
Detecting Feature Duplication in Natural Language Specifications when
Evolving Software Product Lines

Amal Khtira, Anissa Benlarabi and Bouchra El Asri
IMS Team, SIME Laboratory, ENSIAS, Mohammed V University, Rabat, Morocco

Keywords: Natural Language Requirements, Software Product Line, Feature Duplication, Natural Language Processing.

Abstract: Software product lines are dynamic systems that need to evolve continuously to meet new customer require-
ments. This evolution impacts both the core platform of the product line and its derived products. For several
reasons, the most common way to express requirements by customers is natural language. However, the ex-
perience has shown that this communication channel does not give the possibility to detect system defects
such as inconsistency and duplication. The objective of this paper is to propose a method to transform textual
requirements into the XML format used by some Feature-oriented software development tools, in order to
facilitate the detection of features duplication.

1 INTRODUCTION

Software Product Line Engineering (SPLE)
(Clements and Northrop, 2002) is an approach
that aims at reusing common assets to generate
customized applications according to different needs
of customers. The main benefits of this approach are
the cost reduction, quality enhancement and time to
market reduction. The SPLE approach involves two
major processes, domain engineering and application
engineering (Pohl et al., 2005). Domain engineering
consists in defining the variability and commonality
of the product line, and building all reusable assets
(i. e. requirements, architecture, components, tests).
Based on these assets, specific applications are
derived during the application engineering process.

Software product lines are a long-term investment
and have to evolve constantly in response to business
needs, changing markets, and advances in technol-
ogy. This evolution impacts both the common as-
sets of the product line and the specific assets of in-
dividual applications. Due to this change, several de-
fects can arise in the SPL models, such as the incon-
sistency and incompleteness of features (Reder and
Egyed, 2013)(Zowghi and Gervasi, 2003), and the
non-conformance of constraints (Mazo et al., 2011).

What makes the evolution process more complex
is that, in most current software projects, require-
ments documents are written in natural language be-
cause it is the simplest and the more flexible way
for customers to express their expectations. How-

ever, specifying requirements in natural language has
shown many drawbacks such as imprecision, inaccu-
racy and ambiguity (Meyer, 1985)(Lami et al., 2004).
In order to preserve the consistency and correctness
of the SPL models, many approaches have been pro-
posed to manage the evolution process by verifying
the specifications of change requests considered as
the main source of model defects. A large number
of these approaches aimed at transforming the natu-
ral language requirements to a formal or semi-formal
representation (Lami et al., 2004)(Kamalrudin et al.,
2010)(Holtmann et al., 2011).

In this paper, we propose a method based on natu-
ral language processing to transform natural language
requirements into a tree-like document (i. e. XML
document). This document will serve as an input to an
algorithm whose purpose is to detect a specific defect
in the specification, the feature duplication (Khtira
et al., 2014). We consider that two features are du-
plicated when they satisfy the same functionality in
the product line.

The remainder of the paper is organized as fol-
lows. Section 2 gives an insight of the knowledge
base of our work. In Section 3, we explain our method
of transforming natural language specifications into
XML documents, and we present the algorithm of de-
tection of feature duplication. Section 4 provides an
overview of different works of the literature related to
our approach and explains in what our contribution is
different. In section 5, we conclude and outline future
work.

257Khtira A., Benlarabi A. and El Asri B..
Detecting Feature Duplication in Natural Language Specifications when Evolving Software Product Lines.
DOI: 10.5220/0005459802570262
In Proceedings of the 10th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE-2015), pages 257-262
ISBN: 978-989-758-100-7
Copyright c 2015 SCITEPRESS (Science and Technology Publications, Lda.)



2 BACKGROUND

In this section, we introduce the background of our
study. First, we give an overview of the feature dupli-
cation problem. Then, we discuss the transformation
of requirements from an informal to a formal repre-
sentation.

2.1 Feature Duplication

Software product lines are dynamic systems that need
to evolve constantly to address changes such as new
customer requirements, technology changes, or refac-
toring. The possible changes in a product line involve
changes that affect the entire product line or changes
driven by an individual product. These changes can
be the source of many defects in the product line
such as inconsistency (Reder and Egyed, 2013)(Blanc
et al., 2009), incompleteness (Zowghi and Gervasi,
2003) and duplication (Khtira et al., 2014). Duplica-
tion is the fact of adding features that have the same
role in the application, which means that they satisfy
the same functionality.

In (Thomas and Hunt, 1999), Hunt and Thomas
distinguish the four main causes of duplication,
namely imposed duplication, inadvertent duplication,
impatient duplication and inter-developer duplication.
In the case of software product lines, at least the two
last causes might occur. Indeed, due to tight dead-
lines, developers could possibly get impatient and add
duplicated features from the specifications. In addi-
tion, the large number of customers and developers
working on the system can easily cause feature du-
plication. Many studies have dealt with defects in
SPL such as inconsistency and incompleteness, but
to the best of our knowledge, few attempts have tack-
led the problem of duplication. In our study, we will
focus on this specific defect. Since manual verifica-
tion has proved to be time-consuming and error prone,
we propose an automatic algorithm to detect duplica-
tion based on the formal presentation generated from
a textual requirements of an evolution.

2.2 Formalizing Natural Language
Requirements

In most development projects, textual requirements
are an important input of the requirements analy-
sis. Although formal methods are used in some
safety-critical systems, for the largest part of soft-
ware projects, the predominant mean of representing
requirements is Natural Language due to many rea-
sons. Indeed, specifying requirements in natural lan-
guage is more flexible and simple for the customer.

Moreover, natural language can be understood by all
the stakeholders of the project, unlike formal methods
which can be very difficult to customers. Hence, nat-
ural language specifications can be used as an agree-
ment between customers and suppliers and as an out-
put for the project management. However, expressing
requirements in a natural language frequently make
them prone to many defects. For instance, (Meyer,
1985) details seven problems with natural language
specifications: noise, silence, over-specification, con-
tradictions, ambiguity, forward references and wish-
ful thinking. (Lami et al., 2004) dealt with other de-
fects, namely the ambiguity, the inconsistency and
the incompleteness. To overcome these problems,
many studies have proposed methods to transform
natural language specifications to formal or semi-
formal specifications (Holtmann et al., 2011)(Fat-
wanto, 2013)(Cabral and Sampaio, 2008)(Ilieva and
Ormandjieva, 2005).

In the context of software product lines, the do-
main model of the entire product line and the applica-
tion models of the derived products can be expressed
using feature models, while the specifications of a
new evolution concerning a derived product can be
expressed using natural language. To enable a veri-
fication of the specifications against the product line
models, we need first to transform these requirements
into a more formal presentation and to assure the ab-
sence of all sorts of defects.

3 DUPLICATION DETECTION IN
NATURAL LANGUAGE
SPECIFICATIONS

The purpose of our work is to detect duplication in
textual specifications related to an evolution of a soft-
ware product line. To achieve this goal, we propose a
two-step process. The first step consists of transform-
ing the natural language specifications into an XML
document. The second step involves the application
of an algorithm that detects duplicated features in the
generated XML. Figure 1 represents the overview of
the proposed process.

3.1 Initiation Phase

The objective of this phase is to initiate the model
that will be used by the machine learning. The model
is thus populated based on the domain model, which
contains all the existing features implemented by the
product line. As a case study of our approach, we con-
sider a CRM (Customer Relationship Management)

ENASE�2015�-�10th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

258



Figure 1: An overview of the process.

Figure 2: The Domain Feature Model of the CRM.

product line with the feature model depicted in Fig-
ure 2.

It has to be noted that the domain model and the
application models of the SPL are created using the
FeatureIDE tool (Kastner et al., 2009), which is an
open source framework for software product line en-
gineering based on Feature-Oriented Software Devel-
opment (FOSD). This framework supports the entire
life-cycle of a product line, especially domain analy-
sis and feature modeling. It provides a graphical pre-
sentation of the feature model tree and generates auto-
matically the corresponding XML source. This struc-
ture of the XML distinguishes the concepts of varia-
tion points and variants using tags. The tags ”or” and
”alt” correspond to variation points, while the tags
”feature” correspond to variants.

Expressing the feature models using an XML for-
mat will allow us to anticipate the comparison be-
tween these models and the specifications of evolu-
tions in terms of duplication.

3.2 Formalizing Natural Language
Specifications

In this section, we explain the process of transforma-
tion of natural language requirements into an XML
document. To perform this operation, we will use the
OpenNLP library (OpenNLP, 2011), which is a ma-
chine learning based toolkit for the processing of nat-
ural language text. The remainder of this subsection

details the different steps and artifacts involved in this
process.

3.2.1 Textual Specification

In this stage of the process, the main input is the spec-
ification of a new evolution related to a derived prod-
uct. This specification contains the new requirements
that have to be implemented in this specific product.
The easiest and more flexible way for the customer to
express his requirements is natural language. Hence,
the specification can be written in a document with a
doc or txt format.

3.2.2 Sentence Detector

The first step of this stage consists of detecting the
punctuation characters that indicate the end of sen-
tences. After the detection of all sentence boundaries,
each sentence is written in its own line. By processing
the input textual specification, the output of this oper-
ation will be a text document that contains a sentence
per line.

3.2.3 Tokenizer

This step consists of segmenting the resulted sen-
tences of the previous step into tokens. A token can
be a word, a punctuation, a number, etc. As an out-
put of this action, all the tokens of the specification
are separated using whitespace characters, such as a
space or line break, or by punctuation characters.

3.2.4 Parser

The parser is responsible for analyzing each sentence
of the specification in order to mark tokens with their
corresponding types and roles in the sentence based
on the rules of the language grammar (e.g. noun, verb,
adjective, adverb). We note that the language used in
our input specifications is English. A parser marks
all the words of a sentence using a POS tagger (Part-
Of-Speach tagger) and converts the sentence into a
tree that represents the sentences syntactic structure.
Figure 3 depicts an example of parsing for a textual
definition of a requirement related to the case study
presented in Figure 2.

This operation enables us to have an exact under-
standing of the sentence. For example, it allows us
to confirm whether the action of a verb is negative or
affirmative, and whether a requirement is mandatory
or optional.

Detecting�Feature�Duplication�in�Natural�Language�Specifications�when�Evolving�Software�Product�Lines

259



Figure 3: An example of syntax parsing.

3.2.5 Entity Detector

The aim of this step is to detect semantic entities in
the specification. In our study, we are interested espe-
cially in the parts of the sentences considered as vari-
ation points and variants. To carry out this task, we
need the model created in the initiation phase where
all the domain specifications are tagged.

In the example depicted in Figure 4, the entity de-
tector reads a tokenized sentence and outputs the sen-
tence with markup for the detected variation point and
variant.

Figure 4: An example of detecting entities.

In order to measure the precision of entity recog-
nition, we use the evaluation tool of OpenNLP that
provides information about the accuracy of the used
model.

3.2.6 Repository

The repository contains two main components:

� The model that contains the different features
of the domain model, classified in different
categories, especially <variation point> and
<variant>.

� The dictionary which contains the set of syn-
onyms and alternatives for all the concepts used
in the system.

The repository is initially populated based on the do-
main model of the product line. So that the repository
keeps up with the evolution of the product line and
its derived products, the new concepts detected in the
specification are added to the initial repository, which
makes the latter more accurate.

3.2.7 XML Output

The output of our process is the specification in the
form of an XML document. The XML should contain
the tags ”or” and ”alt” for variation points, and the
tags ”feature” for variants. This structure provides a
unified presentation for both the domain model and
the specification. The XML document will serve as
an input of the algorithm for duplication detection.

3.3 The Algorithm to Detect Feature
Duplication

With the large number of features in a specification,
detecting duplication manually becomes a tedious,
time-consuming and error-prone task. In order to
identify efficiently the duplicated features, we pro-
pose an automatic algorithm that uses as an input the
generated XML of the specification. An example of
this XML is depicted in Figure 5.

Figure 5: An example of the algorithm input.

We denote by S the XML of the specification. PA
is the set of nodes related to the tags ”or” and ”alt”
of S (i. e. variation points), and V is the set of nodes
related to the tags ”feature” of S (i. e. variants).

P = fp1; p2; : : : ; png

8pi 2 P 9Vi where Vi = fvi j j j 2 Ng
Thus:

V =
n[

i=1
Vi

The proposed algorithm contains the following
steps:

� Step 1. This step is based on the dictionary that
contains the synonyms of all the concepts of the
SPL, and for each set of synonyms, we define
a key synonym. For example : The synonyms
for ”on-line sales” could be ”e-sales”, ”Internet
sales”, or ”web sales”. The key synonym for these
alternatives is ”on-line sales”.
The aim of this step is to generate an equivalent
XML of the input, by replacing the name of every

ENASE�2015�-�10th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

260



node (variation point or variant) with its associ-
ated key synonym in the dictionary.

� Step 2. This step consists of putting in alphabet-
ical order the variation points and the variants of
each variation point.

� Step 3. For each variation point, the duplicated
variants are detected and removed from the XML.
The sub-algorithm of this step is as follows:

Algorithm 1: Detecting duplicated variants of a variation
point.

// nk the number of variants of the variation point pk
// DP the set of variation points with duplicated variants
// DV j the set of duplicated variants of the variation point
p j
DP = /0

for each pk 2 P do
DVk = /0

i 0
while i < nk do

if vki = vki+1 then
DP DP[fpkg
DVk DVk [fvkig
Vk Vk nfvkig

end if
i i+1

end while
end for

� Step 4. During this step, we carry out a com-
parison between the variants of all the variation
points, in order to detect duplication in the whole
XML.
The final output of these steps is a log file that

contains the set of duplicated pairs (variation point,
variant) of the specification. These features are sent
to the user in order to reverify his needs and change
them in case of error.

4 RELATED WORK

Several papers have dealt with detecting defects in
natural language specifications. In this section, we
provide an insight of the studies that use the transfor-
mation of natural language requirements into a formal
or semi-formal presentation.

Lami et al. (Lami et al., 2004) propose a method-
ology and a tool called QuARS (Quality Analyzer
for Requirement Specifications). This tool performs
an initial parsing of the specifications in order to de-
tect automatically specific linguistic defects, namely
inconsistency, incompleteness and ambiguity. The
analysis performed by QuARS is limited to syntax-
related issues of a natural language document, while

semantic-related problems are not directly addressed.
Although this study converges with our paper in the
fact that it is based on parsing of natural language re-
quirements to detect defects. However, our approach
is different because it transforms specifications into
XML trees and it focuses particularly on a specific
defect which is the feature duplication.

Kamalrudin et al. (Kamalrudin et al., 2010) pre-
sented the automated tracing tool Marama that en-
ables users to capture their requirements and automat-
ically generate the Essential Use Cases (EUC). This
tool supports the inconsistency checking between the
textual requirements, the abstract interactions and the
EUCs, but unlike our approach, this one is based on
use cases instead of XML documents.

In order to locate inconsistency in the domain fea-
ture model of a SPL, Yu (Yu et al., 2012) provides
a new method to construct traceability between re-
quirements and features. It consists of creating indi-
vidual application Feature Tree Models (AFTMs) and
establishing traceability between each AFTM and its
corresponding requirements. It finally merges all the
AFTMs to extract the Domain Feature Tree Model
(DFTM), which enables to figure out the traceabil-
ity between domain requirements and DFTM. Using
this method helps constructing automatically the do-
main feature model from requirements. It also helps
locate affected requirements while features change or
vice versa, which makes it easier to detect inconsis-
tencies. However, this approach is different from our
own one, because we suppose that domain and ap-
plication models exist, our objective is hence to con-
struct a more formal presentation of the requirements
related to a new version of a derived product.

At the aim of validating and correcting automat-
ically textual requirements, Holtmann et al. (Holt-
mann et al., 2011) proposed an approach that uses an
extended CNL (controlled natural language) that is al-
ready used in the automotive industry. The CNL re-
quirements are first translated into an ASG (Abstract
Syntax Graph) typed by a requirements metamodel.
Then, structural patterns are specified based on this
metamodel. The use of patterns allows an automated
correction of some requirements errors and the vali-
dation of requirements due to change requests. While
this approach considers the correction of textual spec-
ifications using a CNL, our approach aims at detect-
ing duplication in these specifications by transform-
ing them into tree-like documents.

Similarly, Cabral and Sampaio (Cabral and Sam-
paio, 2008) proposed a novel approach that uses tem-
plates to write use cases in CNL (Controlled Natu-
ral Language), then to translate use cases in CNL to
models in CSP process algebra that allows the de-

Detecting�Feature�Duplication�in�Natural�Language�Specifications�when�Evolving�Software�Product�Lines

261



scription of systems in terms of processes that operate
independently, and interact with each other through
message-passing communication. The use of a CNL
and use case templates enables to guarantee require-
ments consistency. The paper focuses on use case
transformation but does not detail the process of in-
consistency detection.

5 CONCLUSION

In this paper, we presented an approach to detect du-
plication in natural language specifications related to
a derived product of a software product line. This ap-
proach is based on a two-phase process. During the
first phase, the specifications are transformed into a
more formal presentation, XML document, using nat-
ural language processing. In the second phase, we
propose an algorithm that searches the duplicated fea-
tures in the generated XML. Apart from the detection
of duplication within the specification, the formaliza-
tion of the latter anticipates the verification of dupli-
cation between the new requirements and the existing
domain and application models of the software prod-
uct line.

As a case study for our work, we considered a
CRM SPL. Work in progress consists of creating a
model based on the domain specifications of the CRM
tool and using the OpenNLP library to validate it.
We also prepare the specification of a new evolution
which will serve as an input of the proposed process.
In a future work, we intend to develop a support tool
whose objective is to apply the syntax parsing to the
specification, generate the XML and apply the algo-
rithm to detect automatically the duplicated features.

REFERENCES

Blanc, X., Mougenot, A., Mounier, I., and Mens, T. (2009).
Incremental detection of model inconsistencies based
on model operations. In Advanced information sys-
tems engineering, pages 32–46. Springer.

Cabral, G. and Sampaio, A. (2008). Formal specification
generation from requirement documents. Electronic
Notes in Theoretical Computer Science, 195:171–188.

Clements, P. and Northrop, L. (2002). Software product
lines: practices and patterns, volume 59. Addison-
Wesley Reading.

Fatwanto, A. (2013). Software requirements specification
analysis using natural language processing technique.
In QiR (Quality in Research), 2013 International Con-
ference on, pages 105–110. IEEE.

Holtmann, J., Meyer, J., and von Detten, M. (2011). Auto-
matic validation and correction of formalized, textual
requirements. In Software Testing, Verification and

Validation Workshops (ICSTW), 2011 IEEE Fourth In-
ternational Conference on, pages 486–495. IEEE.

Ilieva, M. and Ormandjieva, O. (2005). Automatic transi-
tion of natural language software requirements speci-
fication into formal presentation. In Natural Language
Processing and Information Systems, pages 392–397.
Springer.

Kamalrudin, M., Grundy, J., and Hosking, J. (2010). Man-
aging consistency between textual requirements, ab-
stract interactions and essential use cases. In Com-
puter Software and Applications Conference (COMP-
SAC), 2010 IEEE 34th Annual, pages 327–336. IEEE.

Kastner, C., Thum, T., Saake, G., Feigenspan, J., Leich, T.,
Wielgorz, F., and Apel, S. (2009). Featureide: A tool
framework for feature-oriented software development.
In Software Engineering, 2009. ICSE 2009. IEEE 31st
International Conference on, pages 611–614. IEEE.

Khtira, A., Benlarabi, A., and El Asri, B. (2014). To-
wards duplication-free feature models when evolving
software product lines. In Software Engineering Ad-
vances (ICSEA), 2014 Ninth International Conference
on, pages 107–113.

Lami, G., Gnesi, S., Fabbrini, F., Fusani, M., and Trentanni,
G. (2004). An automatic tool for the analysis of nat-
ural language requirements. Informe técnico, CNR
Information Science and Technology Institute, Pisa,
Italia, Setiembre.

Mazo, R., Lopez-Herrejon, R. E., Salinesi, C., Diaz, D.,
and Egyed, A. (2011). Conformance checking with
constraint logic programming: The case of feature
models. In Computer Software and Applications Con-
ference (COMPSAC), 2011 IEEE 35th Annual, pages
456–465. IEEE.

Meyer, B. (1985). On formalism in specifications. IEEE
software, 2(1):6–26.

OpenNLP (2011). Apache software foundation. URL
http://opennlp. apache. org.

Pohl, K., Böckle, G., and Van Der Linden, F. (2005). Soft-
ware product line engineering. Springer, 10:3–540.

Reder, A. and Egyed, A. (2013). Determining the cause of
a design model inconsistency. Software Engineering,
IEEE Transactions on, 39(11):1531–1548.

Thomas, D. and Hunt, A. (1999). The pragmatic program-
mer: From journeyman to master.

Yu, D., Geng, P., and Wu, W. (2012). Constructing trace-
ability between features and requirements for soft-
ware product line engineering. In Software Engineer-
ing Conference (APSEC), 2012 19th Asia-Pacific, vol-
ume 2, pages 27–34. IEEE.

Zowghi, D. and Gervasi, V. (2003). On the interplay be-
tween consistency, completeness, and correctness in
requirements evolution. Information and Software
Technology, 45(14):993–1009.

ENASE�2015�-�10th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

262


