
Professional Practice/Intellectual Property’) (Sahami
et al., 2013, p. 24).

4.2.6 Summary

Many of the challenges above reflect our overall expe-
rience that the course concept described is an efficient
tool for prompting particular transformation and self-
related honesty early in the curriculum. That is, stu-
dents can be coached to overcome their self-efficacy-
related challenges and learn how interested he or she
is in the computing discipline. In our experience, this
transformation does occur, and at different paces for
different individuals. The teacher’s patience and con-
tinuous coaching are keys to the transformation to-
ward self-directed creative work.

5 CONCLUSIONS

This paper described a course concept that builds on
student innovation ability, including attributes such as
creativity and co-creation. The course is based on
open data and programming application interfaces.

Apiola et al. (2012) have recently proposed that
the CS higher education in Finland should better sup-
port creativity and innovation-friendliness, especially
creative problem solving. The purpose of this pa-
per was to describe, as the early stage of an ac-
tion research project, one approach toward this di-
rection. More precisely, Apiola et al. proposed that
components of a creativity-supporting learning envi-
ronment include competence (i.e., solving challeng-

ing problems), autonomy (i.e., self-direction), relat-
edness (i.e., social interaction and self-adaptive work-
ing methods), domain relevant skills (i.e., good com-
puting skills), and cognitive processes and working
styles (i.e., creativity-enhancing methods in course
sessions). We conclude that, according to such a def-
inition, a creativity-supporting learning environment
in the undergraduate project course was established.
The open theme provided the framework for imple-
menting a course concept of this kind.

Our specific interest was to report challenges that
could inform our subsequent action research and that
of other educators designing similar courses. In our
view, many of the challenges reviewed relate to self-
direction and the curricular position of the course. Af-
ter highly structured introductory university courses,
students may be overwhelmed by the challenge of a
creativity-based course. Generally, this concerns how
students are able to undertake self-directed study pro-
cesses, which here signifies the responsibility to ad-
vance the project without an external customer. A
related challenge concerns the students’ self-efficacy,
which emerges from the challenge of independent
technological learning required by the course. Stu-
dents may not know that useful, proof of concept open
data applications can be created with reasonable ef-
fort, and demonstrate low self-efficacy not knowing
that this is unnecessary.

We have altogether observed that student groups
are able to overcome their challenges to produce
an outcome. As reported by Lin and Chen (2012),
commitment and self-efficacy are important mediat-
ing factors for a student group with diverse compe-
tences to grow into a team capable of open innova-
tion. Based on the collected experiences, continuous
coaching and teacher patience contribute to transfor-
mation toward condition that is fruitful for innova-
tive work in the early curriculum. In this regard, our
subsequent action research is likely to benefit from
the theory of transformative learning (Mezirow, 1981)
as a framework for a ‘hidden curriculum’ designed
to improve students’ self-efficacy in the computing
discipline. More precisely, we need to conceptual-
ize a particular ‘perspective transformation’ (a term
used by Mezirow) where a learner realizes that self-
directed work emphasized through creative effort re-
flects the computing profession and is therefore valu-
able.

REFERENCES

Apiola, M., Lattu, M., and Pasanen, T. A. (2012).
Creativity-supporting learning environment—CSLE.

CSEDU�2015�-�7th�International�Conference�on�Computer�Supported�Education

54



Trans. Comput. Educ., 12(3):11:1–11:25.
Auer, S., Bryl, V., and Tramp, S., editors (2014). Linked

open data – creating knowledge out of interlinked
data: results of the LOD2 Project. Springer.

Bhaskar, R. (1978). A Realist Theory of Science. Harvester
Press, Sussex, UK, second edition.

Brown, J. (2000). Bloodshot eyes: Workload issues in com-
puter science project courses. In Software Engineer-
ing Conference. APSEC 2000. Proceedings. Seventh
Asia-Pacific, pages 46–52. IEEE Computer Society.

Brown, R. (1988). Dynamics within and between Groups.
Basil Blackwell, Oxford, UK.

Burge, J. and Gannod, G. (2009). Dimensions for catego-
rizing capstone projects. In Software Engineering Ed-
ucation and Training. Proceedings. 22nd Conference
on, pages 166–173, Los Alamitos, CA. IEEE Com-
puter Society.

Burnell, L. J., Priest, J. W., and Durrett, J. R. (2003). As-
sessment of a resource limited process for multidisci-
plinary projects. SIGCSE Bull., 35(4):68–71.

Carr, W. and Kemmis, S. (1986). Becomming Critical: Ed-
ucation, Knowledge and Action Research. The Falmer
Press, London.

Castanier, E., Coletta, R., Valduriez, P., and Frisch, C.
(2013). Websmatch: A tool for open data. In Pro-
ceedings of the 2Nd International Workshop on Open
Data, WOD ’13, pages 10:1–10:2, New York, NY.
ACM.

Chesbrough, H. W., editor (2003). Open Innovation: The
New Imperative for Creating and Profiting from Tech-
nology. Harvard Business School Press, Boston, MA.

Clear, T., Goldweber, M., Young, F. H., Leidig, P. M., and
Scott, K. (2001). Resources for instructors of capstone
courses in computing. In ITiCSE-WGR ’01: Working
group reports from ITiCSE on Innovation and tech-
nology in computer science education, pages 93–113,
New York, NY. ACM.

Conradie, P., Mulder, I., and Choenni, S. (2012). Rotter-
dam open data: Exploring the release of public sec-
tor information through co-creation. In Engineering,
Technology and Innovation (ICE), 18th International
ICE Conference on, pages 1–10.

Dahlander, L. and Gann, D. M. (2010). How open is inno-
vation? Research Policy, 39(6):699–709.

Daniels, M., Berglund, A., Pears, A., and Fincher, S.
(2004). Five myths of assessment. In Proceedings
of the sixth conference on Australasian computing ed-
ucation - Volume 30, ACE ’04, pages 57–61, Dar-
linghurst, Australia. Australian Computer Society.

Domingo, A., Bellalta, B., Palacin, M., Oliver, M., and
Almirall, E. (2013). Public open sensor data: Revolu-
tionizing smart cities. Technology and Society Maga-
zine, IEEE, 32(4):50–56.

Eteläaho, A. (2014). Analysis of the received applica-
tions in the open data contests in Finland 2010–2013
(draft.). Technical report, Tampere University of
Technology, Department of Pori.

Fila, N., Myers, W., and Purzer, S. (2012). Work in
progress: How engineering students define innova-

tion. In Frontiers in Education Conference (FIE),
2012, pages 1–6.

Fincher, S., Petre, M., and Clark, M., editors (2001). Com-
puter Science Project Work: Principles and Pragmat-
ics. Springer-Verlag, London.

Friberger, M. G. and Togelius, J. (2012). Generating game
content from open data. In Proceedings of the In-
ternational Conference on the Foundations of Digi-
tal Games, FDG ’12, pages 290–291, New York, NY.
ACM.

Han, J., Kamber, M., and Pei, J. (2011). Data Mining: Con-
cepts and Techniques. Morgan Kaufmann Publishers,
San Francisco, CA, USA, 3rd edition.

Hand, D. (2013). Data, not dogma: Big data, open data,
and the opportunities ahead. In Tucker, A., Höppner,
F., Siebes, A., and Swift, S., editors, Advances in
Intelligent Data Analysis XII, volume 8207 of Lec-
ture Notes in Computer Science, pages 1–12. Springer
Berlin Heidelberg.

Huizingh, E. K. (2011). Open innovation: State of the
art and future perspectives. Technovation, 31(1):2 –
9. Open Innovation - fISPIMg Selected Papers.

Isomöttönen, V. (2011). Theorizing a one-semester real cus-
tomer student software project course. In Jyväskylä
Studies in Computing, volume 140. University of
Jyväskylä. PhD Thesis.

Isomöttönen, V. (2014). Making group processes explicit to
student: A case of justice. In Proceedings of the 2014
Conference on Innovation and Technology in Com-
puter Science Education, ITiCSE ’14, pages 195–200,
New York, NY. ACM.

Jaakkola, H., Mäkinen, T., and Eteläaho, A. (2014a). Open
data: Opportunities and challenges. In Proceedings of
the 15th International Conference on Computer Sys-
tems and Technologies, CompSysTech ’14, pages 25–
39, New York, NY. ACM.

Jaakkola, H., Mäkinen, T., Henno, J., and Mäkelä, J.
(2014b). Openn. In Information and Communi-
cation Technology, Electronics and Microelectronics
(MIPRO), 2014 37th International Convention on,
pages 608–615.

Kaihlavirta, A., Isomöttönen, V., and Kärkkäinen, T.
(2015). A self-ethnographic investigation of contin-
uing education program in engineering arising from
economic structural change. Studies in Continuing
Education, 37(1):99–114.

Klug, B. (1976). To grade, or not to grade: A dramatic dis-
cussion in eleven parts. Studies in Higher Education,
1(2):197–207.

Kyrö, P. (2005). Entrepreneurial learning in a cross-cultural
context challenges previous learning paradigms? In
Kyrö, P. and Carrier, C., editors, The dynamics of
Learning Entrepreneurship in a Cross-Cultural Uni-
veristy Context, pages 68–103. University of Tampere
Research Centre for Vocational and Professional Edu-
cation.

Lewin, K. (1946). Action research and minority problems.
Journal of social Issues, 2(4):34–46.

Lin, C. P. and Chen, S.-H. (2012). The role of integra-
tion mechanism in open innovation team: An ex-

Open�Resources�as�the�Educational�Basis�for�a�Bachelor-level�Project-Based�Course

55



ploratory study on cross-field student team contests.
In Technology Management for Emerging Technolo-
gies (PICMET), Proceedings of PICMET ’12, pages
1953–1960.

Mezirow, J. (1981). A critical theory of adult learning and
education. Adult Education, 32(1):3–24.

Moore, R. (2000). For knowledge: Tradition, progres-
sivism and progress in education—reconstructing the
curriculum debate. Cambridge Journal of Education,
30(1):17–36.

Morales-Chaparro, R., Sánchez-Figueroa, F., and Preciado,
J. (2014). Engineering open data visualizations over
the web. In Luo, Y., editor, Cooperative Design, Vi-
sualization, and Engineering, volume 8683 of Lecture
Notes in Computer Science, pages 51–59. Springer In-
ternational Publishing.

Oakley, B., Hanna, D., Kuzmyn, Z., and Felder, R.
(2007). Best practices involving teamwork in the
classroom: Results from a survey of 6435 engineering
student respondents. Education, IEEE Transactions
on, 50(3):266–272.

Otjacques, B., Stefas, M., Cornil, M., and Feltz, F. (2012).
Open data visualization: Keeping traces of the explo-
ration process. In Proceedings of the First Interna-
tional Workshop on Open Data, WOD ’12, pages 53–
60, New York, NY. ACM.

Parlett, M. (1977). The department as a learing milieu.
Studies in Higher Education, 2(2).

Pears, A. and Daniels, M. (2010). Developing global team-
work skills: The Runestone project. In Education En-
gineering (EDUCON), pages 1051–1056. IEEE.

Sahami, M., Danyluk, A., Fincher, S., Fisher, K., Gross-
man, D., Hawthrone, E., Katz, R., LeBlanc, R., Reed,
D., Roach, S., Cuadros-Vargas, E., Dodge, R., Ku-
mar, A., Robinson, B., Seker, R., and Thompson, A.
(2013). Computer science curricula 2013.

Suri, D. (2007). Providing “real-world” software en-
gineering experience in an academic setting. In
ASEE/IEEE Frontiers in Education Conference, 37th
annual, pages S4E–15–S4E–20. IEEE.

Telikicherla, K. C. and Choppella, V. (2014). Enabling
the development of safer mashups for open data. In
Proceedings of the 1st International Workshop on In-
clusive Web Programming - Programming on the Web
with Open Data for Societal Applications, IWP 2014,
pages 8–15, New York, NY. ACM.

Tomayko, J. E. (1998). Forging a discipline: An outline
history of software engineering education. Annals of
Software Engineering, 6(1):3–18.

Tuunanen, T., Koskinen, J., and Kärkkäinen, T. (2009). Au-
tomated software license analysis. Automated Soft-
ware Engineering, 16(3-4):455–490.

Yang, H.-L. and Cheng, H.-H. (2010). Creativity of stu-
dent information system projects: From the perspec-
tive of network embeddedness. Computers & Educa-
tion, 54(1):209–221.

Yunfei, P. and Qin, D. (2009). Cultivating the innova-
tion ability of college students in course teaching. In
Education Technology and Computer Science, 2009.

ETCS ’09. First International Workshop on, volume 1,
pages 828–831.

CSEDU�2015�-�7th�International�Conference�on�Computer�Supported�Education

56


