
Dynamic Large Scale Product Lines through Modularization
Approach

Asmaa Baya, Bouchra El Asri, Ikram Dehmouch and Zineb Mcharfi
IMS Team, SIME Laboratory, ENSIAS, University Mohammed V Rabat, Rabat, Morocco

Keywords: Software Product Line, Feature Model, Modularization, Large Scale Systems.

Abstract: Software product line (SPL) now faces major scalability problems because of technical advances of the past
decades. However, using traditional approaches of software engineering to deal with this increasing
scalability is not feasible. Therefore, new techniques must be provided in order to resolve scalability issues.
For such a purpose, we propose through this paper a modularization approach according to two dimensions:
In the first dimension we use Island algorithm in order to obtain structural modules. In the second
dimension we decompose obtained modules according to features binding time so as to obtain dynamic sub-
modules.

1 INTRODUCTION

Software Product Line (SPL) has been an attractive
approach for medium and large companies. Because,
it allows the optimization of product development
process and planed reuse, through the identification
and reuse of common features that are shared by
several products. However, there is a risk of not
getting a viable return on investment if the pre-
developed assets are not sufficiently reused.

In principle, a product line presents concepts of a
given business domain. But recently product lines
are being used not only to describe variability of a
well defined domain, but were extended to other
types of requirements such as variability of contexts.
As a result, SPL engineering now faces major
scalability issues. Indeed, creating and managing
such large product lines models is becoming a very
complex activity, time consuming and error prone.
That’s why, effective approach for separation of
concerns is becoming a major challenge.

In this paper, we are interested in looking at how
large and complex product line can be managed
through an appropriate representation mechanism.
To achieve that, we explore the possibility of
product line modularization approach that gives due
consideration to large scale particularities.

The remainder of this paper is organized as
follows. In Section 2, we give an overview of large
software product lines, and then we present some

main concepts like variability and separation of
concerns. In section 3, we present our approach for
modularization of product lines. Finally, Section 5
concludes the paper.

2 BACKGROUND

2.1 Large Software Product Lines

In the mid of 1990s, software product lines began to
draw attention of researchers community and
became an independent approach of software
engineering (Maier, 1998; Benavides, Segura and
Ruiz-Cortés 2010). Over last years, SPL was
integrated massively in several business domains
such as mobile phones, automotive systems,
aerospace, etc. (Pohl, Bockle and Linden 2005;
Parra 2011).

Product line engineering is a process that
delivers reusable components, which can be reused
to develop new applications for the domain instead
of developing them from scratch. So, the main
advantage that promote the use of software product
lines is the possibility of planned, proactive and
systematic reuse of the common artifacts (also called
core assets), where related products are treated as a
product family.

Over the last decades, many technical advances
of software engineering were introduced to SPL. As

439Baya A., El Asri B., Dehmouch I. and Mcharfi Z..
Dynamic Large Scale Product Lines through Modularization Approach.
DOI: 10.5220/0005460204390444
In Proceedings of the 17th International Conference on Enterprise Information Systems (ICEIS-2015), pages 439-444
ISBN: 978-989-758-097-0
Copyright c 2015 SCITEPRESS (Science and Technology Publications, Lda.)

a result, an increasing number of concerns emerge,
and large scale is becoming a main characteristic of
all system dimensions: lines of code, number of
stakeholders employing the system for different
purposes, amount of data stored, etc. So, models are
becoming too large for human cognitive abilities,
and too imprecise for automated reasoning.

The main complexity introduced by SPL
compared to other software engineering approach, is
the management of variability. This variability
increase in large scale since, systems evolve
continuously through successive iterations along
multiple dimensions, such as: new stakeholders’
requirements, emergence of operating environment
constraints, incorporation of new technologies, etc.
Consequently, classic management approaches of
SPL are hardly applicable; instead, new approaches
must be based on:
 Flexible and dynamic structure in order to

accommodate changes at all levels
(Rosenmüller 2011),

 Agile approaches with several iterations is
required for dealing with emergent requirements
(Urli et al. 2012),

 Traceability must be taking into account in
order to revert the changes made by an
evolution through the system life cycle (Lamb,
Jirapanthong and Zisman 2011).

2.2 Variability in Space & Variability
in Time

Variability is defined as the ability of a software
system or artifact to be efficiently extended,
changed, customized or configured for use in a
particular context (Svahnberg, Gurp and Bosch
2005). So, the developer can specify the
particularities of a system corresponding to the
specific expectations of a client, and then obtain a
concrete variant.

Variability is the main difference between SPL
and other Software engineering approaches. So,
managing variability in an efficient way is a primary
challenge of SPL. Existing work on software
variation management can be generally split into two
categories:
 The variability in space is the existence of an

artifact in different shapes at the same time
(Pohl, Bockle and Linden 2005). In others
words, at the same time two products may
contain variants which have different
implementation versions.

 The variability in time is the existence of
different versions of an artifact that are valid

at different times (Pohl, Bockle and Linden
2005). Variability in time is used to describe
change of the artefact versions over time, and
their variability dependencies (Elsner et al.
2010). For a product line this means adding,
removing, or changing features or their
dependencies. Variability in time is used also
to describe also binding time of variability.
Indeed, there always is a certain amount of
variability that cannot be anticipated,
therefore, it must be delayed to a later point in
the development (compilation, load, runtime,
etc.).

2.3 Separation of Concerns in SPL

Product line engineering aims at identifying and
exploiting commonalities and variability within a
family of software systems. This means that
developers must take into account a large number of
products, and a large number of stakeholders for
each product. So, an increasing number of concerns
must be managed by developers.

In order to overcome this difficulty, SPL
approaches have proposed different ways to separate
concerns (Hubaux, Tun, and Heymans 2013), using
several criteria such as:

Functional and non-functional aspects, like in
aspect oriented programming (Kiczales et al. 1997),
several approaches in SPL separate between
functional features that represent the core assets and
non functional features that ensure quality of
service, adaptation to the execution environment, etc
(Noorian, Bagheri and Du 2012; Soltani at al. 2012;
Siegmund et al. 2011).

Some approach separate models according to the
main characteristics of concerns contained in these
models. For example depending on types of
variability (Svahnberg, Gurp and Bosch 2005),
management constraints (Grunbacher et al. 2009),
etc.

The process of configuration allows a separation
of concerns because a feature model is specialized in
a staged way (necessary features for a stage are
selected and other features are removed), according
to features binding time (Lee 2013), stakeholders
requirements (Czarnecki, Helsen and Eisenecker
2005), a defined workflow of configuration (Hubaux
et al. 2010.)

Although the need for separation of concerns in
SPL is recognized, there is no consensus about the
best criteria to use, and the efficient way to
implement this separation. The issue addressed in
this paper is how to separate concerns in a too large

ICEIS�2015�-�17th�International�Conference�on�Enterprise�Information�Systems

440

SPL in such way that later composition become
easy.

3 TOWARDS DYNAMIC
MODULARIZATION
APPROACH

Our work aims at proposing a new modularization
approach for large scale SPL, which we confound in
this work with feature models. Based on the
challenges discussed in the previous section, we are
convinced that using these large models in their
initial state is not feasible. That’s why; we propose
to decompose our models in order to simplify their
management. In what follows, we present the
concept of modularization and then we detail each
proposed dimension, and explain adopted
techniques.

3.1 Modularization

Modularization is a well known software technique.
It allows developers to decompose a large system
into manageable subsystems, which can be
developed and checked in isolation (Apel et al.
2013; Ostermann et al. 2011). The main idea behind
modular reasoning is information hiding. Indeed, a
module is composed of an internal and external part.
The internal part hides implementation details of the
module, and is not accessible for the rest of modules.
The external part is called an interface and describes
a contract with the rest of the world (Kästner, Apel
and Ostermann 2011).

Over the last decades much research has
provided modularity mechanisms. Herbsleb and
Grinter (1999) propose a Hierarchical decomposition
of models. This means that the system is divided
into several hierarchical levels of abstraction. New
approaches propose to design patterns of
decomposition (Wojcik et al. 2006). So, after
identifying quality requirements developer choose
the adequate patterns depending on the system
architecture. Based on these approaches,
Penzenstadler (2010) propose a well defined
catalogue of decomposition criteria.

On the basis of presented approaches of
modularity as well as the analysis of large-scale
systems, we designed our own vision of modularity.
In fact, the purpose of modularity in this work is to
facilitate the models composition and ensure
flexibility and tolerance to change. To achieve that,
we opted for the decomposition depending on two

dimensions: The first dimension allow a structural
decomposition of the feature model. The second
dimension is decomposition according to features
binding time, which offer o dynamic views of the
model.

3.2 First Dimension

The purpose of this first decomposition is to obtain
modules that contain significant information about a
coherent sub-topic. In other words, the concepts
within a module must be semantically related to
each other, and weakly related to the outside of the
module. Thus, the dependence between the different
concepts of the model is the key element to consider
in this decomposition.

Our goal in what follows is to detect the features
contained in a feature model FM, and are strongly
linked together, so that they may constitute separate
modules mi. In order to achieve this goal, we make
use of the ’island’ algorithm (Batagelj 2003). This
algorithm gets the most important sub-graphs
contained in a complex network. Such an algorithm,
both general and efficient has been used in several
scientific fields such as genetics (Whitley, Rana, &
Heckendorn 1998), as it was taken up in the
computer field for the modularization of large
networks such as ontologies (Stuckenschmidt,
Schlicht 2009).

In the present work, we were inspired by the
work of Stuckenschmidt and Schlicht (2009). This
work deals with the decomposition of ontologies
according to the structure of its classes. In our case,
we try to introduce specific characteristics of feature
models by performing some transformations before
applying the island algorithm. In the following, we
detail the steps of the decomposition according to
our first dimension.

3.2.1 Step 1

We consider a feature model FM, composed of
several features C = {c1, c2, ... , cn }. We consider the
set D = {d1, d2, ..., dm} of dependencies between
features. Since we think in terms of dependencies
between features, the first action would be to list all
the existing dependencies. For this, we will
transform our FM into a graph whose nodes are the
features. In what concern relations of this graph, we
will resume the explicit dependencies contained in
the FM, as we will explicit the implicit
dependencies.

Explicit dependencies: In a FM, we find the
following dependencies:

Dynamic�Large�Scale�Product�Lines�through�Modularization�Approach

441

o The directed relationships "parents → children"
between the features in spite of their types
(mandatory, optional, or-group, and xor-group);

o The constraints between features are also
considered as directed relationships from ci to cj
if « ci implies cj » or « ci excludes cj».
Henceforth, instead of textual expression of
constraints, we will represent them graphically
in the feature model as dotted arches in order to
reason about the graphical model only. Fig. 1
shows the graphical representation of
constraints.

Figure 1: Graphical representation of constraints.

Implicit dependencies: In a feature model, the
features are related to their parent with vertical and
hierarchical relations or related by constraints with
horizontal relationships. However, the features of a
xor-goup are linked by implicit mutual exclusion
relations between them. In order to explicit this
relation, we propose to transform xor-goup in
complete graph as shown in Fig. 2.

Figure 2: Transformation of xor-group to complete graph.

3.2.2 Step 2

The second step is to assign weights to dependencies
of the feature model. This weight reflects the
strength of the dependency between two features.
Indeed, the strength of the dependency between a
feature ci and a feature cj is proportional to the total
number of dependency strengths of relations with
other features of the model. Thus, the weight P (ci,cj)
is calculated by dividing the sum of the weights of
all relations between ci and cj by the sum of the
weights of all relations that ci has to other features.

(1)

Where:
pij: is the weight of the oriented relationship between
ci and cj. We assume that this value is equal to 1.

3.2.3 Step 3

At this level, we have a graph that contains all the
dependencies between features, in addition to the
weight of each dependency. So, we can apply the
island algorithm to this graph in order to determine
the modules.

We consider a model FM transformed to graph G
= {C, D, P}. A set of features I is considered an
island in G if and only if it induces a connected sub-
graph and the lines inside the island I are stronger
related among them than with the neighboring
features. In other words, there is a maximum
spanning tree that contains all the features of I such
that:

(2)

As a result of applying island algorithm, we may
obtain very large modules that represent the same
difficulties of the initial model. In this case, the
island algorithm can be applied iteratively and at
several modules to refine the result. We may also
obtain isolated features that don’t belong to any
module. In this case, these features must be assigned
to the island of the neighboring features they have
the strongest relation to.

3.3 Second Dimension

In this work, our ultimate aim is to propose a
modularization approach that deals with special
issues of SPL. That’s why we propose a
decomposition approach that attach due importance
to variability concept especially to « Binding-time ».
In fact, developer can introduce variability at several
binding-times: either at a high abstraction level like
design, and compilation, we name that an “early
binding”, or at a low abstraction level like load or
runtime, and we name that a “late binding”.

In order to introduce this crucial aspect of
variability in our contribution, we propose to
decompose the resulted modules of the first
decomposition to sub-modules depending on the
binding times of their features. Indeed, the features
of a given module that are mandatory or those
varying but whose inclusion in the resulting system

ICEIS�2015�-�17th�International�Conference�on�Enterprise�Information�Systems

442

Figure 3: Example of feature model modularization.

is decided at modeling level must belong to the same
sub-module. Then, features are assembled in sub-
modules depending to their binding-times
(compilation or runtime). Fig. 3 illustrates the
modularization following the two dimensions
described above. In this example, a feature module
is composed to three modules M1, M2 and M3
according to the first dimension. Then, these
modules are composed to sub-modules. Each sub
module corresponds to a binding-time: design,
compilation and execution.

4 CONCLUSIONS

The work presented in this paper provides the
conceptual foundations of composition in large scale
systems. We recognize that this approach handles
the operation of composition at a high level of
abstraction. So, additional techniques that deal
specially with the details of implementation must be
combined with this approach. For example, we
propose to use the superimposition of code as a
complementary approach (Apel and Lengauer 2008;
Apel et al. 2009).

The basic aim of this approach is to analyse the
different aspects of variability and try to manage it
in a large scale SPL. To achieve that, we propose to
decompose a large feature model into manageable
modules depending to the features type. Each
module is defined by an interface that exposes
necessary information to communicate with other
modules. Then we propose to define interfaces at
several level of abstraction, in order to allow a
dynamic binding so as to allow insertion of features
changes that arise during the SPL life cycle. Then,

we propose to compose these modules in order to
obtain composite interface of the resulted FM.

The main advantage of this approach is to allow
agility through a proactive process. In fact,
stakeholders can express new requirements or
constraints. So, changes can be inserted through
module interfaces even after compilation. We must
notice that additional mechanism must be inserted in
order to coordinate between changes at interface
level and changes at implementation level using a
complementary approach of composition that
implements these changes. Interfaces can also be
used as a support to explicit traceability of varying
features. Hence, traceability information could be
used to analyze the design change impact when
evolving SPL.

REFERENCES

Apel, S, Batory, D, Kästner, C & Saake, G 2013,
‘Feature-oriented software product lines: Concepts
and implementation’, Springer Science & Business
Media, Berlin.

Apel, S, Janda, F, Trujillo, S & Kästner, C 2009, ‘Model
superimposition in software product lines’, in the
Proceedings of the International Conference on Model
Transformation, pp. 4-19.

Apel, S & Lengauer, C 2008, ‘Superimposition: A
language-independent approach to software
composition’, in the Proceedings of the International.
Symposium of Software Composition, pp. 20–35.

Batagelj, V 2003, ‘Analysis of large networks – islands’,
presented at Dagstuhl seminar 03361: Algorithmic
Aspects of Large and Complex Networks.

Benavides, D, Segura, S & Ruiz-Cortés, A 2010,
‘Automated analysis of feature models 20 years later:
a literature review’, Information Systems, vol. 35, no.

Dynamic�Large�Scale�Product�Lines�through�Modularization�Approach

443

6, pp. 615-363.
Czarnecki, K, Helsen, S & Eisenecker, WU 2005. ‘Staged

configuration through specialization and multi-level
configuration of feature models’, in Software Process:
Improvement and Practice, vol. 10, no. 2, pp 143–169.

Elsner, C, Botterweck, G, Lohmann, D & Schröder-
Preikschat,W 2010, ‘Variability in time - product line
variability and evolution revisited’, in the proceedings
of the 4th International workshop on Modelling
Variability of Software-intensive Systems, Essen,
Germany, pp.131-137.

Grunbacher, P, Rabiser, R, Dhungana, D & Lehofer, M
2009, ‘Structuring the product line modeling space:
Strategies and examples’, in the 3rd International
Workshop on Variability Modelling of Software-
Intensive Systems, Seville, pp. 77–82.

Herbsleb, JD & Grinter, RE 1999, ‘Splitting the
organization and integrating the code: Conway’s law
revisited’, in the Proceedings of the 21st international
conference on Software engineering, Los Angeles, pp.
85-95.

Hubaux, A, Heymans, P, Schobbens, PY & Deridder, D
2010. ‘Towards multi-view feature-based
configuration’, in 16th International Working
Conference on Requirements Engineering:
Foundation for Software Quality (REFSQ’10).
Springer-Verlag.

Hubaux, A, Tun, TT & Heymans, P 2013, ‘Separation of
concerns in feature diagram languages: a systematic
survey’, ACM Computing Surveys, vol. 45, no. 4,
article no. 51.

Kästner, C, Apel, S & Ostermann, K 2011, ‘The road to
feature modularity?’, in the Proceedings of the 15th
International Software Product Line Conference, New
York, pp. 21-26.

Kiczales, G, Lamping, J, Mendhekar, A, Maeda, C,
Lopes, CV, Loingtier, JM & Irwin, J 1997, ‘Aspect
Oriented Programming’ , in ECOOP 97, pp 220-242.

Lamb, LC, Jirapanthong, W & Zisman, A 2011,
‘Formalizing traceability relations for product lines’,
in ICSE Workshop on Traceability in Emerging Forms
of Software Engineering(TEFSE), pp 42–45.

Lee, K 2013. ‘Variability and Aspect Orientation’.
Systems and Software Variability Management,
Springer, Berlin, pp 293-300.

Maier, MW 1998, ‘Architecting principles for systems-of-
systems’, Systems Engineering, vol. 1, no. 4, pp. 267-
284.

Noorian, M, Bagheri, E & Du, W 2012, ‘Non-functional
Properties in Software Product Lines: A Taxonomy for
Classification’, in SEKE, pp. 663-667.

Ostermann, K, Giarrusso, PG, Kästner, C & Rendel, T
2011, ‘Revisiting information hiding: Reflections on
classical and non classical modularity’, in the
Proceedings of the 25th European Conference on
Object-Oriented Programming, Lancaster, pp. 155-
178.

Parra, C 2011, ‘Towards dynamic software product lines:
unifying design and runtime adaptations’. Europe
Laboratory, phD thesis, University of Lille.

Penzenstadler, B 2010, ‘DeSyRe: decomposition of
systems and their requirements: transition from system
to subsystem using a criteria catalogue and systematic
requirements refinement’, phD thesis, Technical
University of Munich.

Pohl, K, Bockle, G & Linden. FJ 2005, Software product
line engineering: foundations, principles and
techniques, Springer, New York.

Rosenmüller, M 2011, ‘Towards flexible feature
composition: Static and dynamic binding in software
product lines’, phD thesis, University of Magdeburg.

Siegmund, N, Rosenmuller, M, Kastner, C, Giarrusso, PG,
Apel, S & Kolesnikov, SS 2011, ‘Scalable prediction
of non-functional properties in software product lines’,
in proceedings of the 15th Software Product Line
Conference, Munich, pp.160–169.

Soltani, S, Asadi, M, Gašević, D, Hatala, M & Bagheri, E
2012, ‘Automated planning for feature model
configuration based on functional and non-functional
requirements’, in Proceedings of the 16th
International Software Product Line Conference,
Salvador, Brazil.

Stuckenschmidt, H, Schlicht, A (2009), ‘Structure-Based
Partitioning of Large Ontologies. Modular
Ontologies’. Lecture Notes in Computer
Science, Springer, vol. 5445.

Svahnberg, M, Gurp, JV & Bosch, J 2005, ‘A taxonomy
of variability realization techniques: Research
articles’, Software Practice and Experience, vol. 35,
no. 8, pp.705–754.

Urli, S, Blay-Fornarino, M, Collet, P & Mosser, S 2012,
‘Using composite feature models to support agile
software product line evolution’, in Proceedings of the
6th International Workshop on Models and Evolution,
New York, pp. 21-26.

Whitley, D, Rana, S & Heckendorn, RB (1998), ‘The
Island Model Genetic Algorithm: On Separability,
Population Size and Convergence’, in Journal of
Computing and Information Technology, vol. 7, pp.
33-47.

Wojcik, R, Bachmann, F, Bass, L, Clements, P, Merson,
P, Nord, R & Wood, B 2006, ‘Attribute-driven design
(ADD)’, Technical Report CMU/SEI-2006-TR-023,
Carnegie Mellon University.

ICEIS�2015�-�17th�International�Conference�on�Enterprise�Information�Systems

444

