
Computers in the CS1 Classroom

William T. Tarimo, Fatima Abu Deeb and Timothy J. Hickey
Computer Science Department, Brandeis University, 415 South Street, Waltham MA 02453, U.S.A.

Keywords: Flipped Classroom, Blended Learning, Computer-Mediated-Communication, Pedagogy Design, Teaching
Introductory Computer Science, Educational Technologies, Web-based IDEs.

Abstract: There are two basic approaches to flipping an introduction to programming class (CS1). One involves
requiring all students to bring computers to class and to work alone or in groups to solve programming
problems. The other approach is to ban computers from the classroom and to require students to solve
programming problems on paper. In both approaches the students’ attempts are shared with the class and
discussed. In this work, we describe an experiment in which we compared these two approaches for a large
programming class. We found that the use of computers had no statistically significant effect on the
students’ learning outcomes, enjoyment of the material, self-assessment of their understanding, use of
teaching assistant resources, or self-estimate of how many hours they invested outside of the classroom. We
did find that a statistically significant number of students preferred problem solving with friends using
computers rather than on paper. We also found that the instructor had much more detailed information about
individual student’s interaction in class when computers were used, since all student interaction with the
coding tools could be logged and analysed. We conclude that, although many faculty are wary of requiring
computer use in large classes, there is evidence that students prefer it, it does not negatively affect learning
outcomes, and with appropriate tools and pedagogy, it gives the instructor a much deeper and more nuanced
view of student performance in the class.

1 INTRODUCTION

There is a growing body of evidence which
demonstrates that active learning pedagogies
improve learning outcomes in a wide variety of
courses, including introductory programming
courses (Amresh et al, 2013; Bates et al, 2012;
Stone, 2012). It is very natural to allow students to
use their laptops in class during active learning
sessions of an introductory computer science course.
Many faculty, however, are wary of requiring
computer use during class sessions since they feel
students might become distracted.

In recent years we have seen many new
developments in the way teaching and learning are
accomplished inside and outside of the classroom.
The last decade has seen research, development and
adoption of new pedagogies, classroom technology
and software applications. One such new pedagogy
technique has been the ‘inverted’ or ‘flipped’
classroom in which static content is covered outside
of class (through readings or videos) and class time
is devoted to more interactive and engaging
activities. Even though most approaches have

leveraged the ubiquity of technology, flipping a
classroom does not necessarily require the use of
computers or other networked technology.

In this work we present our case study of partly-
flipping a large CS1 class. The course was an
Introduction to Programming in Java and C in which
we used a partly-flipped pedagogy that combines
both in-class lectures and in-class programming
challenges often using a Think/Pair/Share technique
(Kagan, 1989). Since the course was taught in two
sections (of about 150 students each), we were able
to design an experiment to evaluate the effect of two
approaches to partly-flipping the classroom. The
first approach is to require all students to bring a
laptop or tablet to class and use their computers for
various interactions, to answer questions and to
solve coding challenges. The second approach is to
ban computers from the classroom and to require
students to solve problems with pen and paper and to
be prepared to present and discuss their solution to
the class if called upon.

In the computer-mediated sessions students used
two web-based applications, TeachBack (Hickey
and Tarimo, 2014) and Spinoza (Abu Deeb and
Hickey, 2015), to interact and solve programming

67T. Tarimo W., Abu Deeb F. and J. Hickey T..
Computers in the CS1 Classroom.
DOI: 10.5220/0005436600670074
In Proceedings of the 7th International Conference on Computer Supported Education (CSEDU-2015), pages 67-74
ISBN: 978-989-758-108-3
Copyright c 2015 SCITEPRESS (Science and Technology Publications, Lda.)

problems and share their solutions with the
instructor and the class. In the non-computer
sessions, we endeavoured to replicate the same
pedagogy using pen, paper, blackboards and the
instructor’s computer projected on a screen. Both
sessions covered exactly the same material and used
exactly the same pedagogy. Students received nearly
identical lectures and were given the same
programming challenges. The only difference is that
one section was allowed to use their computers to
solve the programming problems, while the other
section had to use pen and paper only.

In the following sections we present the
experimental design that was used to compare the
computer and non-computer approaches to the
pedagogy. We then proceed to describe the
pedagogy used and we compare the way it was
implemented using the computer-mediated and pen-
and-paper based approaches. Finally we present the
results of the experiment and discuss its implications
for computer use in the partly flipped introductory
programming classroom.

2 THE EXPERIMENT

Introduction to Programming in Java and C is the
first course in the Computer Science major in our
department. Students who performed well in an
equivalent CS1 course in high school may skip the
course, but all other potential majors are required to
take it. It was taught in two sections (self-selected by
the students). One section had 136 students and the
other had 148. Both sections had the same instructor,
exams, homeworks, teaching assistants, and daily
lesson plans. For both sections, we provided screen
recordings of each class that students could review
at their leisure.

The course was divided into 4 units, each lasting
about 3 weeks. Each unit culminated in a 90-minute
exam that provided a summative assessment of
student mastery of the material for that unit. In the
first two units students were required to bring their
computers to class and to interact with the instructor
using TeachBack and Spinoza. Ten percent of their
final grade was based on the number of TeachBack
formative assessment questions they answered
(whether the answers were correct or not). During
Units 1 and 2, students were required to bring
computers to class and use them to interact with the
instructor and their peers. During Unit 3, computers
were banned from section 1 while still being
required in section 2. During Unit 4, the protocol
was reversed. Computer were required in section 1

and banned in section 2. This provided us with two
units of control in which both sections used
computers, and two experimental units where one
section required computer use and the other banned
its use.

3 THE ACTIVE-LEARNING
PEDAGOGY

Before each week of classes students were assigned
topics or subtopics to read and as a weekly
homework - submit a short reflection on what they
learned and any confusing ideas in the reading. Each
class had lectures intermixed with class-wide
interactive activities. The lectures involved
PowerPoint slides, notes from the class website, live
coding demonstrations by the instructor, and visits to
various websites. The interactive activities included
short answer questions as well as programming
challenges.

In this section we discuss the main pedagogical
techniques used in the two versions of the class and
along the way we introduce the TeachBack and
Spinoza tools. TeachBack (Hickey and Tarimo,
2014) is a web-application with three main features:
a supervised back-channel forum (called the Forum)
where students can ask and answer questions with
each other and with TAs who are always present
during classes, a pie chart and timeline plot (called
the Feedback) where students can indicate if they are
confused, engaged, or bored and include a 50
character explanation of their affect and cognition
(i.e. emotional and comprehension) states, and a
clicker-type application (called the iResponder)
which allows the instructor and TAs to collect and
grade student answers to formative assessment
questions during the class. Spinoza (Abu Deeb and
Hickey, 2015) is a web-based Java IDE that allows
students to solve simple programming problems
online and provides the instructor with a real-time
view of the progress of the class with similar
solutions grouped together.

3.1 PowerPoint Lecture Activity

Although the students were required to read the text
before class, we often began a class with a
PowerPoint overview of the main ideas presented in
the readings. In the computer-based version of the
class, students could view the PowerPoint slides on
their computers and ask questions of the teaching
assistants using the TeachBack Forum. In the pen-

CSEDU�2015�-�7th�International�Conference�on�Computer�Supported�Education

68

and-paper version they could print out the slides on
paper before class and ask questions by raising their
hands and interrupting the class flow.

3.2 Live-Coding Activity

Another lecture-style activity is when the instructor
solves or demonstrates a programming problem
using a Java IDE and the class watches (or in the
computer-mediated version, follows along). This
can be made interactive by asking students to
provide suggestions for how to solve the problem.
In the computer-mediated version when students are
following along with the coding using Spinoza and
they encounter syntax errors they can interact with
the TAs using the TeachBack Forum without
interrupting the class.

3.3 Answering Student Questions
during Class

In both versions of the class, students were
encouraged to ask questions if they were confused.
In the pen-and-paper version, students would raise
their hands and engage with the instructor while the
class paused. In the computer-mediated version,
students used the Forum feature of TeachBack to ask
questions online, and have their questions answered

by TAs assigned to the course, or sometimes by
other students who were monitoring the forum. The
instructor would briefly review the forum with the
class at the end of most activities.

3.4 Posing Questions for Students to
Discuss and Answer

After a lecture activity, we would usually pose a
series of questions and ask the students to think for a
minute about a solution, then to talk with their
neighbors about their solution, and finally to share
their solutions with the class. Typical examples
would be predicting the result of evaluating a
snippet of code, or finding a bug in a piece of code
shown on the projector. In the computer-based
version, we used the iResponder feature of
TeachBack. Figure 1 shows a typical activity in
which the instructor projected a method on the
screen and asked students to predict the return value
for various calls. iResponder allows the instructor
and TAs to not only see the solutions (grouped) but
to grade them and assign points and comments.
Once a sufficiently large number of students have
submitted an answer, the instructor reviews the most
common solutions and leads a short class discussion
on the different approaches and the different kinds
of errors. In the pen-and-paper version, it is difficult

Figure 1: A typical iResponder screen.

Computers�in�the�CS1�Classroom

69

to determine how many students have completed the
activity and it is hard to tell what the most common
solutions and errors were. Students were motivated
to solve problems in the pen-and-paper class by
randomly selecting students to describe their
solutions (possibly on the board or typing into the
instructor's computer).

3.5 Programming Problems

In this activity, students are given a programming
problem and asked to think about how they would
solve it and then work with their neighbours to come
up with a solution. For example, students could be
asked to write a method with three integer
parameters that returns true if the parameters all
have different values.

In the computer-mediated version of the class,
we used a web-based Integrated Development
Environment (IDE) called Spinoza that allows
instructors to quickly create a programming
problem. Figure 2 shows the student view of a
Spinoza programming problem which provides a
description of the problem on the left, some initial
scaffolding code in the centre, a “Run” button

below, space for the output on the right, and the
results of an instructor supplied set of unit tests at
the bottom. Students can then write, run, and debug
the problem using the web-based IDE. Spinoza has
an instructor’s view which shows the number of
students that have hit the “Run” button and it groups
the programs together based on a similarity function
(ignoring white space, variables names, etc.). The
instructor can see in real-time the most popular
proposed solutions to the problem and can view and
debug those solutions in front of the class. The
debugging process itself can be formulated as a
Think/Pair/Share model (Kagan, 1989), where
students try to find and discuss the bugs (both
syntactic and logical) in small groups before sharing
with the class.

In the pen-and-paper version of the class,
programming problems are displayed on the screen
and students are asked to write their solutions on
paper. The instructor then randomly selects students
to share their solutions. The disadvantage of this
approach is that the instructor doesn’t know what the
most common solutions or errors are and the process
of sharing a solution with the class is more time
consuming.

Figure 2: The student view of a Spinoza problem.

CSEDU�2015�-�7th�International�Conference�on�Computer�Supported�Education

70

3.6 Feedback

After new material has been introduced we often ask
the students for feedback, typically at the end of an
activity or class. We ask whether they are confused,
bored, or engaged by the material and also ask for a
short comment. In the computer-mediated version,
this is done using the TeachBack Feedback feature,
which displays a pie chart showing the three
responses. Hovering over one of the pie slices
reveals a list of the comments students provided. We
often find 20%-50% of students report feeling
confused when a class introduces new material (e.g.
arrays or the for-each loop). This provides an
excellent opportunity to reassure them that it is
natural to feel confused when learning new material.
The comments also show what confused them or
expand on their affect. At this point the instructor
also clarifies the various confusion issues. Since it is
so easy to get and analyse feedback from students
using TeachBack, we often get feedback after each
activity in a single class. TeachBack also provides
an instructor/TA view of the daily progress of
individual students using performance and
participation statistics at an activity, lecture and
course levels.

In the pen-and-paper version, we ask students to
put this information on a small card or piece of
paper, which is then reviewed by the instructor after
the class. One disadvantage of this approach is that
we can’t report the results until the following day
and it can take 30 minutes to an hour to read through
a few hundred separate comments.

4 DATA COLLECTION

After each unit, students were asked to complete a
survey where they self-assessed their level of
understanding of the material in that unit as well as
their level of enjoyment of the material in that unit.
In units 3 and 4 they were also asked to rate each of
the different styles of pedagogy employed in terms
of its effectiveness for their own learning.

We kept track of the number of students from
each section that visited TAs during each of the units
and asked students to estimate how many hours they
spent working on the course outside of class. We
also kept track of each student’s participation in
various components of TeachBack during each class,
each unit, and the semester. Finally, grades on the
four unit quizzes as well as course grades were used
to measure mastery of the material by unit and over
the entire course.

5 RESULTS

We found four main results from our analysis of the
data which we summarize below:

5.1 The Use of TeachBack/Spinoza in
Class Does Not Harm Learning
Outcomes

In Unit 3, computers were banned in section 1 and
required in section 2. In Unit 4, the reverse policy
held, computers were required in section 1 and
banned in section 2. We found that there was no
statistical differences between the two sections
during those units in terms of quiz scores, student
satisfaction, student self-assessment of
understanding, or student use of teaching assistants.
From the surveys at the end of each unit, students
self-reported their levels of learning and satisfaction
in the range [1-5]. As seen in figures 3 and 4, the
averages on each section do not indicate any
significant influence from the changes of pedagogies
in units 3 and 4.

Figure 3: Average perceived enjoyment.

Figure 4: Average perceived understanding.

0

2

4

6

Unit 1 Unit 2 Unit 3 Unit 4

Average Unit Enjoyment

Section 1 Section 2

0

1

2

3

4

5

Unit 1 Unit 2 Unit 3 Unit 4

Average Unit Understanding

Section 1 Section 2

Computers�in�the�CS1�Classroom

71

Figure 5: Average end-of-unit quiz grades.

Section 1 generally indicated a higher level of
enjoyment, understanding, and mastery than section
2, for all units, but that increased level of
understanding was not statistically significant.

For example, in Figure 4, the difference between
the average understanding in unit 3 between sections
1 and section 2 was 0.17 but the p-value for the two-
tailed unpaired T-test for those means was .20 which
is not significant. Likewise, in Figure 3 the
difference of average enjoyment for unit 4 between
sections 1 and 2 was 0.23 but the p-value was .12,
again indicating no significant difference. None of
the apparent differences in section 1 and section 2
shown in these three figures was significant at the
.10 level.

If use of computers was especially distracting,
we would expect to see Section 1 outperform
Section 2 in Unit 3, and the opposite occur in Unit 4.
No such effect was found.

5.2 Most Students Prefer using
Computers in Class

When asked about the two different styles of active
learning - writing programs with your neighbours on
paper versus writing programs on your computer
while talking with your neighbours, the use of
computers was thought to be more effective and the
results are statistically significant. Students used a
five point scale to rank effectiveness of learning
from 1 = not effective to 5 = very effective. Solving
programming problems with friends using pen-and-
paper was ranked at 2.96/5 and solving programs
using Spinoza with friends at 3.65/5 with a
difference of 0.69. This is significant at the 0.001
level using a two-tailed paired T-test. The 95%
confidence interval of the difference is 0.5 to 0.88.

Below are some typical comments from students
after unit 4. Here is a section 1 student, happy to be
able to use his computer again in class:

-“I really enjoyed when we got to live code in class.
It was helpful to either follow along with what
[professor] was typing or work on building up the
program with the people around us. It allowed me to
see what thought process has to go into building up
a program.”

And here are comments from students in section 2
explaining why they were disappointed about not
being able to use computers in class:

-“The lack of computers makes following along a lot
less interesting and understanding class material
becomes much more difficult.”
-“Taking notes on paper and not being able to
practice coding in class slowed down acquisition of
the material greatly. It [took] much longer for this
unit than others to master the material. I also
disliked being asked to work in teams or to talk to
people in class, but that's because I'm shy …”
-“We can't use computer[s] to do real-time
programing in class. To make it up, I have to go
back home and watch the class recordings to brush
my memory on what programing topics we went
through in class that day. It is really time
consuming.”

5.3 Some Students Were Distracted by
Computers in Class

A close examination of the student comments about
each unit demonstrated that there was a group of
students who did not feel they learned as well with
computers as they did without. Indeed there were a
few students who would attend the lectures from the
other section when the pedagogy was switched
because they felt they could not learn well when
required to interact with a computer in class. These
were mostly students who reported being easily
distracted in general. Below are some comments
from students indicating what they liked about unit 4
when computers were not allowed.
-“Not using a computer, it lead me to better
concentrate.”
-“Not being allowed to use our computers helped for
concentration and focus.”
Most students, however, didn’t report being
distracted by the use of computers in the class,
contrary to the worries of many instructors. This
observation is largely due to the nature of the
pedagogy. The division of the class time into short
interactive activities allowed students to always be
engaged with the material, their peers or the
instructor. There was no time for students to get
side-tracked into distraction with non-class related
endeavours.

0

20

40

60

Unit 1 Unit 2 Unit 3 Unit 4

Average Quiz Grades

Section1 Section2

CSEDU�2015�-�7th�International�Conference�on�Computer�Supported�Education

72

5.4 Students Generally Approved of
the Active Learning Approach

In general, students appreciated the pedagogy used
in the class, whether or not we were using
computers. Here are some illustrative comments.
-“The class was very lenient towards our learning
and it’s a great feeling to know that the teaching
staff is very forgiving for us ‘newbies’. Learning is
the number one goal.”
-“I was forced to try to learn the material to the best
of my ability beforehand to be as prepared as
possible whether or not I was using my computer or
notebook.”

6 RELATED WORK

A recent study involving flipping an introductory
computer science class was performed by (Amresh
et al, 2013), where students would watch prepared
lecture videos before classes, and have interactive
discussions in class. Through summative
assessments, this flipped model was found to
produce higher average test scores. However, due to
many years of traditional classrooms, students found
this new approach to be overwhelming at times,
especially as the videos and reading became boring
and less engaging. In regard to this, (Bates et al,
2012) point out that successful flipped classes
require the acceptance and embracing of this new
unstructured and contingent lecture approach where
the instructor is a coach of learning. In this case
study in an introductory physics class, students were
assigned pre-class readings and quizzes, and class
meetings involved discussions driven by clicker
questions. An important factor for success is to have
access to or create sufficient clicker questions for
good discussions. If students can be motivated to
complete the work outside of class, flipped
classrooms can enable more and deeper
understanding without necessarily covering less
content. Since students are more exposed to the
materials in pre-class and in-class activities, the
flipped pedagogy has the advantages of developing
life-long learners, increasing engagement during
classes, and increasing interactions among students
and the instructors (Stone, 2012).

Systems similar to the Spinoza system used in
this study have been developed to facilitate teaching
introductory programming classes. JavaBat
(Parlante, 2007) is a web application that helps
students to build coding skills by providing

immediate feedback to small problems in which they
write code for the bodies of single methods. The
system generates several tests (handwritten by the
instructor) and shows students the results of those
automatic tests. Students can specify a teacher who
can then see their work and follow their progress,
but the teacher cannot write comments or otherwise
communicate with the students through the tool.
Another system is Informa (Hauswirth and Adamoli,
2009), a clicker software system for teaching
introductory programming with Java. Informa has
been used in flipped classrooms as a way to support
active learning of programming skills. It supports
several different types of questions, including
problems requiring students to write Java code, but it
does not run the students’ code and it is not web-
based, it requires a Java app to be downloaded and
installed. It also allows students to download and
comment on other students' solutions. Spinoza
allows instructors and TAs to view and comment on
student programs, but does not currently allow
students to comment on other students’ code.

7 CONCLUSIONS

The results of our study demonstrate that the use of
computers did not affect learning outcomes in any
statistically significant way. One explanation for this
surprising finding is that the key factor in student
learning is the pedagogy itself, not whether the
students had computers in class or not. The thought
process involved in trying to solve programming
problems can be pursued just as effectively using
pen-and-paper as using computers. The highly
interactive pedagogy itself encouraged students to
maintain high levels of interaction, engagement and
motivation with the material whether they used
computers or not.

We know from previous studies that active
learning in flipped classes is a more effective
pedagogy than straight PowerPoint lectures (Amresh
et al, 2013) and the results from this paper suggest
that this pedagogy can be delivered either with or
without a computer.

The various avenues of interaction offered by
tools like TeachBack and Spinoza offer increased
participation and involvement rates. But that is not
all, like most computer-mediated communication
tools, TeachBack and Spinoza allow content and
conversations to be stored and accessed at later
times. Moreover, participants don’t have to be in the
same physical locations, and users can engage in
multiple conversations at once. In a way, these tools

Computers�in�the�CS1�Classroom

73

liberate learning and teaching from constraints of
time and distance (Hickey and Tarimo, 2014; Reed,
2000) where barriers such as distance, disabilities,
shyness and cultural difficulties are overcome. Our
proposed computer-mediated pedagogy features
various interactive and engaging activities that do
not give students the opportunities to get distracted.
However, as we have discovered in this study, there
are a few students who are ill equipped to handle
computer-mediated interactions and online
environments. Our results suggest that it might be
worthwhile to offer two versions of the CS1 class,
one which is fully computer-mediated providing the
instructor with high quality and timely information
about student performance, and one that is not
computer-mediated to accommodate those students
who are prone to distraction when given access to a
computer in class. Another alternative approach is to
teach a hybrid class, where computers are only
allowed during certain in-class activities and are
banned at other times.

From the instructors’ point of view, the use of
computer-mediated pedagogy does have many
benefits. As mentioned above, it provides a detailed
record of the activity of each student in the class
including which questions they answered, whether
their answers were correct, how they tried to solve a
programming problem, what their level of confusion
was after each activity, etc. In this experiment, we
did not try to use this additional data to customize
our support for individual students in the class. We
strongly suspect that this detailed information about
individual students could be used to provide
individualized support for at-risk students in a way
that would make a statistically significant difference
in learning outcomes. We plan to test this hypothesis
in future experiments.

REFERENCES

Abu Deeb, Fatima and Hickey, Timothy J. “Spinoza: The
Code Tutor” Proceedings of the International
Conference on Computer and Information Science and
Technology, May 11-12th 2015, Ottawa, Canada.

Amresh, Ashish, Adam R. Carberry, and John Femiani.
"Evaluating the effectiveness of flipped classrooms for
teaching CS1." Frontiers in Education Conference,
2013 IEEE. IEEE, 2013.

Bates, Simon, and Galloway, Ross. “The inverted
classroom in a large enrolment introductory physics
course: a case study.” Proceedings of the HEA STEM
Learning and Teaching Conference (2012). April
2012.

Erlich, Zippy, Iris Erlich-Philip, and Judith Gal-Ezer.
"Skills required for participating in CMC courses: An
empirical study." Computers & Education44.4 (2005):
477-487.

Hauswirth, Matthias and Adamoli, Andrea. 2009. “Solve
& evaluate with Informa: a Java-based classroom
response system for teaching Java.” Proceedings of the
7th International Conference on Principles and
Practice of Programming in Java (PPPJ '09).

Hickey, Timothy J. and Tarimo, William T. "The
Affective Tutor." Journal of Computing Sciences in
Colleges 29.6 (2014): 50-56.

Kagan, Spencer. "The structural approach to cooperative
learning." Educational Leadership 47.4 (1989): 12-15.

Parlante, Nick. Nifty reflections. SIGCSE Bull. 39, 2
(June 2007), 25-26.

Reed, April. "Computer-mediated communication (CMC)
and the traditional classroom." Teaching with
Technology Today 5.6 (2000).

Stone, Bethany B. "Flip your classroom to increase active
learning and student engagement." Proceedings from
28th Annual Conference on Distance Teaching &
Learning, Madison, Wisconsin, USA. 2012.

CSEDU�2015�-�7th�International�Conference�on�Computer�Supported�Education

74

