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Abstract: Software product line (SPL) now faces major scalability problems because of technical advances of the past 
decades. However, using traditional approaches of software engineering to deal with this increasing 
scalability is not feasible. Therefore, new techniques must be provided in order to resolve scalability issues. 
For such a purpose, we propose through this paper a modularization approach according to two dimensions: 
In the first dimension we use Island algorithm in order to obtain structural modules. In the second 
dimension we decompose obtained modules according to features binding time so as to obtain dynamic sub-
modules.  

1 INTRODUCTION 

Software Product Line (SPL) has been an attractive 
approach for medium and large companies. Because, 
it allows the optimization of product development 
process and planed reuse, through the identification 
and reuse of common features that are shared by 
several products. However, there is a risk of not 
getting a viable return on investment if the pre-
developed assets are not sufficiently reused. 

In principle, a product line presents concepts of a 
given business domain. But recently product lines 
are being used not only to describe variability of a 
well defined domain, but were extended to other 
types of requirements such as variability of contexts. 
As a result, SPL engineering now faces major 
scalability issues. Indeed, creating and managing 
such large product lines models is becoming a very 
complex activity, time consuming and error prone. 
That’s why, effective approach for separation of 
concerns is becoming a major challenge.  

In this paper, we are interested in looking at how 
large and complex product line can be managed 
through an appropriate representation mechanism. 
To achieve that, we explore the possibility of 
product line modularization approach that gives due 
consideration to large scale particularities.  

The remainder of this paper is organized as 
follows.  In Section 2, we give an overview of large 
software product lines, and then we present some 

main concepts like variability and separation of 
concerns. In section 3, we present our approach for 
modularization of product lines. Finally, Section 5 
concludes the paper. 

2 BACKGROUND  

2.1 Large Software Product Lines 

In the mid of 1990s, software product lines began to 
draw attention of researchers community and 
became an independent approach of software 
engineering (Maier, 1998; Benavides, Segura and 
Ruiz-Cortés 2010). Over last years, SPL was 
integrated massively in several business domains 
such as mobile phones, automotive systems, 
aerospace, etc. (Pohl, Bockle and Linden 2005; 
Parra 2011). 

Product line engineering is a process that 
delivers reusable components, which can be reused 
to develop new applications for the domain instead 
of developing them from scratch.  So, the main 
advantage that promote the use of software product 
lines is the possibility of planned, proactive and 
systematic reuse of the common artifacts (also called 
core assets), where related products are treated as a 
product family.   

Over the last decades, many technical advances 
of software engineering were introduced to SPL. As 
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a result, an increasing number of concerns emerge, 
and large scale is becoming a main characteristic of 
all system dimensions: lines of code, number of 
stakeholders employing the system for different 
purposes, amount of data stored, etc. So, models are 
becoming too large for human cognitive abilities, 
and too imprecise for automated reasoning. 

The main complexity introduced by SPL 
compared to other software engineering approach, is 
the management of variability. This variability 
increase in large scale since, systems evolve 
continuously through successive iterations along 
multiple dimensions, such as: new stakeholders’ 
requirements, emergence of operating environment 
constraints, incorporation of new technologies, etc. 
Consequently, classic management approaches of 
SPL are hardly applicable; instead, new approaches 
must be based on:  
 Flexible and dynamic structure in order to 

accommodate changes at all levels 
(Rosenmüller 2011),  

 Agile approaches with several iterations is 
required for dealing with emergent requirements 
(Urli et al. 2012),  

 Traceability must be taking into account in 
order to revert the changes made by an 
evolution through the system life cycle (Lamb, 
Jirapanthong and Zisman 2011). 

2.2 Variability in Space & Variability 
in Time 

Variability is defined as the ability of a software 
system or artifact to be efficiently extended, 
changed, customized or configured for use in a 
particular context (Svahnberg, Gurp and Bosch 
2005). So, the developer can specify the 
particularities of a system corresponding to the 
specific expectations of a client, and then obtain a 
concrete variant.  

Variability is the main difference between SPL 
and other Software engineering approaches. So, 
managing variability in an efficient way is a primary 
challenge of SPL. Existing work on software 
variation management can be generally split into two 
categories: 
 The variability in space is the existence of an 

artifact in different shapes at the same time 
(Pohl, Bockle and Linden 2005). In others 
words, at the same time two products may 
contain variants which have different 
implementation versions. 

 The variability in time is the existence of 
different versions of an artifact that are valid 

at different times (Pohl, Bockle and Linden 
2005). Variability in time is used to describe 
change of the artefact versions over time, and 
their variability dependencies (Elsner et al. 
2010). For a product line this means adding, 
removing, or changing features or their 
dependencies. Variability in time is used also 
to describe also binding time of variability. 
Indeed, there always is a certain amount of 
variability that cannot be anticipated, 
therefore, it must be delayed to a later point in 
the development (compilation, load, runtime, 
etc.). 

2.3 Separation of Concerns in SPL 

Product line engineering aims at identifying and 
exploiting commonalities and variability within a 
family of software systems. This means that 
developers must take into account a large number of 
products, and a large number of stakeholders for 
each product.  So, an increasing number of concerns 
must be managed by developers.  

In order to overcome this difficulty, SPL 
approaches have proposed different ways to separate 
concerns (Hubaux, Tun, and Heymans 2013), using 
several criteria such as:  

Functional and non-functional aspects, like in 
aspect oriented programming (Kiczales et al. 1997), 
several approaches in SPL separate between 
functional features that represent the core assets and 
non functional features that ensure quality of 
service, adaptation to the execution environment, etc 
(Noorian, Bagheri and Du 2012; Soltani at al. 2012; 
Siegmund et al. 2011). 

Some approach separate models according to the 
main characteristics of concerns contained in these 
models. For example depending on types of 
variability (Svahnberg, Gurp and Bosch 2005), 
management constraints (Grunbacher et al. 2009), 
etc. 

The process of configuration allows a separation 
of concerns because a feature model is specialized in 
a staged way (necessary features for a stage are 
selected and other features are removed), according 
to features binding time (Lee 2013), stakeholders 
requirements (Czarnecki, Helsen and Eisenecker 
2005), a defined workflow of configuration (Hubaux 
et al.  2010.) 

Although the need for separation of concerns in 
SPL is recognized, there is no consensus about the 
best criteria to use, and the efficient way to 
implement this separation. The issue addressed in 
this paper is how to separate concerns in a too large 

ICEIS�2015�-�17th�International�Conference�on�Enterprise�Information�Systems

440



SPL in such way that later composition become 
easy. 

3 TOWARDS DYNAMIC 
MODULARIZATION 
APPROACH 

Our work aims at proposing a new modularization 
approach for large scale SPL, which we confound in 
this work with feature models. Based on the 
challenges discussed in the previous section, we are 
convinced that using these large models in their 
initial state is not feasible. That’s why; we propose 
to decompose our models in order to simplify their 
management. In what follows, we present the 
concept of modularization and then we detail each 
proposed dimension, and explain adopted 
techniques.  

3.1 Modularization 

Modularization is a well known software technique. 
It allows developers to decompose a large system 
into manageable subsystems, which can be 
developed and checked in isolation (Apel et al. 
2013; Ostermann et al. 2011). The main idea behind 
modular reasoning is information hiding. Indeed, a 
module is composed of an internal and external part. 
The internal part hides implementation details of the 
module, and is not accessible for the rest of modules. 
The external part is called an interface and describes 
a contract with the rest of the world (Kästner, Apel 
and Ostermann 2011). 

Over the last decades much research has 
provided modularity mechanisms. Herbsleb and 
Grinter (1999) propose a Hierarchical decomposition 
of models. This means that the system is divided 
into several hierarchical levels of abstraction. New 
approaches propose to design patterns of 
decomposition (Wojcik et al. 2006). So, after 
identifying quality requirements developer choose 
the adequate patterns depending on the system 
architecture. Based on these approaches, 
Penzenstadler (2010) propose a well defined 
catalogue of decomposition criteria. 

On the basis of presented approaches of 
modularity as well as the analysis of large-scale 
systems, we designed our own vision of modularity. 
In fact, the purpose of modularity in this work is to 
facilitate the models composition and ensure 
flexibility and tolerance to change. To achieve that, 
we opted for the decomposition depending on two 

dimensions: The first dimension allow a structural 
decomposition of the feature model. The second 
dimension is decomposition according to features 
binding time, which offer o dynamic views of the 
model.  

3.2 First Dimension 

The purpose of this first decomposition is to obtain 
modules that contain significant information about a 
coherent sub-topic. In other words, the concepts 
within a module must be semantically related to 
each other, and weakly related to the outside of the 
module. Thus, the dependence between the different 
concepts of the model is the key element to consider 
in this decomposition. 

Our goal in what follows is to detect the features 
contained in a feature model FM, and are strongly 
linked together, so that they may constitute separate 
modules mi. In order to achieve this goal, we make 
use of the ’island’ algorithm (Batagelj 2003). This 
algorithm gets the most important sub-graphs 
contained in a complex network. Such an algorithm, 
both general and efficient has been used in several 
scientific fields such as genetics (Whitley, Rana, & 
Heckendorn 1998), as it was taken up in the 
computer field for the modularization of large 
networks such as ontologies (Stuckenschmidt, 
Schlicht 2009). 

In the present work, we were inspired by the 
work of Stuckenschmidt and Schlicht (2009). This 
work deals with the decomposition of ontologies 
according to the structure of its classes. In our case, 
we try to introduce specific characteristics of feature 
models by performing some transformations before 
applying the island algorithm. In the following, we 
detail the steps of the decomposition according to 
our first dimension.  

3.2.1 Step 1 

We consider a feature model FM, composed of 
several features C = {c1, c2, ... , cn }. We consider the 
set D = {d1, d2, ..., dm} of dependencies between 
features. Since we think in terms of dependencies 
between features, the first action would be to list all 
the existing dependencies. For this, we will 
transform our FM into a graph whose nodes are the 
features. In what concern relations of this graph, we 
will resume the explicit dependencies contained in 
the FM, as we will explicit the implicit 
dependencies. 

Explicit dependencies: In a FM, we find the 
following dependencies: 
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o The directed relationships "parents → children" 
between the features in spite of their types 
(mandatory, optional, or-group, and xor-group); 

o The constraints between features are also 
considered as directed relationships from ci to cj 
if « ci implies cj » or « ci excludes cj». 
Henceforth, instead of textual expression of 
constraints, we will represent them graphically 
in the feature model as dotted arches in order to 
reason about the graphical model only. Fig.  1 
shows the graphical representation of 
constraints. 
 

 
 
 
 

 

Figure 1: Graphical representation of constraints. 

Implicit dependencies: In a feature model, the 
features are related to their parent with vertical and 
hierarchical relations or related by constraints with 
horizontal relationships. However, the features of a 
xor-goup are linked by implicit mutual exclusion 
relations between them. In order to explicit this 
relation, we propose to transform xor-goup in 
complete graph as shown in Fig. 2. 
 

 

Figure 2: Transformation of xor-group to complete graph. 

3.2.2 Step 2 

The second step is to assign weights to dependencies 
of the feature model.  This weight reflects the 
strength of the dependency between two features. 
Indeed, the strength of the dependency between a 
feature ci and a feature cj is proportional to the total 
number of dependency strengths of relations with 
other features of the model. Thus, the weight P (ci,cj) 
is calculated by dividing the sum of the weights of 
all relations between ci and cj by the sum of the 
weights of all relations that ci has to other features. 
 

 
(1)

Where: 
pij: is the weight of the oriented relationship between 
ci and cj. We assume that this value is equal to 1. 

3.2.3 Step 3 

At this level, we have a graph that contains all the 
dependencies between features, in addition to the 
weight of each dependency. So, we can apply the 
island algorithm to this graph in order to determine 
the modules. 

We consider a model FM transformed to graph G 
= {C, D, P}. A set of features I is considered an 
island in G if and only if it induces a connected sub-
graph and the lines inside the island I are stronger 
related among them than with the neighboring 
features. In other words, there is a maximum 
spanning tree that contains all the features of I such 
that:  

 
(2)

As a result of applying island algorithm, we may 
obtain very large modules that represent the same 
difficulties of the initial model. In this case, the 
island algorithm can be applied iteratively and at 
several modules to refine the result. We may also 
obtain isolated features that don’t belong to any 
module. In this case, these features must be assigned 
to the island of the neighboring features they have 
the strongest relation to. 

3.3 Second Dimension 

In this work, our ultimate aim is to propose a 
modularization approach that deals with special 
issues of SPL. That’s why we propose a 
decomposition approach that attach due importance 
to variability concept especially to « Binding-time ». 
In fact, developer can introduce variability at several 
binding-times: either at a high abstraction level like 
design, and compilation, we name that an “early 
binding”, or at a low abstraction level like load or 
runtime, and we name that a “late binding”.  

In order to introduce this crucial aspect of 
variability in our contribution, we propose to 
decompose the resulted modules of the first 
decomposition to sub-modules depending on the 
binding times of their features. Indeed, the features 
of a given module that are mandatory or those 
varying but whose inclusion in the  resulting  system 
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Figure 3: Example of feature model modularization. 

is decided at modeling level must belong to the same 
sub-module. Then, features are assembled in sub-
modules depending to their binding-times 
(compilation or runtime). Fig. 3 illustrates the 
modularization following the two dimensions 
described above. In this example, a feature module 
is composed to three modules M1, M2 and M3 
according to the first dimension. Then, these 
modules are composed to sub-modules. Each sub 
module corresponds to a binding-time: design, 
compilation and execution.  

4 CONCLUSIONS 

The work presented in this paper provides the 
conceptual foundations of composition in large scale 
systems.  We recognize that this approach handles 
the operation of composition at a high level of 
abstraction. So, additional techniques that deal 
specially with the details of implementation must be 
combined with this approach. For example, we 
propose to use the superimposition of code as a 
complementary approach (Apel and Lengauer 2008; 
Apel et al. 2009). 

The basic aim of this approach is to analyse the 
different aspects of variability and try to manage it 
in a large scale SPL. To achieve that, we propose to 
decompose a large feature model into manageable 
modules depending to the features type. Each 
module is defined by an interface that exposes 
necessary information to communicate with other 
modules.  Then we propose to define interfaces at 
several level of abstraction, in order to allow a 
dynamic binding so as to allow insertion of features 
changes that arise during the SPL life cycle. Then, 

we propose to compose these modules in order to 
obtain composite interface of the resulted FM. 

The main advantage of this approach is to allow 
agility through a proactive process. In fact, 
stakeholders can express new requirements or 
constraints. So, changes can be inserted through 
module interfaces even after compilation. We must 
notice that additional mechanism must be inserted in 
order to coordinate between changes at interface 
level and changes at implementation level using a 
complementary approach of composition that 
implements these changes. Interfaces can also be 
used as a support to explicit traceability of varying 
features. Hence, traceability information could be 
used to analyze the design change impact when 
evolving SPL. 
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