
Watermarking PDF Documents using Various Representations of
Self-inverting Permutations

Maria Chroni and Stavros D. Nikolopoulos
Department of Computer Science & Engineering, University of Ioannina, GR-45110 Ioannina, Greece

Keywords: Watermarking Techniques, Text Watermarking Algorithms, PDF Documents, Self-inverting Permutations,
Representations of Permutations, Embedding Algorithms, Extracting Algorithms.

Abstract: Portable Document Format (PDF) documents are extensively used over the internet for information exchange
and due to the ease of copying and distributing they are susceptible to threats like illegal copying, redistri-
bution, and plagiarism. This work provides to web users copyright protection of their PDF documents by
proposing efficient and easily implementable techniques for PDF watermarking; our techniques are based
on the ideas of our recently proposed watermarking techniques for software, image, and audio, expanding
thus the digital objects that can be efficiently watermarked through the use of self-inverting permutations. In
particular, we present various representations of a self-inverting permutationπ∗ namely 1D-representation,
2D-representation, and RPG-representation, and show that theses representations can be efficiently applied
to PDF watermarking. Indeed, we first present an audio-based technique for marking a PDF documentT by
exploiting the 1D-representation of a permutationπ∗, and then, since pages of a PDF documentT are 2D
objects, we present an image-based algorithm for encodingπ∗ into T by first mapping the elements ofπ∗ into
a matrixA∗ and then using the information stored inA∗ to mark invisibly specific areas of PDF document
T. Finally, we describe a graph-based watermarking algorithm for embedding a self-inverting permutationπ∗

into the document structure of a PDF fileT by exploiting the RPG-representation ofπ∗ and the structure of a
PDF document. We have evaluated the embedding and extracting algorithms by testing them on various and
different in characteristics PDF documents.

1 INTRODUCTION

Information age has altered the way people communi-
cate by breaking the barriers imposed on communica-
tions by time, distance, and location and has undoubt-
edly impact not only human activities but also global
industry and economy.

An electronic document is an extensively used
medium traveling over the internet for information ex-
change and due to the ease of copying and distribut-
ing they are susceptible to threats like illegal copying,
redistribution of copyrighted documents, and plagia-
rism. Subsequently, it has become more important to
protect the electronic documents from any malicious
user while existing in the digital world. Copyright
protection of digital contents is such a need of time
which cannot be overlooked. In past, various methods
like encryption, steganography and watermarking has
been used to solve these problems. However, digital
watermarking is the better solution for copyright pro-
tection than encryption and steganography. It is well
known that digital watermarking methods are efficient

enough to identify the original copyright owner of the
contents. Note that there are many reasons why you
would want to use watermarks in digital documents:
as a copying deterrent, as a means of identifying the
source of a printed document, as a means of determin-
ing whether a document has been altered, etc.

Any action that a user can perform on a text that
can affect the watermark, or its usefulness, is called
attack. In (Zhou et al., 2009) existing attacks on text
watermarking can be classified into three main cat-
egories: watermark attacks, geometric attacks, and
system attacks(Collberg and Nagra, 2010).

Text watermarking is the area of research that has
emerged after the development of internet and com-
munication technologies; we mention that the first
reported effort on marking documents dates back to
1993. Previous work on digital text watermarking
is based on several techniques among which image-
based approach (Brassil et al., 1995; Huang and Yan,
2001; Low et al., 1998; Low and Maxemchuk, 2000;
Maxemchuk and Low, 1997; Maxemchuk and Low,
1998), syntactic approach (Atallah et al., 2003; Meral

73Chroni M. and Nikolopoulos S..
Watermarking PDF Documents using Various Representations of Self-inverting Permutations.
DOI: 10.5220/0005445800730080
In Proceedings of the 11th International Conference on Web Information Systems and Technologies (WEBIST-2015), pages 73-80
ISBN: 978-989-758-106-9
Copyright c 2015 SCITEPRESS (Science and Technology Publications, Lda.)

et al., 2009), and semantic approach (Lu et al., 2008;
Vybornova and Macq, 2007; Topkara et al., 2007; Sun
and Asiimwe, 2005). Recently, a significant num-
ber of techniques have been proposed in the literature
which use Portable Document Format (PDF) files as
cover media in order to hide data (Bindra, 2011; Liu
et al., 2012; Liu et al., 2008; Liu et al., 2006; Lee and
Tsai, 2010; Zhong et al., 2007).

In this paper, in order to provide to web users
copyright protection of their digital documents, we
present techniques for watermarking PDF docu-
ments by exploiting several representations of a self-
inverting permutationπ∗, i.e. the 1D-representation,
the 2D-representation, and the RPG-representation.
Our main contribution is a graph-based watermarking
algorithm for embedding a self-inverting permutation
π∗ into the document structure of a PDF fileT using
the RPG-representation ofπ∗ and the structure of a
PDF document.

2 BACKGROUND RESULTS

In this section we give some definitions and the theo-
retical background we use towards the watermarking
of Portable Document Format (PDF) documents.

Self-inverting Permutations. Let π be a permutation
over the setNn = {1,2, . . . ,n}. We think of permu-
tation π as a sequence(π1,π2, . . . ,πn), so, for exam-
ple, the permutationπ = (1,4,2,7,5,3,6) hasπ1 = 1,
π2 = 4, etc (Golumbic, 1980).

The inverse of π is the permutationτ =
(τ1,τ2, . . . ,τn) with τπi = πτi = i. Clearly, every per-
mutation has a unique inverse, and the inverse of the
inverse is the original permutation.

A self-inverting permutation(or, for short, SiP) is
a permutationπ = (π1,π2, . . . ,πn) that is its own in-
verse, i.e.,ππi = i, for i = 1,2, . . . ,n.

The definition of the inverse of a permutation im-
plies that a permutation is a self-inverting permutation
iff all its cycles are of length 1 or 2.

1D-representation of SiP. In our 1D-representation
(Chroni et al., 2014), the elements of the permutation
π are mapped in specific cells of an arrayB of sizen2

as follows:

• number πi −→ entry B((π−1
πi

−1)n+πi)

or, equivalently, the cell at the position(i−1)n+πi is
labeled by the numberπi , for eachi = 1,2, . . . ,n.

In our 1DM representation, a permutationπ over
the setNn is represented by ann2 arrayB∗ where the

cells at positions(i−1)n+πi are marked by a specific
symbol, say, the asterisk character “*”.

2D-representation of SiP. In (Chroni et al., 2013),
we have defined the 2D-representation of a SiP as the
representation where the elements of the permutation
π = (π1,π2, . . . ,πn) are mapped in specific cells of an
n×n matrixA as follows:

• number πi −→ entry A(π−1
i ,πi)

or, equivalently, the cell at rowi and columnπi is la-
beled by the numberπi , for eachi = 1,2, . . . ,n.

In 2DM-representation the cell at rowi and col-
umn πi of matrix A is marked by a specific symbol,
for eachi = 1,2, . . . ,n.

RPG-representation of SiP. We have also pre-
sented an efficient and easily implemented algo-
rithm for encoding numbers as reducible permuta-
tion graphs (or, for short, RPG) through the use of
self-inverting permutations (Chroni and Nikolopou-
los, 2012). In particular, we have proposed the algo-
rithm Encode SiP.to.RPG which applies to any per-
mutationπ and relies on domination relations on the
elements ofπ.

Figure 1 summarizes by an example the represen-
tations of the permutationπ∗ = (4,7,6,1,5,3,2).

2.1 Structure of a PDF Documents

The Portable Document Format (PDF) (Adobe, 2006)
is an open standard (defined in ISO 32000) which fa-
cilitates device and platform independent capture and
representation of rich information such as text, multi-
media and graphics, into a single medium. Thus the
PDF format enables viewing and printing of a rich
document, independent of either application software
or hardware. In this section we present a structural
analysis of a PDF file and give its basic components.

Object. An object is the basic element in PDF files,
in which eight kinds of objects, namely Boolean, Nu-
meric, String, Name, Array, Null, Dictionary and
Stream are sustained. Objects may be labeled so that
they can be referred to by other objects. A labeled
object is called an indirect object.

File Structure. The PDF file structure determines
how objects are stored in a PDF file, how they are ac-
cessed, and how they are updated. The file structure
(see, Figure 2) includes the following:

• an one-line header identifying the version of the
PDF specification to which the file conforms,

• a body containing the objects that make up the
document contained in the file,

WEBIST�2015�-�11th�International�Conference�on�Web�Information�Systems�and�Technologies

74

π∗ = (4, 7, 6, 1, 5, 3, 2)

67 5 4 3 2 1 ts

The watermark number w = 4

6

5

4

3

2

1

1 2 3 4 5 6 7

7

1 2 3 4 5 6 8 9 10 11 12 137 14 15
. . .* *

36 37 38 39 40 41 43 44 45 46 47 4842 4935

* *

22 23 24 25 26 27 292821
. . . *

. . .
20

34
. . .

33

*

*

*

*

*

*

*

*

*

1D-representation of π∗ 2D-representation of π∗

Reducible Permutation Graph F [π∗]

↓

Figure 1: Three different representations of permutationπ∗ = (4,7,6,1,5,3,2).

• a cross-reference table containing information
about the indirect objects in the file, and

• a trailer giving the location of the cross-reference
table and of certain special objects within the
body of the file.

Figure 2 shows an example of a PDF file and its inter-
nal file structure.

Document Structure. The PDF document structure
specifies how the basic object types are used to rep-
resent components of a PDF document: pages, fonts,
annotations, and so forth. The document structure of
a PDF file is organized in the shape of an object tree
topped by Catalog, Page tree, Outline hierarchy and
Article thread included. The Outline hierarchy is the
bookmarker of PDF, and Page tree includes page and
Pages which in turn includes the total page number
and each page marker. Page, the main body of PDF
file, is the most important object which involves the
typeface applied, the text, pictures, page size, etc.

3 WATERMARKING PDF
DOCUMENTS

In this section we describe embedding algorithms for
encoding a SiPπ∗ into a digital documentT. More

specifically, we embed the permutationπ∗ into a PDF
document by exploiting the 1D, the 2D, and the RPG-
representation of the permutationπ∗.

3.1 Embed Watermark into PDF - I

Our embedding algorithm watermarks a PDF docu-
ment by exploiting the 1D-representation ofπ∗; the
marking is performed by increasing the space be-
tween two consecutive words in a paragraph ofT.

Let B∗ be the 1D array of sizen= n∗×n∗ which
represents the permutationπ∗ of length n∗, and let
(w1, s1), (w2, s2), . . ., (wn, sn) be n pairs of type
“word-space” of a paragraphpar of the input PDF
document; recall that the entryB∗((i−1)n∗+π∗

i) con-
tains the symbol “*”, 1≤ i ≤ n∗. The algorithm in-
creases by a small value “c” thei-th space of the pair
(wi , si) if B∗((i − 1)n∗+ π∗

i) = “ ∗ ”; our embedding
algorithm works as follows:

Algorithm Embed SiP.to.PDF-I

1. Compute the 1DM representation of the permu-
tation π∗, i.e., construct the arrayB∗ of sizen =
n∗×n∗ where the(i −1)n∗+π∗

i entry ofB∗ con-
tains the symbol “*”, 1≤ i ≤ n∗;

2. Select an appropriate paragraphpar on a pageP
of PDF documentT to embed the self-inverting

Watermarking�PDF�Documents�using�Various�Representations�of�Self-inverting�Permutations

75

%PDF-1.1

1 0 obj
<< /Type /Catalog /Outlines 2 0 R /Pages 3 0 R >> endobj

2 0 obj
<< /Type /Outlines /Count 0 >> endobj

3 0 obj
<< /Type /Pages /Kids [4 0 R] /Count 1 >> endobj

4 0 obj
<< /Type /Page /Parent 3 0 R /MediaBox [0 0 612 792] /Contents 5
0 R /Resources << /ProcSet 6 0 R /Font << /F1 7 0 R>> >> >>

endobj

5 0 obj
<< /Length 48 >>

stream
BT
/F1 24 Tf
100 700 Td
(Hello World)Tj
ET
endstream
endobj

6 0 obj
[/PDF /Text] endobj

7 0 obj
<< /Type /Font /Subtype /Type1 /Name /F1 /BaseFont /Helvetica
/Encoding /MacRomanEncoding >> endobj

xref
0 8
0000000000 65535 f
0000000012 00000 n
0000000089 00000 n
0000000145 00000 n
0000000214 00000 n
0000000381 00000 n
0000000485 00000 n
0000000518 00000 n

trailer
<<

/Size 8
/Root 1 0 R
>>

startxref
642

Header

Body

Cross-Ref

Table

Trailer

Figure 2: The structure of a PDF file along with its code
containing, in object5 0 obj, the text “Hello World”.

permutationπ∗;

3. Partition the paragraphpar into n pairs
(w1,s1),(w2,s2), . . . ,(wn,sn), where wi and
si are thei-th word and space, respectively, in
selected paragraphpar, 1≤ i ≤ n;

4. For each pair(wi ,si) s.t.B∗((i−1)n∗+π∗
i)= “ ∗”,

increases the spacesi or, equivalently, distance
d(wi ,wi+1) between wordswi andwi+1, by a rel-
ative small valuec, 1≤ i ≤ n;

5. Return the watermarked PDF documentTw.

Extraction. The extraction algorithm, which we call
Extract PDF.from.SiP-I, operates as follow: it
takes as input the watermarked PDF documentTw, lo-
cates the paragraphpar, and computes the permuta-
tion π∗ by finding the positions of the wordswi such
that:

◦ d(wi ,wi+1)> d(wi−1,wi), or

◦ d(wi ,wi+1)> d(wi+1,wi+2)

where,d(wi ,wj) is the distance between wordswi and
wj in a paragraphpar of Tw, 1 ≤ i ≤ n; note that,
an appropriate paragraphpar contains more thatn
words.

3.2 Embed Watermark into PDF - II

In this section we describe an algorithm of embed-
ding a self-inverting permutationπ∗ into a digital doc-
umentT by exploiting the two-dimensional represen-
tation of permutationπ∗.

The main idea behind the embedding algorithm,
which we call Embed SiP.to.PDF-II, is similar
of that of algorithmEmbed SiP.to.Image-F; see,
(Chroni et al., 2013). The most important of this idea
is the fact that it suggests a way in which the permuta-
tion π∗ can be represented by a 2D-matrix and, since
pages of a PDF documentT are two dimensional ob-
jects, such a representation can be efficiently used for
embeddingπ∗ into T resulting thus the watermarked
PDF documentTw; in a similar way as in our image
watermarking approach, such a 2D-representation can
be efficiently extracted for a watermarked PDF docu-
mentTw and converted back to the self-inverting per-
mutationπ∗.

Let A∗ be the 2D-matrix of sizen∗×n∗ which rep-
resents the permutationπ∗ of lengthn∗. The mark-
ing of the input PDF documentT is performed by
selecting an appropriate pageP of T and settingn∗

objects (e.g., characters, symbols, images) in a spe-
cific positions on pageP, 1≤ i ≤ n∗. In fact, we set
an objectOi in position with (x′i ,y

′
i) coordinates on

pageP if A∗(xi ,yi) = “ ∗ ”, where 1≤ xi ,yi ≤ n∗ and
0 ≤ x′i ,y

′
i ≤ size(P); note that,(0,0) is the lower-left

point (or, equivalently, the bottom-left corner) of the
pageP.

The algorithm takes as input a SiPπ∗ and a PDF
documentT, and returns the watermarked PDF docu-
mentTw; it consists of the following steps.

Algorithm Embed SiP.to.PDF-II

1. Compute the 2DM representation of the self-
inverting permutationπ∗, i.e., construct an array
A∗ of sizen∗×n∗ s.t. the entryA∗(i,π∗

i) contains
the symbol “*”, 1≤ i ≤ n∗;

2. Select an appropriate pageP to embed the permu-
tationπ∗ and compute the sizesize(P) of the page
P, say,N×M;

3. Segment the PDF pageP into n∗ × n∗ grid-cells
Ci j of size

⌊

N
n∗
⌋

×
⌊

M
n∗
⌋

, 1≤ i, j ≤ n∗;

WEBIST�2015�-�11th�International�Conference�on�Web�Information�Systems�and�Technologies

76

4. For each grid-cellCi j s.t.A∗(i, j) = “ ∗ ”, mark the
cell Ci j by setting a symbol, with an appropriate
color, in any position insideCi j of P, 1≤ i, j ≤ n∗,
resulting thus the marked documentTw;

5. Return the watermarked PDF documentTw.

Extraction. The algorithm which extracts the per-
mutationπ∗ from the watermarked PDFTw operates
in a similar way as the corresponding extraction al-
gorithm for images: it takes the input watermarked
image Iw, locate the marked pageP, computes its
N×M size, and segmentsP into n∗ × n∗ grid-cells
Ci j of size

⌊

N
n∗
⌋

×
⌊

M
n∗
⌋

; then, it computes the per-
mutationπ∗ by finding the coordinates(xi ,yi) of the
n∗ symbols in the pageP, 1 ≤ i ≤ n∗; we call it
Extract PDF.from.SiP-II.

3.3 Embed an RPG into a PDF

We next describe a watermarking algorithm for em-
bedding a self-inverting permutationπ∗ into a PDF
documentT, by exploiting the RPG-representation of
π∗ and the structure of a PDF documentT.

Indeed, we have recently proposed an algorithm,
namelyEncode SiP.to.RPG (Chroni and Nikolopou-
los, 2012), for encoding SiPsπ∗ as reducible permu-
tation graphsF[π∗]. Moreover, in this paper we have
described the document structure DS(T) of a PDF
documentT (see, Subsection 2.1); note that, the doc-
ument structure of a PDF file always contains a node,
namelyDocument-catalog, and a page tree PT(T)
rooted at nodePage-tree, denoted byroot(pt); see,
Figure 3.

In light of algorithm Encode SiP.to.RPG, we
next present an algorithm for embedding the water-
mark graphF[π∗] into a PDF documentT. The main
idea behind the proposed embedding algorithm is a
systematic addition of appropriate object-references
in selected nodes of the page-tree PT(T) of the doc-
ument structure DS(T), through the use of entries of
type /Kye(·), so that the graphF [π∗] can be easily
constructed from the page-tree PT(Tw) of the result-
ing watermarked documentTw.

Let F [π∗] be a reducible permutation graph pro-
duced by one of our two encoding algorithms and
let un+1,un, . . . ,u1,u0 be the nodes of the graph
F [π∗]; note that,F[π∗] does not contain the back-edge
(u0,un+1). In order to simplify the extraction process,
the graphF [π∗] which is embedded into a PDF doc-
umentT contains one extra back-edge, i.e., the edge
(u0,un+1).

The algorithm for embedding a reducible permu-
tation graphF[π∗] into a PDF documentT is called
Encode RPG.to.PDF and is described below.

Algorithm Encode RPG.to.PDF

1. Compute the document structure DS(T) of the
input PDF documentT and locate its page-tree
PT(T); let node(dc) be the document catalog
node of structure DS(T) androot(pt) be the root
node of the page tree PT(T);

2. Compute a pathO(T) = (vn+1,vn, . . . ,v1,v0) on
n+2 nodes (i.e., objects) of the page-tree PT(T)
s.t. vn+1 = root(pt), and sets= vn+1 andt = v0;

3. Assign an exact pairing (i.e., 1-1 correspondence)
of the n+ 2 nodes of pathO(T) to the nodes
un+1,un, . . . ,u1,u0 of the watermark graphF[π∗];

4. For each back-edge(ui ,u j) of the graphF[π∗]
(i.e., u j > ui), add the forward-edge(v j ,vi) in
page-tree PT(T) by adding in object[vj 0 obj]
an entry of type/Key(vi 0 R); add in object
[vn+1 0 obj] an entry of type/Key(v0 0 R);

5. Return the modified PDF documentT which is the
watermarked documentTw;

Let us briefly discuss the way we add forward-edge
in the page-tree PT(T); recall that, in Step 4 of the
previous algorithmEncode RPG.to.PDF we add the
forward-edge(v j ,vi) in page-tree PT(T) by adding in
object[vj 0 obj] an entry of type/Key(vi 0 R). The
entry/Key(vi 0 R) may be of various types; note that,
/Key(·) is used as parameter in our algorithm’s de-
scription.

In our implementation, for the forward-edge
(v j ,vi) such that the object[vj 0 obj] is not the rood-
noderoot(pt) of the page-tree PT(T), we always
chose the entry/Key(vi 0 R) which we add in object
[vj 0 obj] to be of the same type of object[vi 0 obj].
In the case wherev j = root(pt), we chose the entry
/Key(vi 0 R) to be of type/Kids(·).

For example, in Figure 3 we have added forward-
edges from object[29 0 obj] to object [3 0 obj],
from object [29 0 obj] to object [24 0 obj], from
object [3 0 obj] to object [13 0 obj], etc. Thus,
in our implementation we have added in the root-
node object [29 0 obj] the entries /Kids(3 0 R)
and /Kids(24 0 R), in object [3 0 obj] the entry
/XObject(13 0 R), while in object[13 0 obj] the en-
tries/ColorSpace(6 0 R) and/R9(5 0 R).

Remark 3.1. Let T be a PDF file and let PT(T) be a
page-tree of the document structure DS(T). A node
of the page-tree PT(T) may contain several entries
/Key(·) of various types. We mention that some types
are required for entries in specific nodes of PT(T);
for example, the required entries in the root-node
root(pt) of the page-tree PT(T) are the/Type(·),

Watermarking�PDF�Documents�using�Various�Representations�of�Self-inverting�Permutations

77

1 0 obj
catalog Page

. . .

. . .

. . .

. . .

29 0 obj

Page
3 0 obj

Page
25 0 obj

Contents
23 0 obj

Resources
24 0 obj

XObject
13 0 obj

Resources
22 0 obj

.
.
.

ColorSpace
6 0 obj

ExtGState
8 0 obj

XObject
10 0 obj

Font
12 0 obj

R9
5 0 obj

R7
7 0 obj

R10
9 0 obj

R10
11 0 obj

. . .

Figure 3: The watermarkedDS(Tw) which encodes the RPG ofπ∗ = (4,5,3,1,2).

/Parent(·), /Kids(·), and/Count(·).

Extraction. We next describe the corresponding ex-
traction algorithm which extracts the graphF [π∗]
from the PDF documentTw watermarked by the algo-
rithm Encode RPG.to.PDF; the algorithm, which we
call Extract RPG.from.PDF, works as follows:

• Take first as input the PDF documentTw, compute
its document structure DS(Tw), and locate its page
tree PT(Tw); then, find in objectroot(pt), where
root(pt) is the root of the tree PT(Tw), the entry
/Kids(vk 0 R) s.t. vk is not a child ofroot(pt),
and setvn+1 = root(pt) andv0 = vk;

• Compute the pathO(T) = (vn+1,vn, . . . ,v1,v0)
of PT(Tw), from node root(pt) to v0, and as-
sign an exact pairing (i.e., 1-1 correspondence)
of the n+ 2 nodes of pathO(T) to the nodes
un+1,un, . . . ,u1,u0 of a graph F [π∗]; initially,
E(F[π∗]) = /0;

• Add edges(ui+1,ui) in F [π∗] for i =n,n−1, . . . ,0,
and the edge(ui ,u j) iff (vi ,v j) is a forward edge
in the page tree PT(Tw);

• Delete the edge(un+1,u0) from the graphF[π∗];

• Return the graphF [π∗];

It is easy to see that, by construction the returned
graph F[π∗] is a reducible permutation graph pro-
duced by the algorithmEncode SiP.to.RPG (Chroni
and Nikolopoulos, 2012). Thus,F [π∗] has the follow-
ing property: the structure which results after deleting

(i) all the forward edges(ui+1,ui) of F[π∗], 0≤ i ≤ n,
and

(ii) the nodeu0

is either the treeTd[π∗] or the tree Ts[π∗] pro-
duced during the execution of the decoding algorithm
Decode RPG.to.SiP; see, (Chroni and Nikolopou-
los, 2012). Thus, we can efficiently extract the self-
inverting permutationπ∗ embedded into a PDF docu-
mentT by algorithmEncode RPG.to.PDF.

4 DISCUSSION

In this section we discuss the performance of the
proposed watermarking algorithms after applying
them on various PDF documents. We imple-
mented the algorithmsEncode SiP.to.PDF-I, -II,
and Encode RPG.to.PDF and tested them on docu-
ments that have the same basic file structure (see, Sub-
section 2.1).

There are three main characteristics which we
usually take into account in order to describe and eval-
uate a digital watermarking system:fidelity, robust-
ness, andcapacity(Cox et al., 2008).

Fidelity refers to the perceptual similarity between
watermarked and original document. Concerning our
watermarking systems, it seems to be of high fi-
delity as both algorithmsEncode SiP.to.PDF-II and
Encode RPG.to.PDF do not alter the PDF document
display, whereas the algorithmEncode SiP.to.PDF-
I, although it modifies directly the text of the PDF

WEBIST�2015�-�11th�International�Conference�on�Web�Information�Systems�and�Technologies

78

Table 1: Performance results of our graph-based algorithmEncode RPG.to.PDF with respect to other similar methods.

Algorithm Our RPG Algorithm of Other similar Algorithm based on
Performance Algorithm (Simin et al., 2011) algorithms PDF structure
Fidelity high high high high
Embedding based on infinite 67% of text infinite
Capacity file structure in theory size in theory
Robustness best better worse fragile

document, ensures that its modification is not per-
ceived by the human visual system.

We mainly focused on our graph-based water-
marking algorithmEncode RPG.to.PDF and evalu-
ated its robustness under general manipulations of
Adobe Acrobat Professional, such as addition of text,
comments, stamp, signature, as well as optimization.
The aforementioned operations although they added
new objects in the PDF document, they did not al-
tered the content of the original objects. The experi-
mental results show that proposed algorithm is robust
against editing and optimization attacks, since the en-
tries inserted in PDF’s objects does not affect their
functionality, and the watermark graphF [π∗] can be
successfully extracted from the PDF document.

The embedding capacity essentially depends on
the size of the watermarkw or, in our case, of the size
of the embedding watermark RPG graphF[π∗]; note
that, the size of the watermark graph is the number
of vertices that it contains. In order to measure the
embedding capacity, we calculate the ratio|w|/|T|,
where |w| is the size of the watermark RPG graph
F [π∗] and |T| is the size of the original PDF docu-
mentT which is measured by counting the number
of objects it contains; we use the number of objects
since in our algorithm we assign an exact pairing of
the nodes ofF [π∗] to the objects ofT. We claim
that our algorithms have high embedding capacity for
large PDF documents since in such document we are
able to encode a watermark graph less than or equal
to document’s size. Recall that, our recently proposed
algorithms for encoding a numberw as reducible per-
mutation graphF [π∗] encode a relatively large graph
into a large number of different integers (authors’ pa-
pers). Additionally, the embedding of the watermark
w didn’t increased the size of the PDF file.

We next select our graph-based encoding al-
gorithm Encode RPG.to.PDF, compare it with
similar methods and evaluate its performance.
More precisely, we compare the algorithm
Encode RPG.to.PDF with the algorithm recently
proposed by the authors of (Simin et al., 2011), since
both algorithms use similar watermarking technique,
i.e., both algorithms modify content on specific
objects of a PDF document.

In Table 1, we present the performance compar-

ison of our algorithmEncode RPG.to.PDF with re-
spect to the algorithm proposed by authors of (Simin
et al., 2011). In particular, in (Simin et al., 2011) au-
thors presented their results on the robustness of their
algorithm under specific attacks, such as addition of
text content, postil, stamp, signature, background and
delete text content of the PDF document. We ex-
tended these attacks by applying optimization to the
watermarked PDF documentTw produced by our al-
gorithm and we show that the watermarkw can be
successfully extracted by the documentTw.

For the sake of completeness, in Table 1 we also
show performance results of the algorithm presented
in (Simin et al., 2011) with respect to other simi-
lar methods (Gu and Yang, 2009; Liu et al., 2006;
Kankanhalli and Hau, 2002; Wang and Liu, 2009), as
well as with respect to a method based on the structure
of PDF document (Zhong et al., 2007).

5 CONCLUDING REMARKS

In this paper we presented embedded algorithms,
along with their corresponding extraction algorithms,
for watermarking PDF documents using three differ-
ent representations of a self-inverting permutationπ∗,
namely 1D-, 2D-, and RPG-representations.

In light of our graph-based embedding algorithm
Encode RPG.to.PDF it would be very interesting to
investigate the possibility of altering other compo-
nents of the document structure of a PDF file in order
to embed the graphF [π∗]; we leave it as a direction
for future work.

Moreover, an interesting open question is whether
the embedding approaches and techniques used in this
paper can help develop encoding algorithms having
“better” properties with respect to text attacks.

REFERENCES

Adobe (2006). Adobe systems incorporated, adobe
portable document format version 1.7. InWebsite
http://www.adobe.com.

Atallah, M., Raskin, V., Hempelmann, C., Karahan, M.,
Sion, R., Topkara, U., and Triezenberg, K. (2003).

Watermarking�PDF�Documents�using�Various�Representations�of�Self-inverting�Permutations

79

Natural language watermarking and tamperproofing.
In LNCS 2578, Springer, volume 5, pages 196–212.

Bindra, G. (2011). Invisible communication through
portable document file (pdf) format. InProc. 7th Int’l
Conference on Intelligent Information Hiding and
Multimedia Signal Processing (IIH-MSP’11), pages
173–176.

Brassil, J., Low, S., Maxemchuk, N., and Gorman, L.
(1995). Hiding information in document images. In
Proc. of the 29th Annual Conference on Information
Sciences and Systems, pages 482–489.

Chroni, M., Fylakis, A., and Nikolopoulos, S. (2013). Wa-
termarking images in the frequency domain by ex-
ploiting self-inverting permutations. InProc. 9th Int’l
Conference on Web Information Systems and Tech-
nologies (WEBIST’13), pages 45–54.

Chroni, M., Fylakis, A., and Nikolopoulos, S. (2014). From
image to audio watermarking using self-inverting per-
mutations. InProc. 10th Int’l Conference on Web
Information Systems and Technologies (WEBIST’14),
pages 177–184.

Chroni, M. and Nikolopoulos, S. (2012). An efficient graph
codec system for software watermarking. InProc.
36th Int’l Conference on Computers, Software, and
Applications (COMPSAC’12), pages 595–600.

Collberg, C. and Nagra, J. (2010).Surreptitious Software.
Addison-Wesley.

Cox, I., Miller, M., Bloom, J., Fridrich, J., and Kalker,
T. (2008). Digital Watermarking and Steganography.
Morgan Kaufmann, 2nd edition.

Golumbic, M. (1980).Algorithmic Graph Theory and Per-
fect Graphs. Academic Press, Inc., New York.

Gu, Y. and Yang, Y. (2009). A text digital watermarking al-
gorithm for pdf document based on scrambling tech-
nique. InJournal of Foshan University (Natural Sci-
ence Edition), volume 2, pages 43–46.

Huang, D. and Yan, H. (2001). Interword distance changes
represented by sine waves for watermarking text im-
ages. InIEEE Trans. Circuits and Systems for Video
Technology, volume 11(12), pages 1237–1245.

Kankanhalli, M. and Hau, K. (2002). Watermarking of
electronic text documents.Electronic Commerce Re-
search, 2(1-2):169–187.

Lee, I. and Tsai, W. (2010). A new approach to covert com-
munication via pdf files. InSignal Processing, volume
90(2), pages 557–565.

Liu, H., Li, L., Li, J., and Huang, J. (2012). Three novel
algorithms for hiding data in pdf files based on incre-
mental updates. InDigital Forensics and Watermark-
ing, Springer Berlin Heidelberg, pages 167–180.

Liu, X., Zhang, Q., Tang, C., Zhao, J., and Liu, J. (2008). A
steganographic algorithm for hiding data in pdf files
based on equivalent transformation. InInt’l Sym-
posiums on Information Processing (ISIP’08), pages
417–421.

Liu, Y., Sun, X., and Luo, G. (2006). A novel information
hiding algorithm based on structure of pdf document.
In Computer Engineering, volume 32(17), pages 230–
232.

Low, S. and Maxemchuk, N. (2000). Capacity of text mark-
ing channel. InIEEE Signal Processing Letters, vol-
ume 7(12), pages 345–347.

Low, S., Maxemchuk, N., and Lapone, A. (1998). Docu-
ment identification for copyright protection using cen-
troid detection. InIEEE Transactions on Communica-
tions, volume 46(3), pages 372–381.

Lu, P., Lu, Z., Zhou, Z., and Gu, J. (2008). An optimized
natural language watermarking algorithm based on
tmr. In Proc. 9th International Conference for Young
Computer Scientists, pages 1459–1463.

Maxemchuk, N. and Low, S. (1997). Marking text docu-
ments. InProc. of the IEEE Int’l Conference on Image
Processing, pages 13–16.

Maxemchuk, N. and Low, S. (1998). Performance compar-
ison of two text marking methods. InIEEE Journal
of Selected Areas in Communications, volume 16(4),
pages 561–572.

Meral, H., Sankur, B.,̈Ozsoy, A., Güngör, T., and Sevinç,
E. (2009). Natural language watermarking via mor-
phosyntactic alterations. InComputer Speech and
Language, volume 23(1), pages 107–125.

Simin, H., Xingming, S., and .Zhangjie, F. (2011). A novel
information hiding algorithm based on page object of
pdf document. In10th IEEE Int’l Symposium on Dis-
tributed Computing and Applications to Business, En-
gineering and Science (DCABES’11), pages 266–270.

Sun, X. and Asiimwe, A. (2005). Noun-verb based tech-
nique of text watermarking using recursive decent se-
mantic net parsers. InLNCS 3612, volume Part III,
pages 968–971.

Topkara, M., Topraka, U., and Atallah, M. (2007). Infor-
mation hiding through errors: a confusing approach.
In Proc. of SPIE, Security, Steganography, and Wa-
termarking of Multimedia Contents IX, volume 6505,
pages 1–12.

Vybornova, O. and Macq, B. (2007). A method of text wa-
termarking using presuppositions. InProc. of SPIE,
Security, Steganography, and Watermarking of Multi-
media Contents IX, volume 6505, pages 1–10.

Wang, Q. and Liu, X. (2009). A new watermarking algo-
rithm of pdf document based on correct coding. In
Computing Technology and Automation, volume 28,
pages 137–141.

Zhong, S., Cheng, X., and Chen, T. (2007). Data hiding in
a kind of pdf texts for secret communication. InIn-
ternational Journal of Network Security, volume 4(1),
pages 17–26.

Zhou, X., Zhao, W., Wang, Z., and Pan, L. (2009). Security
theory and attack anlysis for text watermarking. In
Int’l Conference on E-Business and Information Sys-
tem Security (EBISS’09), pages 1–6.

WEBIST�2015�-�11th�International�Conference�on�Web�Information�Systems�and�Technologies

80

