
Development of a Design Model for Functionality and Content Access
from Rich Internet Application Requirements

Juan Eduardo Durán and Hernán Casalánguida
Facultad de Matemática, Astronomía y Física, Córdoba National University, Medina Allende s/n, Córdoba, Argentina

Keywords: Rich Internet Applications, User Interface Models, Metamodelling, Use Case Diagram.

Abstract: We have found several methodologies for the development of rich internet applications (RIA); however,
they did not give enough attention to the problem of defining both appropriate notations and adequate
process for developing the user interface (UI) of functionality and content access (UIFCA). The UIFCA is
important, because it concerns with the global organization/behaviour of the UI of a RIA application; the
UIFCA is complex in several RIA applications due to the several tasks/workflows/business process that
need to be organized/accessed, and the use of single page applications and desktop like UIs. A good model
for functionality and content access (MFCA) should be expressive enough, respect some abstraction
requirements, and be understandable by the client; a good process to develop a MFCA should consider the
creation of parts of the MFCA by the client, its completion by analysts, its early validation by clients, and
the refinement of MFCA elements. In this work, we defined a metamodel called RIAFCA for building
MFCAs, and a development process involving RIAFCA respecting these requirements. The metamodel and
the process are illustrated with the help of an online e-mail application case study.

1 INTRODUCTION

There exist several RIA methods for the develop-
ment of the application’s UI or at least the UI of the
application functionality (e.g. UWE (Kozuruba,
2010), WebML ((Brambilla, et al, 2010) and
(Fraternali et al, 2010)), OOH4RIA (Melia et al,
2008), MARIA (Paternò et al, 2009), OOWS 2.0
(Valverde Giromé, 2010)); however, such methods
did not give enough attention to the problem of how
to define both appropriate notations and adequate
method for developing the UI of functionality and
content access. A UIFCA is of central importance
(e.g., to clients and end users), because it concerns
with the global organization/behaviour of the UI of
the RIA application; in addition, a UIFCA is a
complex part of the UI in several RIA applications
due to the several tasks/workflows/business process
that need to be organized/accessed, and the use of
single page applications/desktop like UIs.

The essence of a UIFCA consists of the structure
of it (i.e. how functions/content elements are
grouped, and how groupings are organized) and of
the dynamic change of the set of accessible
functions/content elements to the user.

Notations of RIA methods found have limitations

satisfying the following requirements that a good
MFCA should satisfy:
R1. A MFCA should have a rich set of elements for
describing the structure of a UIFCA, and to have a
rich set of actions for modifying the accessible
functionality/content elements of a UIFCA.
R2. A MFCA should abstract from the description of
functionality, of UI elements for content output, of
UI elements for data input and of access structures
for inputs (e.g., menu, index, breadcrumbs).
R3. A MFCA should be understandable by clients
(i.e. it must not involve elements corresponding to
technical concepts not known by the clients,).

Usually RIA methodologies have abstract nota-
tions for describing the requirements and the UI, and
concrete notations for describing the UI. In general,
concrete UI notations are worse in satisfying
requirements R2 and R3 than abstract UI notations,
and usually abstract UI notations are not bad to
capture the structure of a UIFCA. For these reasons,
we consider as related work the abstract notations
for RIA requirements/UI. The abstract modelling
notations found for RIAs have limitations on
describing the essence of a UIFCA, they do not
satisfy all requirements in R2 at the same time, and
they are either not understandable by clients or very
incomplete and understandable by clients.

236 Durán J. and Casalánguida H..
Development of a Design Model for Functionality and Content Access from Rich Internet Application Requirements.
DOI: 10.5220/0005441902360244
In Proceedings of the 11th International Conference on Web Information Systems and Technologies (WEBIST-2015), pages 236-244
ISBN: 978-989-758-106-9
Copyright c 2015 SCITEPRESS (Science and Technology Publications, Lda.)

The reasons for the above requirements are:
R2. 1) less aspects to think about when developing a
MFCA; 2) after an early validation of a MFCA, the
correction of errors in the MFCA will not obligate to
make changes concerning the aspects abstracted by
the MFCA; 3) less aspects to think about when
changing a MFCA; 4) it is easier to consider changes
to user requirements; 5) a MFCA remains stable
when UI element descriptions for content elements
are changed; 6) separation of MFCA description
from: function description and the UI for output
content/data input/access structures.
R3. This requirement allows the clients to: validate a
MFCA, and to provide parts of such models (e.g.,
parts concerning innovative concepts and functions,
parts that are not easy to comprehend by analysts).

RIA methodologies found have limitations w.r.t.
the following requirements that a development
process involving a MFCA should satisfy:
P1. The client is enabled to provide part of the
structural part of the essence of a UIFCA.
P2. The analyst develops the part of the essence of a
UIFCA not provided by the client.
P3. There is an early validation by the client of the
essence of a UIFCA.
P4. There is a phase where content/input elements of
a MFCA and requirements for the dynamic variation
of the accessible functionality/content elements are
refined; the refinements are expressed using UI
elements of a UI notation that abstracts from layout,
style and specific technological widgets, and is
modality independent. This is to allow the
mapping/adaptation of a MFCA with these refine-
ments to obtain UIs considering different modalities/
devices/implementation technologies; in addition, if
a content element is complex we can master the
complexity of its development by first describing an
abstract UI element for it, and next, incorporating
modality, device, layout and style.

There is a lack of RIA methodologies
considering P1, P3 and P4; with respect to P2, we
have only found some RIA methods were the analyst
develops the essence of a UIFCA with some
limitations and without a participation of the client.

The objectives of this paper are: 1) the definition
of a MFCA for RIAs satisfying the above
requirements, and that is independent from modality
and implementation technology, and 2) the
definition of a development process satisfying the
above requirements.

In Sec. 2 we defined a MOF metamodel (called
RIAFCA) for describing the essence of a UIFCA,
and respecting the abstraction requirements; to
produce this metamodel we have taken some

decisions in order to permit the client to understand
its models. In Sec. 3 we defined a process
considering: 1) the development of a RIAFCA
model taking into account P1, P2 and P3, and 2) the
refinement of RIAFCA model elements by using
trace relationships for fulfilling P4.

2 RIAFCA METAMODEL

A user role site view is the part of a RIA UI used by
a specific user role. RIAFCA abstracts from specific
UI widgets and from specific devices. Each
RIAFCA model contains some elements used to
describe how the a role site view is organized into
coarse grained elements (see Fig. 1); we define a
concrete syntax for the this part of RIAFCA that
looks like a screen with some regions and elements
(for Access) inside - we assume that clients
understand and may produce such kind of sketches.

Figure 1: The RIAFCA part for describing the
organization of the user role site views.

A site view: a user role site view. A Grouping: a
piece of the UI for grouping Groupings or Group
Members. Members of a Grouping can be either all
present at the same time (type=All), or only one
present at a time (type = Alternative). A site view
contains a hierarchy of Groupings and Group
members. A root grouping is a Grouping at the root
of its hierarchy. Grouping elements are represented
with rectangles of different shapes according with
the kind of grouping (See Fig. 2).

Development�of�a�Design�Model�for�Functionality�and�Content�Access�from�Rich�Internet�Application�Requirements

237

Figure 2: Concrete Syntax for groupings.

Input: - - for providing some input; Access: for
accessing a functionality– use case, task; Empty: -∅
- contains nothing; Content: for showing some
content. Content with Interaction - - allows
user interaction; Read Only Content: - - only for
reading. Task - - for a task, a use case, a service,
a command; Access to grouping: for navigating into
a Grouping - -; Access to content: for naviga-
ting into a content; we use for access to read
only content; we use for access to content
with interaction. PeriodicRefresh set to true (use
icon) means that the information of a Content
element changes periodically. In the RIA UI abstract
notations found only elements Empty and Content
with interaction, classifications of content and of
Access and association between content with
interaction and Access are not present.

For choosing an Access inside a Content we use
the meta-relation with roles from and accessible. For
accessing from inside a task of extension tasks (that
are not necessary for the extended task to exist) we
use the meta-relation with roles extends and
extension. When an alternative grouping G is not
present, and is presented, we need to say that a child
E of G is presented by default; to express this we put
on E initial = true. We graphically represent a
member E of G with initial=true with the rectangle
of E filled with grey color.

Fig. 3 shows a User Agent grouping for a mail
application. Work, Commands, Lists, are alternative
Groupings. Lists Grouping contains 2 Content.
Commands Grouping contains Refresh task, Actions
Grouping and an Empty. There are 2 Access to
grouping: view settings (to access a grouping for
settings parameterization) and Account group (to
access a Grouping with account information and
tasks). There is a view mail access to content that is
used to access the mail content in Work Grouping.

Some alternative Groupings have conditions on
all of its members (use cond metavariables); such
conditions are propositional formulas whose
propositions have names of Groupings/Group
members (a proposition is true if and only if its
corresponding element is present). In the modeling
notations for RIA we have found (i.e. abstract UI
models, navigation models) the use of conditions for
alternative groupings is not considered.

Figure 3: User Agent and Actions Groupings.

Fig. 3 shows the Actions alternative grouping; its
member Actions I must be shown when Inbox
content is present, and its member Actions SM must
be shown when Sent Mail content is present.

To express requirements for the dynamic change
of the accessible functions and content elements to
the user, RIAFCA provides a set of modelling
elements that are shown in Fig. 4; such elements are
used to represent a set of requirements of the form:
<user’s interaction or another event, system’s
response>, where the system’s response consists of
one or more actions modifying the actual set of
content elements and accessible functions.

The selection of this kind of notation was
motivated by Pane and others (Pane et al, 2001) who
conducted a pair of studies to examine the language
and structure that children and adults used before
they have been exposed to programming. In these
studies, they presented programming tasks to
nonprogrammers, who then had to solve them on
paper. In these studies they observed that an event-
based or rule-based structure was used, where
actions were taken in response to events.

Each action of the systems response of a
requirement has a Target (i.e. Content, Grouping,

Task, Empty) and a type that can be either open -
-, remove - -, enable - -, disable - -, show -

 -, hide - -, interval - - (the target is
presented only during a time interval). A
Requirement says that after an event happened the

WEBIST�2015�-�11th�International�Conference�on�Web�Information�Systems�and�Technologies

238

actions on the targets must be performed; if an event
has associated a Condition, the condition must be
valid to perform the actions associated to the event;
if an action has a Condition associated, the condition
must be valid to perform the action. Only action
types open, remove and interval are not present in
the found abstract UI notations for RIAs.

Figure 4: RIAFCA elements for expressing requirements.

Event elements can be: a) A user’s interaction
with a source element or another event associated to
a grouping; for this case we use the icon ()
together with the event’s name. b) An Access is
chosen (When=before and use), or an Access
execution is finished (When=after and use).

A requirement is graphically represented with an
arrow with one or more heads from the element
where the event occurs to the Targets; the action
type icons are put near the heads of the arrow. Event
elements are shown on the tail of the requirement’s
arrow. A Condition is represented with the question
mark (?) and a text for its description. A Condition
associated to an event is put near the start of an
arrow, and a Condition associated to an action is put
near the head of an arrow.

Suppose that a target is a grouping G; if G is not
associated with other targets (i.e. using the include
association end), then G is presented with the default
elements of its alternative groupings; else the targets
associated with G are presented instead of the
default elements of the corresponding alternative
groupings. An associated Target with G is
represented with an arrow with rhombus head from
G to the associated Target.

Figure 5: Some of the requirements associated with
elements in User Agent grouping.

Figure 6: (a) show complete screen requirement, (b) play a
weather forecast requirement, (c) view next hours
requirement.

Fig. 5 shows some requirements associated with
elements of User Agent Grouping (see Fig. 3).
When the user unselects all the mails in inbox the
refresh task is presented, and when in inbox there
are no mails selected and the user selects one, the
Actions Grouping is opened. When the user choses
to go back to lists in the mail Content, the lists
Grouping is shown, the refresh Task is opened if
there are no mails selected on the actual list, and the
Actions Grouping is opened if there are mails
selected on the actual list. The requirement at the top
says that before presenting the settings grouping the
Empty member is presented. Observe that the

Development�of�a�Design�Model�for�Functionality�and�Content�Access�from�Rich�Internet�Application�Requirements

239

reading of the diagram should start with the initial
elements (i.e. these elements without a # mark).

Fig. 6(a) shows a requirement for an online text
editor. There is a window with both a file content
and an editing commands grouping; when in editing
commands show complete screen is selected, the
editing commands grouping is hidden and a message
content telling “press Esc key to view the editing
commands menu” appears for an interval of time.
Fig. 6(b) shows a requirement of a weather forecast
application. There is a satellite grouping with a map
content (satellite view of a region); when play is
selected, the map content is hidden and a periodic
map content with interaction with periodic refresh
set to true is opened. Fig. 6(c) shows a requirement
of a weather forecast application; this requirement
says that after executing next hours task in weather
in a city grouping the extended grouping containing
an each hour content element is opened.

3 DEVELOPMENT PROCESS

First, the client develops some fragments of the
RIAFCA model; next, the analyst develops some
requirement models (e.g. use case diagrams, task
models); following, the analyst using the fragments
and requirements models, develops a complete
RIAFCA model; next this model is validated by the
client; using this feedback a revised RIAFCA model
is constructed by the analyst; finally, elements of a
RIAFCA model are refined into more concrete
elements (e. g. UI elements on an abstract UI, events
on a UI element).

Fragments of the RIAFCA Model Provided by
the Client: This phase is to improve client´s
satisfaction (we assume that an analyst lacks the
domain knowledge that a client cannot easily convey
when communicating requirements for a new
application – such an assumption is a premise for
End-User-Software-Development area – see
(Paternò, 2013:1)).

The client could provide two kinds of RIAFCA
fragments: 1) A decomposition of the root Grouping
of a user role site view considering only the first
levels of the decomposition; for each Grouping in
this decomposition its purpose may be expressed. 2)
Groupings for innovative concepts involving content
and task elements related to the content (some of
them may be accessible from the Content).

In Fig. 7 for the mail application the client
provides an incomplete user agent Grouping, which
is decomposed into: 1) Commands (for executing
commands for lists of mails), 2) Access to lists (for

choosing a list of mails to see), 3) Work (here the
user may either interact with lists of mails, read
mails, or configure the user agent), 4) Account
Group (to manage the user account information).

Figure 7: a skeleton of User Agent Grouping.

Figure 8: use case diagram for an E-mail application.

Requirements Provided by the Analyst:
Examples of requirement models are use case
diagrams (UCD), business process models, task
models. We consider the case of UCDs from UML
(see (Miles and Hamilton 2006)). Use cases (UC)
may be developed considering: a) Groupings for
innovative concepts provided by the client. b) Other
functional requirements provided by the client. In
Fig. 8 you can see some of the UCs and UC
packages for a mail application.

Development of a Complete RIAFCA Model
by the Analyst: We assume that we have the
fragments of a RIAFCA model provided by the
client and a UCD available for the transition to a
complete RIAFCA model; however, we do not
prescribe a method for this phase. Independently of
the method used, several decisions need to be taken

WEBIST�2015�-�11th�International�Conference�on�Web�Information�Systems�and�Technologies

240

by the method: D1: If a UC package P is mapped
directly onto a grouping with the same name and
containing mappings of its UCs and UC packages; in
this case, the type of the P grouping is decided. D2:
How to treat UC packages that are not mapped
directly onto a grouping. D3: If a UC is mapped
either onto a task or onto an access to grouping/
content. D4: Which are the content elements that are
not provided by clients. D5: If the translation of a
UC is accessible from a content or not. D6: Which
are the UCs that affect a content element (i.e.
modify, or process it). D7: Which are the members
of the groupings of the first levels provided by
clients. Depending on the method used these
decisions will be made either manually or
automatically or semi-automatically.

For the role site view user we create the Mail
root grouping (See Fig. 9). We decided that Mail
Grouping has two alternative children: Start
(suggested by the Start UC package) and User
Agent. For the Start UC package we considered
D1as true; for the sign in UC we decided to
introduce an input element called Access data. Next,
we develop the User Agent Grouping of Fig. 3 from
its skeleton; for access to lists UC package we
considered D1 as true; from the purpose of the work
Grouping we decided to decompose it into lists
Grouping, mail Content and settings Grouping (D7).
The lists Grouping is an alternative grouping with
inbox and sent mails Content elements; they contain
view mail Access to content. UCs Compose, Sign out
and Search are mapped onto tasks that are put as
children of User Agent Grouping (D3). We decided
that the Account group Grouping contains an
account info Content and a view account Access to
grouping Account. The Commands Grouping
contains tasks for the UCs of Commands on Lists
UC package; however, for this package we consider
D1 as false; the reasons are: a) for performing
commands for lists, the lists Grouping must be
present (in other case the Empty element must be
presented), b) when no mails are selected only the
refresh task may be executed; therefore, Commands
must be an alternative Grouping containing Empty,
refresh Task and Actions Grouping as alternatives
(D2). For UCs of the Read UC package (with the
exception of view mail) we considered D5 – i.e. their
Tasks are put inside the mail Content box (See Fig.
9). The Account Grouping corresponds to Manage
Account UC package. For the settings UC package
we considered D1 as true, and the settings Grouping
is alternative. For the General UC package we
considered D1 as true, and a general settings
Content is added. We needed a Content for the

actual filters; for create filters and delete UCs affect
actual filters (D6); from this Content UCs edit filter
and delete filter are accessible (D5).

Figure 9: Other Groupings for the mail case study.

Next, the analyst expresses the requirements of a
RIAFCA model; for each child of the root grouping
of a user role site view a requirements diagram is
developed.

Figure 10: requirement associated to actual filters Content.

Examples: After the sign out Task is executed
the User Agent Grouping is removed, and the Start
Grouping is opened. In the actual filters Content the
user may select or unselect filters; Fig. 10 says that
when the first filter is selected, the delete Task is
enabled, and when all the filters are unselected, the
delete Task is disabled.

Definition of Trace Relationships: The follow-
ing tasks are considered: T1: If the UI model is
legible by the client, then the client may provide UI
elements (UIE) refining content elements (e.g.
corresponding to innovative concepts). T2: Trace
relationships between content/input elements and
UIEs are constructed by using a UI model. We are
not worried about how to obtain these trace
relationships (e.g. automatically, manually). T3:
Trace relationships between event/conditions in
requirements and atomic events (possibly on UIEs)/

Development�of�a�Design�Model�for�Functionality�and�Content�Access�from�Rich�Internet�Application�Requirements

241

detailed conditions are constructed. We do not
prescribe a method to obtain these trace relations.

We decided to use an abstract UI model for
refining content and input elements that is platform
and modality independent; this model must have a
variety of content structures, access structures and
basic UIEs. (Casalánguida and Durán, 2013) defines
a UML profile containing design elements for RIAs
called RIAAD considering such requirements. Now
trace relationships between RIAFCA Content/Input
elements and UIEs of RIAAD are considered; before
explaining them, we include the definition of the
needed RIAAD UI elements.

A BasicUiElement can be either an Atomic
element or a MediaObject.. An Atomic can be: text,
number, anchor and selector (i.e. Single Choice or
Multiple Choice). Atomic elements have a type of
edition attribute with values: input (for information
input), editable (for information editing) and
no_editable (for information presentation). UIInput-
Structure represents a UIE used for user input; a
special kind of UiInputStructure is a form. Content-
Structure (CS) represents a UIE used for content
presentation. Examples of CS are: List, Table, Tree,
and Record. A CS can be editable (i.e. allowing the
edition of some of its contents) or not. Access-
Structure represents a UIE used for accessing other
UIEs, or performing an action. Examples of
AccessStructure are NavigationBar and NavList.
NavigationBar represents a set of Anchors and one
or more UiInputStructures. NavList represents a UIE
containing a set of items; each item contains:
optionally an anchor corresponding with content
displayed for this item, optionally a navigationBar
for parameters providing and/or functionality access,
and BasicUIElements for describing an item.

Input Group Members can be refined into a
UiInputStructure. Read only content elements can be
refined into a no editable CS or a NavList. Content
with interaction can be refined into a CS (e.g. an
editable one) or into a navList involving possibly a
navigationBar.

In Fig. 11 for the mail case study: Input Access
Data is refined into a UiInputStructure with two text
UIEs; account info is refined into a record with the
same name with two text UIEs; Inbox Content is
refined into a NavList with the same name
containing items having an anchor to the mail, three
text UIEs for mail information and a single choice
UIE for mail selection.

An atomic event consists of its name, its source
and its data. We assume that in any given time of a
web application execution, there exists a stream of
the atomic events that happened; in addition, for

Figure 11: some refinements for mail application.

each atomic event in the stream there is a time stamp
for its occurrence.

We consider three kind of traces: traces from an
interaction in Access element to an atomic event
(perhaps on a UIE), traces from an event element to
an atomic event (perhaps on a UIE) and traces from
a Condition element to a more specific condition
(perhaps referring to the UI).

Example: For the requirement in Fig. 5 saying to
open the refresh task after all the mails are
unselected on Inbox content, we have a trace from
unselected mails to the event: Select NO on «single
choice» select UIE inside «item» mail item.

Example: For the requirement in Fig. 5 with
source the mail Content, we have a trace from back
to list event to the event Press on «anchor» back,
that is inside of «record» mail (from mail content
there is a trace to a «record» mail); in addition, we
have a trace from no mails selected Condition to “all
mail items in actual list have their «single choice»
select value equal to NO”; moreover, we have a
trace from mails selected Condition to “some mail
items in actual list have their «Single Choice» select
value = YES”.

4 RELATED WORK

Tables 1 and 2 compare the relevant RIA approaches
found in the literature. The references of these
approaches are given once in the next paragraph.

R1: Captures the essence of the UIFCA: for
describing the dynamic change of the accessible
functions/content elements: OOWS 2.0 (Valverde
Giromé, 2010) interaction metamodel and MARIA
(Paternò et al, 2009) dialog model have not open,
remove and interval actions; (Rosado da Cruz, 2010)
UCD notation has not open/remove, show/hide and

WEBIST�2015�-�11th�International�Conference�on�Web�Information�Systems�and�Technologies

242

Table 1: Comparison between abstract notations.

 R1 R2 R3
UWE Navigation M. reg - reg - reg
UWE/R Navigation M. reg - reg - reg
OOH4RIA Navigation M. reg - reg - no
WebML Hypertext M. reg no no
Rosado da Cruz UCD reg reg + reg+
OOWS 2.0 reg reg + no
MARIA AUI model reg no no
UsiXML AUI model reg - reg reg ++
RIAFCA good good yes

interval actions; UWE/R (Filho and Ribeiro, 2009)
considers requirements saying that after the
execution of a task (e.g. a client process) some
properties of the UI are changed (e.g. enable,
disable, hide, show of an element of the UI, but not
the other type of actions); navigation models of
UWE (Kozuruba, 2010), WebML ((Brambilla, et al,
2010), (Fraternali et al, 2010)), OOH4RIA (Melia et
al, 2008) have not action types; the UsiXML abstract
UI model (Martínez Ruiz, 2007) does not consider
the dynamic change of the accessible functions/
content elements. Concerning the structure of a
UIFCA OOWS 2.0, UsiXML and the navigation
models of UWE, UWE/R and OOH4RIA have not
alternative groupings, UCDs in (Rosado da Cruz,
2010) have not content elements, and MARIA has
not content with interaction elements.

R2: Abstraction from description of output
content, input element, access structures and
functionality: OOWS 2.0 RIA metamodel and UCDs
in (Rosado da Cruz, 2010) do not abstract from
functionality description. The other UI models for
RIAs found do not abstract from functionality
description. UsiXML does not abstract from input
element description; UWE and UWE/R do not
abstract from access structures; OOH4RIA does not
abstract from output content description; WebML
does not abstract from access structures and output
content description; MARIA does not abstract from
output content and input element description.

R3: Understandable by the client, and the client
may create parts of it: notations that may be used by
clients are: UCDs in (Rosado da Cruz, 2010) and UI
abstract model of UsiXML - there is a concrete
syntax based on sketches that is probably legible by
the client to model part of the structure of the
UIFCA. The navigation model of UWE captures
part of the essence of the UIFCA, and we think that
is understandable by clients if they know some
concepts (e.g. index, menu, guided tour). UWE/R,
OOH4RIA, WebML, MARIA have several technical
concepts; OOWS2.0 has not a concrete syntax for

Table 2: Comparison between development processes.

 P1 P2 P3 P4
UWE no reg no no
UWE/R no no no no
OOH4RIA no no no no
WebML no no no no
UsiXML for RIAs no reg no no
Rosado da Cruz no reg no no
OOWS 2.0 no reg no no
MARIA no reg no no
RIAFCA yes yes yes yes

the RIA metamodel, and the interaction metamodel
has a rather complex textual syntax.

P1: The client is enabled to provide part of the
structural part of the essence of a UIFCA.

P2: The analyst develops the part of the essence
of the UIFCA not provided by the client: in UWE
the navigation model is generated from UML UCDs,
and is refined; in OOWS 2.0 the RIA UI model is
generated from an abstract interaction model, and
the analyst produces an ECA model of the UI; in
(Rosado da Cruz, 2010) the analyst produces an
extended UCD; in UsiXML the AUI model is
generated from a task model, and there is not a
description of the dynamic variation of accessible
functionality/content elements. In OOH-4RIA the
designer produces the navigation model; in MARIA
the abstract UI can be generated from a task model
and additional information, and the generated
abstract UI needs to be refined by the designer.
WebML and UWE/R do not prescribe this task. The
reason of rating as reg some methods is their
limitations for modelling the essence of a UIFCA.

P3: There is an early validation by the client of
the essence of a UIFCA: there is only a late
validation of a prototype in OOH4RIA, WebML
(Rosado da Cruz, 2010), MARIA, and OOWS 2.0;
this task is not prescribed by UWE/R and UsiXML.

P4: Abstract UI elements (independent from
modality, style and device) refining the content/
input elements of a MFCA are constructed.

5 CONCLUSIONS

We considered the following case studies for
identifying the elements of RIAFCA metamodel: an
e-mail application, an e-commerce application, an
online text editor, a weather forecast application.

For analysts/graphic designers to work with a
RIAFCA with traces is better than to produce/use a
UCD/navigation models/abstract UI model due to
expressiveness of the RIAFCA, (see Sec. 4).

Development�of�a�Design�Model�for�Functionality�and�Content�Access�from�Rich�Internet�Application�Requirements

243

Our approach permits to deal with the
complexity of a UIFCA: first construct a RIAFCA
without worrying about UIEs; next construct the
traces from RIAFCA elements to UIEs; finally, the
graphic designers should only concentrate on
widgets, style and layout.

RIAFCA metamodel abstracts from functionality
description, from UIEs for describing content/input
elements and from access structures; in addition, it is
platform independent and modality independent. For
these reasons, and because the RIAFCA considers
ECA requirements, we think that analysts are in
condition to develop RIAFCA models.

The reason for introducing our concrete syntax
for RIAFCA requirements is to make this part of the
RIAFCA understandable by clients, or at least very
easy to learn by them.

For the mail case study we have 12 requirements
from which 75% use open or remove actions, and
are not replacing an element with another one. For
the mail application for the transitioning from UCDs
to RIAFCA static view we obtained: 55% of the UC
packages are mapped directly onto Groupings, 33%
of the UC packages needed to be distributed among
more than one grouping, 11% of the UC packages
are mapped onto a Content with Tasks inside. For
the mail application 14% of the UCs are mapped
onto Access to grouping/content elements.

For the future we plan to develop a tool that will
consider: 1) the inspection of a RIAFCA model and
of the trace relationships; 2) the generation of a
program animating a RIAFCA where the client
interacts with Content/Gouping/Access by clicking
at event names inside of Groupings/Content or at
Access elements, and looks at the resulting
consequences; this is for permitting the client to
understand even better a RIAFCA model.

REFERENCES

Brambilla, M., Fraternali, P., Molteni, E., 2010. A Tool
for Model-driven Design of Rich Internet Applications
based on AJAX. Handbook of Research on Web 2.0,
3.0, and X.0: Technologies, Business, and Social
Apps., San Murugesan (ed.), pp. 96-118, IGI Global.

Casalánguida, H. and Durán, J. E., 2013. A Method for
Integrating Process Description and User Interface Use
During Design of RIA Applications. In ICWE'13, 13
th Intl. Conf. on Web Engineering. Springer Verlag.

Dos Santos Rosado da Cruz A., M., R., 2010. Automatic
Generation of User Interfaces from Rigorous Domain
and Use Case Models. Ph-D Thesis, Faculdade de
Engenharia da Universidade do Porto.

Filho, O., Ribeiro, J., 2009. UWE-R: An Extension to a
Web Engineering Methodology for Rich Internet
Applications. WSEAS Trans. Info. Sci. and App. 6(4):
601-610.

Fraternali, P., Comai, S., Bozzon, A., Toffetti Carughi, G.,
(2010): Engineering Rich Internet Applications with a
Model-Driven Approach. ACM Transactions on the
Web, Vol. 4(2).

Kozuruba, S., 2010: Modellbasierte Anforderungs-analyse
für die Entwicklung von adaptiven RIAs.
DiplomArbeit. Institut für Informatik Ludwig-
Maximilians-Universität München,.

Martínez Ruiz, F. J., 2007. A Development Method for
User Interfaces of Rich Internet Applications. A
Thesis for the Diploma of Extended Studies in
Management Science. Catholic University of Leuven.

Melia, S., Gomez, J., Perez, S. and Diaz, O., 2008: A
Model- Driven Development for GWT-Based Rich
Internet Applications with OOH4RIA. In: ICWE’10,
8th Intl. Conf. on Web Engineering: pp.13-23, IEEE.

Miles, R., Hamilton, K., 2007. Learning UML 2.0.
O’Reilly.

Pane, J., F. Ratanamahatana C. A., and Myers B. A., 2001:
Studying the Language and Structure in Non-
Programmers’ Solutions to Programming Problems.
Intl. J. of Human-Computer Studies, vol. 54, pp. 237-
264.

Paternò, F., Santoro, C., Spano. L. D., 2009. MARIA: A
universal, declarative, multiple abstraction-level
language for service-oriented applications in
ubiquitous environments. ACM Trans. Comput. Hum.
Interact., 16(4), November, pp 1-30.

Paternò, F., 2013. End User Development: Survey of an
Emerging Field for Empowering People. ISRN
Software Engineering, Vol. 2013, Article ID 532659.

Valverde Giromé, F., 2010. OOWS 2.0: Un Método De
Ingeniería Web Dirigido Por Modelos Para La
Producción De Aplicaciones WEB 2.0. PhD Thesis.

WEBIST�2015�-�11th�International�Conference�on�Web�Information�Systems�and�Technologies

244

