
A Renewable Source Aware Model for the Charging of Plug-in 
Electrical Vehicles 

Jânio Monteiro1,2 and Mário S. Nunes1 
1INESC-ID, Lisbon, Portugal 

2ISE, University of Algarve, Faro, Portugal 
 

Keywords: Smart Grids, Plug-in Electrical Vehicles, Charge Scheduling, Renewable Sources. 

Abstract: The number of Electric Vehicles is estimated to continuously rise over the next years. While this trend is 
expected to lead to a reduction in CO2 emission, existing electrical grids have not been planned to support a 
large number of electrical vehicle’s batteries charging simultaneously. The integration of distributed 
production using renewable energy sources is seen as a solution to meet the requirements of battery 
charging. Renewable sources are however affected by variation and lack of predictability, due to the 
environmental factors they depend on, which are the cause of inefficiencies and mismatches in the required 
demand-response equilibrium. In these conditions, the model and the associated scheduling algorithms to 
use in medium to large charging parks play an important role, due to the implications it has in their 
operational costs and in the maximization of the return of investments made in renewable sources. In this 
paper we propose and evaluate a charging model that engages users to participate in demand response 
measures, by giving them the ability of selecting two energy components for the charging of their electrical 
vehicles, one of which varies according with the variable nature of renewable sources. Based in this model 
we propose one scheduling algorithm and compare it with several other solutions, demonstrating that the 
proposed solution is able of achieving a significant cost reduction with significant low computational 
complexity and processing times, while achieving a high ratio of renewable energy usage. 

1 INTRODUCTION 

As the number of Plug-in Electrical Vehicles (EVs) 
is expected to rise over the next years, electrical 
grids have to prepare to accommodate a potential 
large number of such vehicles (Wansart and 
Schnieder, 2010). Legacy distribution grids 
however, are far from reaching that capability. In 
fact, several studies held in several countries show 
that current electrical grids do not tolerate EV 
penetration rates above 5-15% (Lopes et al., 2011). 
In order to adapt these grids to this trend, several 
measures should be considered, including an 
increase in production and implementing the 
scheduling of battery charging to avoid simultaneity. 

In terms of production, the introduction of 
Distributed Energy Resources (DER) in the 
distribution grid, especially those that use renewable 
energy sources, is seen as an opportunity to reduce 
CO2 emissions. These power sources however are 
sometimes characterized as Intermittent Resources 
(IRs), because they depend on environmental factors 

which make them vary significantly over time and 
difficult to predict with accuracy.  

In order to reduce the mismatches between 
production and consumption several solutions can be 
considered, including Demand-Response (DR) and 
energy storage. The introduction of these solutions 
can, not only reduce the investments needed in 
renewable sources, but also accelerate its return, by 
maximizing its utilization. 

The usage of batteries to support energy storage 
enables a higher flexibility in the control of loads, 
but comes with the drawback of introducing 
efficiency losses, higher investment costs and 
maintenance expenses due to battery lifecycles. In 
terms of EV batteries, the costs associated with the 
reduction of battery lifecycles show that feeding 
electricity back into the grid is only justified in very 
limited time frames and scenarios (Link et al., 2010). 
However, EV batteries can still play an important 
role if they adapt their charging rates according with 
the production obtained from renewable sources. 
Thus, if correctly managed, electric vehicles can be 
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used to increase electrical grid stability. 
In this paper we address the problem of 

scheduling the charging of a large number of plug-in 
electrical vehicles in public parking facilities. As 
input, a centralized EV aggregator obtains, from 
each vehicle driver, the information about the 
amount of energy that needs to be allocated to its 
individual EV and the expected deadline for 
charging completion. Given these targets the aim of 
the charging operator is to run a scheduling 
mechanism that reduces the cost of the electricity 
bought to a Distribution System Operators (DSO), 
taking into consideration different tariff rates and the 
local production obtained from renewable sources. 

Some papers have already addressed some of the 
problems faced by EV charging. Among them, in 
(Link et al., 2010; Schmutzler et al., 2011), 
algorithms are presented that adjust the charging of 
EVs taking into consideration tariff rates, together 
with local and grid level power limitations. For 
instance, in (Schmutzler et al., 2011) the power that 
is used for charging of electric vehicles is made to 
vary inversely with a cost indicator, which in turn 
reflects the tariff rates and/or the power obtained 
from renewable sources. The proposed model 
considers that the power availability from distributed 
generation and renewable sources is reflected in 
price variations. This model however does not 
consider that local generation from renewable 
sources is available at the charging premises. 

In (Sundström and Binding, 2010) the authors 
present and evaluate an optimization algorithm for 
the charging schedule of EVs managed by a fleet 
operator. The algorithm considers constrained grid 
conditions and uses driver historical trip data to 
forecast energy requirements for EV usage. 

In (Chen et al., 2012) the authors address an 
algorithm that formulates the charging problem 
using a threshold test for admission control and a 
greedy algorithm for scheduling. While the proposed 
algorithm already considers local production from 
renewable sources it deals with renewable sources 
variability considering the option of non-completion 
penalties when a reservation is not assured.  

In this paper we present and evaluate a charging 
model and associated scheduling  algorithm to apply 
to battery charging of electrical vehicles that is able 
of optimizing the scenarios where local generation is 
available and also those where it isn’t. Different 
from (Chen et al., 2012) we consider that any EV 
entering the charging premises communicates the 
deadline for charging completion and two amounts 
of charging energy levels, one guaranteed and 
another non-guaranteed. The guaranteed part needs 

to be authorized by an admission control procedure 
when an EV enters the charging premises. The non-
Guaranteed part builds an eco-friendly solution 
which assures that the EV will be charged using only 
renewable sources. 

The rest of the paper has the following structure. 
Section 2 introduces the factors involved in EV 
charging with renewable sources. Section 3 presents 
the proposed optimization model. Section 4 
describes the implemented simulation platform and 
the obtained results in different scenarios. Finally 
section 5 concludes the paper. 

2 CONTEXT 

A model for the charging of plug-in electric vehicles 
needs to consider several factors including power 
variability, electricity tariffs, electric circuit 
constraints, while reflecting user requirements and 
its assessment. 

The variability associated with renewable power 
sources makes the dynamic adjustment of demand 
difficult to implement, especially when non-elastic 
loads are being used. Also, these variations are 
difficult to predict with accuracy, affecting the 
efficiency of the scheduling algorithms that decide 
when loads should work. In other to assure a 
continuous supply, the power generated from these 
sources is normally combined and complemented 
with the power obtained from distribution operators 
and paid according with their tariff rates. 

In terms of tariffs, the forecasted supply and 
demand data is already being mapped to electricity 
prices paid by Distribution System Operators, as for 
instance happens in (OMI-Polo Español S.A., 2010). 
In some countries dynamic tariffs are also being 
introduced at the client level (Utility-Scale Smart 
Meter Deployments, 2011), because constant tariff 
rates have shown not correlate with the marginal 
costs of production (Joskow and Wolfram, 2012).  

While load scheduling has been until now made 
non-automatically, the introduction of automatic 
management systems could cause demand hikes at 
low price periods, causing a disruption of supply, 
due to overloading. Thus, the definition of a charge 
schedule management system should also take into 
consideration local (Electrical installation guide, 
2013) and grid level (Rolink and Rehtanz, 2011) 
electrical circuit constraints. These constraints are 
normally presented in the form of simultaneity 
factors (fs) (Electrical installation guide, 2013; 
Rolink and Rehtanz, 2011). 

Finally,     a    model    that   implements   charge 
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Figure 1: Assumed user’s quality assessment function in 
response to the battery level of their Electric Vehicle. 

scheduling should consider human requirements and 
its final assessment. In terms of requirements, some 
studies like (Mobilität in Deutschland, 2010), enable 
the modelling of EVs charging behaviours using 
mobility information of cars.  

The assessment of the EV supply equipment 
derives partially from the charge level of the EV 
battery when compared with the energy required for 
the next trip. As far as we know, there are no studies 
that translate the subjective assessment of EV users. 
Basically we can assume that above a certain battery 
charging limit (Emin) users can tolerate different 
battery charging levels, as they have little impact in 
their mobility. On the contrary, if, after a charging 
period, the battery level of an EV is lower than Emin, 
the subjective evaluation of the scheduling 
mechanism will show dissatisfaction. Such 
subjective evaluation curve is shown in Figure 1. 

In order to reflect these factors in the following 
we define a model that considers two charging 
levels. 

3 PROPOSED CHARGING 
MODEL 

Given the above mentioned constraints, we now 
define a model for the charging of Electric Vehicles 
that comprises two thresholds. These energy 
components are: 
 Guaranteed Energy part (EG)– comprises the 

minimum guaranteed amount of energy that the 
user requests to be supplied to a specific EV 
until the end of the charging period;  

 Non-guaranteed Energy part (EN)–  an amount 
of energy allocated to the EV that will only rely 
on renewable sources and thus depends on the 
power generated locally and its availability. 

The first level assures the minimum energy level 
that a user expects to find in battery, after a given 

charging period. It corresponds to the Emin of figure 
1. Above that limit, the EV supply equipment will 
only rely on renewable energy power to charge the 
EV battery, up to its maximum capacity. Thus the 
total energy requested by an EV ݒ (்ܧ௩) is given by: 

௩்ܧ ൌ ே௩ (1)ܧ௩ீܧ

The Non-guaranteed Energy part introduces 
flexibility into the charging process, since the 
resulting charge energy can vary according with the 
intermittent power generated by renewable sources. 
When the power produced by renewable sources 
surpasses the forecasted power, EV batteries are 
used to store excess production, reducing the need 
for non-vehicle batteries at premises.  

Users can select the amount of energy they 
request for each of the components, taking into 
consideration that the Non-guaranteed Energy part 
uses a 100% eco-friendly power. The Non-
guaranteed Energy part is also expected to be paid 
with a lower tariff motivating them to use it as much 
as possible. 

 

Figure 2: Power distribution between the Renewable 
Energy Sources and Guaranteed and non-Guaranteed 
Energy requests. 

3.1 Mathematical Formulation   

As represented in Figure 2, the Guaranteed Energy 
part is assured through two power components: an 
electrical grid component (Cvt) plus a renewable 
source component (Pgvt). As for the non-Guaranteed 
Energy part, it only makes use of renewable power 
(Pnvt).  

For each electric vehicle v, a minimization of the 
objective function (2) should be met, by selecting 
the charging level Cvt within [tvpi,tvpf] of EVs, in 
order to minimize the sum of all costs paid to the 
DSO, according with the set of tariff rates Tp. 

݉݅݊  ܶන ݐ݀	௩௧ܥ
௧ೡ

௧ೡ



ୀଵ



௩ୀଵ

 (2)

The minimization of equation (2) is subject to 
several conditions: 
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i) Each charging request from a newly arriving EV 
needs to pass through an Admission Control 
procedure that verifies if the Guaranteed part of the 
requested energy can be assured. Thus, at any given 
time instance t, the sum of all guaranteed charging 
powers may not exceed the maximum power of the 
whole parking facility: 

ሺܥ௩௧ ܲ௩௧ሻ



௩ୀଵ

 ܲ௫ (3) 

Equation (3) assures that the Guaranteed Energy part 
will never fail in case an unexpected reduction of the 
renewable source power is verified.   
ii) Also, at each time instance t, the sum of power 
allocated to each electrical vehicle v, from both 
electrical grid and renewable sources cannot exceed 
the EV maximum charging power (Pvt):  

௩௧ܥ ܲ௩௧ ܲ௩௧  ௩ܲ௧ (4)

iii) Equation (5) assures that for each electrical 
vehicle v, the Guaranteed Energy part is fulfilled: 

න ௩௧ܥ ܲ௩௧ ݐ݀
௧

௧

ൌ ௩ (5)ீܧ

iv) A maximization of the non-Guaranteed charging 
energy should be met, constrained by the maximum 
power requested by the vehicle driver: 

ݔܽ݉ ቈන ܲ௩௧ ݐ݀
௧

௧

  ே௩ (6)ܧ

In order to assure the maximization of the utilization 
of renewable energy, as expressed in equation (6) a 
negative cost is applied to renewable energy 
utilization, and thus a virtual cost reduction in terms 
of optimization algorithm is verified when using that  

scr= sort charging requests starting 
by      soonest leaving hour 

for each non allocated scr 
allocate renewable energy for 
the guaranteed part (EG) 
 until exhaustion 

for each non allocated scr 
allocate DSO energy for the 
guaranteed part (EG) starting 
 by the lowest tariff that 
still has available energy 

for each non allocated scr 
allocate renewable energy for 
the non-guaranteed part (EN) 
until exhaustion 

Algorithm 1: Adapted EDF algorithm according with the 
proposed model. 

energy. 
Finally, when all the above criteria are met, the 

scheduling algorithm should try to assure the 
charging of the Guaranteed Energy component as 
quickly as possible, as a variable number of new 
vehicles will arrive later to the park. 

3.2 Scheduling Algorithms   

Given the restrictions presented in last subsection, 
we will now test four main methods of charge 
scheduling, including two benchmark algorithms 
such as First-Come/First-Serve (FCFS) and Earliest 
Departure First (EDF) plus a Linear Programming 
(LP) optimization solution and a Gradual model.  

As a first solution we have considered a First-
Come/First-Serve (FCFS) algorithm, where, at each 
time interval t, the available power (including the 
one obtained from renewable sources) is allocated to 
EVs until its exhaustion. In this case, EVs are 
charged by the order of arrival, considering that, at 
all time instants the maximum power obtained from 
the DSO is constant and cannot surpass a pre-
defined power limit (Pmax).  

The EDF algorithm was adapted to the model 
considered in this paper, being summarized in 
Algorithm 1. In the following we will refer to this 
algorithm as Adapted EDF (AEDF).  

As in the FCFS solution, in the Gradual 
algorithm we have considered that EV battery 
charging occurs by their arriving order but, in a 
process similar with the one described in 
(Schmutzler, Wietfeld, Jundel, Voit, 2011), the 
charging power (Pmax/TARIFF(t)) varies inversely with 
the tariff cost. In this case, we have considered that 
the maximum charging power of all EVs in the 
charging facilities is given by: 

ܲ௫/்ோூிிሺݐሻ

ൌ ܲ௫ . ቈ1 െ
ሻݐሺݐݏܥ െ ݐݏܥݕܽܦ

௫ݐݏܥݕܽܦ
 (7) 

where Pmax refers to the maximum power that can be 
obtained from the higher level operator/circuit, 
Cost(t) refers to the tariff cost for the time instant t, 
and DayCostmin and DayCostmax correspond 
respectively to the minimum and maximum intra-
day tariff prices. 

Finally, the Linear Programming optimization 
model takes into consideration several parameters 
shown in Figure 3. The objective function of the 
model aims at minimizing costs, subject to the 
constraints presented section 2.2. 

Given the aforementioned algorithms, next 
section will outline the implemented simulation 

VEHITS�2015�-�International�Conference�on�Vehicle�Technology�and�Intelligent�Transport�Systems

54



platform and the tests performed. 

 

Figure 3: Diagram of the Linear Programming 
optimization module. 

4 SIMULATION PLATFORM AND 
RESULTS 

In the following we describe a set of simulations 
considering a parking facility with a maximum of 50 
charging stations. The maximum charging power of 
each EV (i.e. Pvt) was set to 3 kW.  

Figure 4 presents the considered tariff rates, 
obtained from (OMI-Polo Español S.A., 2010) for 
the 1st of August 2013 and the generated power (in 
kW) obtained from renewable energy sources (for 
the same day, measured in the south of Portugal) 
considering a peak production of 83 kW. The grid is 
simulated using a discrete-event simulation with 
time slots of 15 minutes. 

We considered that EVs arrive to the parking 
station according to a Poisson distribution with mean 
9 (i.e., 9 a.m.) and the duration of the charging was 
made to vary according with a normal distribution 
with  mean  6  (hours)  and  standard  deviation  of  4 

 
Figure 4: Tariff prices (upper part) and power generated 
using photovoltaic panels (bottom) in August, 1st, 2013. 

hours. To model the total energy requested by each 
EV we have also considered a normal distribution 
with mean 10 (kWh) and standard deviation of 4 
(kWh). 

4.1 Scenario 1  

In the first scenario we considered that no renewable 
energy sources were available at the charging 
premises and that all charging requests were 
guaranteed.  

As the maximum power received from a DSO is 
an important parameter that is expected to be 
minimized, we have evaluated how different values 
of Pmax, ranging from 60 kW (fs=0.4) to 165 kW 
(fs=1.1) in steps of 15 kW contribute to the 
efficiency of each algorithm.  

 

Figure 5: Ratio of EV requests that were fulfilled when not 
using renewable energy sources. 

Figure 5 presents the obtained results in terms of the 
ratio of EV requests that were fulfilled (as Pmax 
varies). As can be verified, when Pmax was equal to, 
or higher than, 75 kW all the algorithms were able of 
fully assuring the requested energy quantities. 
However under 75 kW only the FCFS and AEDF 
algorithms were able of fully charging all vehicles. 
These results reflect an important issue. A higher 
degree of freedom should be given to the algorithms 
that perform load shifting, as they will likely request 
higher power levels when tariffs are lower. If loads 
are postponed and more EVs later arrive to the 
charging station, there is a risk of not being able of 
serving all requests. That risk increases as Pmax 
decreases. 

Using the same conditions, Figure 6 shows how 
different values of Pmax contribute to the cost 
efficiency of each algorithm. As can be verified, as 
of Pmax increases the cost of both FCFS and  Gradual 
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Figure 6: Cost comparison of the three algorithms when 
production from renewable energy sources is not included. 

algorithms increases. These results come from the 
fact that in the performed tests most EVs arrive to 
the park when the tariff rates are higher. Thus 
increasing Pmax has a direct impact in the cost of 
these two algorithms as more power can be allocated 
to EVs. On the contrary, the cost of the other two 
algorithms, the LP and AEDF, has shown not to vary 
significantly with Pmax. The lowest cost was assured 
by the LP algorithm. 

4.2 Scenario 2 

In the following scenario we considered that a 
renewable energy source (shown in Figure 4) was 
available at the charging premises and that all 
charging requests were guaranteed. Given the results 
obtained in previous tests, we have considered Pmax 
to be equal to 90 kW.  

Using these conditions we have performed 
systematic tests with 30 runs to evaluate the 
performance of the charging algorithms in terms of 
costs and renewable energy usage. In each execution 
we introduced a random variation between what was 
the forecasted renewable power and the power that 
was actually available, for both, in each time instant 
and for a day period. This method approximates our 
tests with what really happens when dealing with 
forecasting the power of renewable sources. 

Table 1 reflects the results of the algorithms in 
this scenario. This table reflects the cost that the 
charging operator would have to pay (and not the 
cost paid by the EV driver). As can be verified in 
Table 1, both, the LP and AEDF algorithms are both 
able to use the highest amount of the available 
renewable energy, and thus receive the lowest 
amount of energy from distribution operators. Both 
solutions are able of significantly reducing electrical 

costs when compared with the FCFS and Gradual 
algorithms. 

Table 1: Results of the Simulation tests in Scenario 2. 

 Scheduling Solution 

Parameter FCFS Gradual LP AEDF 

Cost (€) 6.40 6.30 0.030 0.035 

Non-
Renewable 

Energy Used 
(kWh) 

129.01 127.03 0.95 0.75 

Renewable 
Energy Used 

(kWh) 
360.24 362.23 488.30 488.50 

Total Energy 
(kWh) 

489.25 489.25 489.25 489.25 

Number of 
EVs Charged 

50 50 50 50 

4.3 Scenario 3 

As in the previous scenario, in this case we 
considered that the renewable energy source was 
available at the charging premises. However, we 
have now defined that users were requesting part of 
the energy as Guaranteed and the other part as Non-
guaranteed. Specifically, we have considered that 
85% of the energy requested in scenario 2 was now 
demanded as Guaranteed and another 25% was 
requested as non-Guaranteed. In this sense we 
assume that in this scenario users are predisposed to 
let the EV Supply Equipment (EVSE) charge 10% 
more energy than in the last scenarios for three 
reasons: (1) the non-Guaranteed part is expected to 
be cheaper; (2) users are aware that this energy is 
100% renewable; and (3) it isn´t guaranteed that 
they will get the requested amount. 

 

Figure 7: Aggregated Power consumption of all EVSEs 
for the Gradual algorithm, in terms of Guaranteed (upper 
part) and non-Guaranteed charging (bottom part) 
components. 
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Figure 8: Aggregated Power consumption of all EVSEs 
for the LP algorithm including the Guaranteed (upper part) 
and non-Guaranteed charging (bottom part) components. 

As in the previous scenario, we have considered Pmax 
to be equal to 90 kW. As in the previous scenario we 
have performed systematic tests with 30 runs to 
evaluate the performance of the charging algorithms 
in terms of costs and renewable energy usage. In 
each execution we introduced a random variation 
between what was the forecasted renewable power 
and the power that was actually available, both at 
each time instant and during a day period. 

For the same set of EV’s arriving times and 
requested energy, Figures 7 and 8 present the results 
of a one day simulation, respectively for the Gradual 
and LP algorithms concerning the power consumed 
by all EVSEs. As can be verified in these plots, the 
LP algorithm is able of relying only on renewable 
energy to charge both the Guaranteed and non-
Guaranteed components.  

Table 2 reflect the results of the algorithms in 
this scenario. When comparing the results of Table 2 
with the ones of Table 1 (scenario 2), it can be 
verified that on average there is a cost reduction in 
all algorithms, even with an increase of nearly 10% 
of energy allocated to EVs. Also, when comparing 
both scenarios, a higher consumption of renewable 
energy is verified, with a correspondent decrease in 
the total amount of energy obtained from the upper 
level distribution operators. 

The reason behind the fact that all algorithms are 
able of charging more energy using less power from 
the DSO (when compared with previous scenario) 
comes from the flexibility introduced by the model 
regarding the partitioning into Guaranteed and Non-
guaranteed energy components. What happens is 
that in those days when more renewable power is 
available, the proposed model is able of using it, and 
for those days when it is not, it is able to adapt better 
by recurring less to the distribution operator. 

Table 2: Results of the Simulation tests in Scenario 3. 

 Scheduling Solution 

Parameter FCFS Gradual LP AEDF 

Cost (€) 5.12 5.11 0.023 0.022 

Non-Renewable 
Energy Used 

(kWh) 
105.08 104.85 0.72 0.47 

Renewable 
Energy Used 

(kWh) 
434.78 435.00 532.23 539.38 

Total Energy 
(kWh) 

539.85 539.85 532.95 539.85 

Number of EVs 
Charged 

50 50 50 50 

 

As can be verified in Table 2, both the LP and 
AEDF algorithms are able of using the highest 
amount of the available renewable energy, and thus 
achieve the lowest cost. The main difference 
between the two algorithms stands in their 
computational requirements. In fact, when using an 
Intel(R) Core(TM) i7-4770 microprocessor the 
AEDF algorithm took on average 216 milliseconds 
to schedule 50 charging requests, which compares 
with the 14.1 seconds required by the LP algorithm. 
As each driver would have to wait for the end of the 
scheduling algorithm to know if the requested 
energy could be granted, the time that the algorithm 
takes to obtain a solution is an important factor that 
needs to be considered in its evaluation.  

Figure 9 compares both the LP and the AEDF 
algorithms in terms of computation time, when 
scheduling a varying number of EVs. It shows that 
the LP solution suffers from severe scalability 
problems, which can prevent it from being 
implemented in a real scenario with several dozen 
vehicles. On the contrary the execution times of the 
AEDF algorithm are not only much lower than the 
LP ones, but also they increase linearly with the 
number of EVs being scheduled. 

 
Figure 9: Computation times of the LP versus AEDF 
algorithms for the scheduling of different numbers of EVs. 
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5 CONCLUSIONS  

This paper proposes and evaluates a novel model for 
the charging of plug-in electric vehicles that includes 
the local production of energy resulting from 
renewable sources. The model is designed to 
motivate users to participate in demand response 
measures, making their EVs serve as energy storage 
units when surplus energy is generated, by being 
aware of the variability that such sources impose.  

The tests and results obtained show that the 
proposed model is able of achieving a cost reduction 
in all the tested algorithms while assuring a higher 
consumption of renewable energy. Among the tested 
scheduling algorithms, the proposed AEDF solution 
has shown to be able of achieving a significant cost 
reduction with a significant lower computational 
complexity and processing times, when compared 
with the LP algorithm. The obtained results have 
demonstrated that the AEDF algorithm can be used 
in charging facilities with 50 or more vehicles. 

Finally, the flexibility introduced by the model 
regarding the partitioning into Guaranteed and Non-
guaranteed energy components has shown to support 
a better adaptation to the variable nature of 
renewable sources. 
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