
Return on Investment of Software Product Line Traceability in the
Short, Mid and Long Term

Zineb Mcharfi, Bouchra El Asri, Ikram Dehmouch, Asmaa Baya and Abdelaziz Kriouile
ENSIAS, Mohammed V Rabat University, Mohammed Ben Abdallah Regragui Avenue, Rabat, Morocco

Keywords: Traceability, Software Product Lines, Cost-benefits, Estimation Models, COPLIMO, METra-SPL.

Abstract: Several works discuss tracing in Software Product Lines from a technical and architectural points of view,
by proposing methods to implement traceability in the system. However, before discussing this field of
traceability, we first need to prove the profitability of integrating such approach in the Product Line.
Therefore, we bring in this paper a quantitative analysis on how traceability can impact the Return on
Investment of a Software Product Line, and in which conditions, in terms of number of products and SPL
phase, can tracing be profitable. We compare the results of a generic Software Product Line estimation
model, COPLIMO, and our model METra-SPL. Our analysis shows that introducing traceability costs when
constructing the Product Line, but can be profit making in the long term, especially in maintenance phase,
starting from 2 products to generate.

1 INTRODUCTION

Several studies highlight the importance of
traceability in software engineering (Gotel et al.,
2012). Even popular standards like CMMI (CMMI
Product Team, 2006) incorporate this concept into
their models and define requirements to effective
traceability.

For large scale systems like Software Product
Lines (SPL), tracing helps better know the system
and facilitates its maintenance and evolution
(Cavalcanti et al., 2011). Therefore, studies are
conducted to best integrate traceability in SPL
(Mäder and Gotel, 2012): implementation strategy,
relations between artifacts, automation,
maintenance, etc.

Despite this growing importance accorded to
traceability in software engineering in general and
SPL in particular, this concept is still rarely adopted
in practice, as it is laborious, usually manual, time
and resource consuming, and error prone (Ramesh
and Jarke, 2001).

To better clarify the dilemma of cost and benefits
of traceability in SPL, we decided to study the
additional costs that can be generated when
introducing a traceability approach in a SPL. Our
analysis, as detailed thereafter, is based on a
comparison between results obtained from on
COPLIMO effort estimation model (Boehm et al.,

2004), and our model METra-SPL (Metrics for
Estimating Traceability in SPL), that takes into
consideration additional elements.

The remainder of this paper is structured as
follow: In Section 2 we introduce SPL and
traceability in those large scale systems. In Section 3
we present traceability cost estimation related works,
before detailing our proposed model METra-SPL
and our comparative study in Section 4. We
conclude and present further lines of research in
section 5.

2 TRACEABILITY IN
SOFTWARE PRODUCT LINES:
A GROWING CHALLENGE IN
A COMPLEX ENVIRONMENT

In this section we introduce traceability in SPL to
present the motivations behind our present work.

2.1 Software Product Lines

As defined by Northrop (Northrop, 2002), a SPL is
“a set of software-intensive systems that share a
common, managed feature set satisfying a particular
market segment’s specific needs or mission and that
are developed from a common set of core assets in a

463Mcharfi Z., El Asri B., Dehmouch I., Baya A. and Kriouile A..
Return on Investment of Software Product Line Traceability in the Short, Mid and Long Term.
DOI: 10.5220/0005465304630468
In Proceedings of the 17th International Conference on Enterprise Information Systems (ICEIS-2015), pages 463-468
ISBN: 978-989-758-097-0
Copyright c 2015 SCITEPRESS (Science and Technology Publications, Lda.)

prescribed way”. This approach is used in the
organizations with massive production of products
sharing the same components but answering specific
needs. The common components (e.g., architecture,
requirements, test plans, schedules, budgets and
processes description) are called “core assets”.
Adopting a SPL approach allows to produce new
systems by reusing the existing ones, in an organized
manner.

SPL is a combination of three major interacting
elements, called the SPL essential activities
(Northrop, 2002; Northrop and Clements, 2005): (1)
core asset development or Domain Engineering
(DE), (2) product development or Activities
Engineering (AE) and (3) technical and
organizational management that orchestrates those
two activities.

In such large scale system with many
components to manage, stakeholders look for a
guaranty that the products will meet the required
quality and conformity to the initial requirements.
Therefore, more proofs are needed, which can be
achieved by implementing a traceability approach in
the SPL.

2.2 Traceability in Software Product
Lines

Traceability is an important element in software
quality assurance: it allows producing and
maintaining clear and consistent documentation,
verifying that all requirements have been
implemented (Cleland-Huang et al., 2014), and helps
being independent from individual knowledge
(Lindvall and Sandahl, 1996).

It is also an important element to decide on the
architectural choices and facilitate communication
between stakeholders (Anquetil et al., 2010).
Traceability is very helpful when it comes to
maintenance and evolution as it allows analyzing
and controlling the impact of changes (Cavalcanti et
al. 2011). This characteristic is very useful in SPL
context where produced elements share a wild
number of common components. Thus, once a
product changes, traces help detecting other
impacted products.

According to (Cleland-huang et al., 2012;
Spanoudakis and Zisman, 2005; Ramesh and Jarke,
2001), traceability in SPL can be used either while
developing, for short term purposes (e.g., to verify
and validate requirements implementation), or in
maintenance phase, for long term use (e.g., artifacts
understanding, change management and components
reuse). However, despite the objective of its use,

many difficulties can be faced when implementing
traceability in SPL (Jirapanthong and Zisman,
2005): (i) larger documentation than in traditional
software development; (ii) heterogeneity of the
documents; (iii) the need to link between different
products and between them and the Product Line
(PL) architecture. Also, unlike software engineering
approaches for single systems, SPL introduces a
complex dimension: variability. Variability
represents an added difficulty to traceability in SPL
as one needs to understand its consequences during
the development phases (Jirapanthong and Zisman,
2005). Some works handle traceability and
variability issues in SPL while tracing relations
between artifacts (Anquetil et al., 2010; Anquetil et
al., 2008; Berg et al., 2005), others manage it throw
a metamodel for SPL development (Cavalcanti et al.,
2011). Ghanam and Mauer (2009; 2008) use
Acceptance Tests (AT) to generate test artifacts in
an eXtreme Programing (XP) Agile SPL (ASPL)
environment.

However, tracing in practice is laborious and its
benefits can only be perceived in the mid to long
term.

3 TRACEABILITY COST
ESTIMATION RELATED
WORKS

As discussed earlier, works that treat traceability
issues are mostly interested in traceability strategy
(relations between trace links, manual vs automated
traceability, architecture, etc.). However, as
traceability is rarely implemented in practice
(Cleland-huang et al., 2012), there is need to prove
its profitability compared to its complexity, in order
to convince the project manager of the benefits of
traceability implementation.

Therefore, some works on traceability cost
estimation have been conducted, not only in the
specific SPL traceability domain, but also at a larger
scale, for software engineering in general, according
to traceability strategy adopted. Egyed et al. (Egyed
et al., 2005; Egyed, 2006; Egyed et al., 2005; Egyed
et al., 2009) deal with the cost of trace links
generation in an automated traceability approach.
They demonstrate, through empirical studies, that a
compromise can be made between acceptable trace
quality and granularity, and low trace links costs.
Still dealing with traces value, (Heindl and Biffl,
2005) present a study that takes into consideration
many parameters to calculate the effort of tracing.

ICEIS�2015�-�17th�International�Conference�on�Enterprise�Information�Systems

464

Those parameters are (i) number of artifacts to be
traced; (ii) number of project requirements, as
requirements traceability is an n² complexity
problem; (iii) importance of each requirement from a
stakeholder point of view; and (iv) requirements
volatility, as frequently changing requirements are
the ones that need most to be traced.

Few works deal with traceability implementation
cost-benefits (Cleland-huang et al., 2012), and they
generally rely on data post-analysis from already
conducted case studies.

Next section describes our model METra-SPL
and analysis the impact of tracing on SPL’s
implementation and maintenance ROI.

4 HOW TRACING CAN IMPACT
SOFTWARE PRODUCT LINES
RETURN ON INVESTMENT

In this section we present our contribution, the
METra-SPL cost estimation model for SPL, which
takes into consideration traceability costs and SPL
phases.

We also compare COPLIMO and METra-SPL
estimations for the same SPL case study to discuss
tracing additional costs.

4.1 Our Cost Estimation Model:
METra-SPL

COCOMO II is by far one of the most widely used
cost estimation models. It is an adaptation of
COCOMO 81 and has been adapted and declined in
many specific models, like COPLIMO (Boehm et
al., 2004), the COCOMO II derivation dedicated to
SPL.

Our METra-SPL model is based on COPLIMO.
It assumes the same bases but differ as it takes into
consideration two important element that impacts
SPL costs: tracing and SPL phases. In fact, tracing
can generate additional costs as it requires links
creation, adaptation and maintenance.

Also, SPL approach is based on two major
processes: Domain Engineering (DE) and
Application Engineering (AE). Consequently, trace
links are generated while developing the PL, under
DE process, and then used in AE process to identify
artifacts relations and make the right decisions when
choosing components to use while generating a
product. In addition, trace links have an impact on
SPL maintenance and change management: they
help identify artifacts affected by changes and links

have to be modified or created when updating the
PL.

Taking into account those fundamentals, and
regarding the different objectives between DE, AE
and maintenance, we propose the METra-SPL
model.

In this model, we decline the effort estimation
equation into 3 expressions: the first one for DE, the
second one for AE and the last one for maintenance
effort estimation.

In fact, in DE, we implement specially developed
products (PFRAC). They might be reused in AE
(RFRAC), or adapted (AFRAC) and new ones
integrated in the maintenance phase.

PMNR(N) represents the effort of developing N
products under the SPL, which we adapt as follow:

 For DE effort estimation:

PMNRDE(N) = N*A*(SIZEP)B*DOCU* ∏(EM) (1)

 For AE effort estimation:

PMNRAE(N) =N*A*(SIZER)B*DOCU* ∏(EM) (2)

 For maintenance estimation:

PMNRM(N) = N*A*(SIZEP + SIZEA)B * ∏(EM) (3)

SIZEP, SIZER and SIZEA are size of the specially
developed product, reused products and adapted
ones, respectively.

DE is based on products development, AE on
products reuse, and maintenance on their adaptation
and the development of new ones.

Also, as documentation is a principal element of
traceability and environment implementation (either
DE or AE), its impact has to be considered in
measuring the SPL effort. Therefore, the impact of
DOCU (Degree of Documentation) multiplier is
made in evidence in (1) and (2). In (Boehm et al.,
2004), the calibration multipliers ∏ (EM) takes the
value 1, which means that all the multipliers are
considered in their nominal value = 1. But in our
case, the DOCU multiplier varies depending on
traceability strategy instead of taking the same
nominal value.

COPLIMO equations for calculating adapted
SIZE and the Adaptation Adjustment Modifier
(AAM) remain unchanged:

AAMA=[AA+AAF*(1+(0,02*SU*UNMF))]/100 (4)

AA, AAF, SU and UNMF are Assessment and
Assimilation factor, Adaptation and Adjustment
Factor, Software Understanding increment and the
scale of Programmer’s Unfamiliarity with the
software, respectively.

Return�on�Investment�of�Software�Product�Line�Traceability�in�the�Short,�Mid�and�Long�Term

465

 The SIZE of specific product development:

SIZEP = PFRAC * SIZE (5)

 For software portion to be reused:

SIZER = RFRAC * SIZE * AA/100 (6)

 For software portion to be adapted:

SIZEA = AFRAC * SIZE * AAMA (7)

 The resulting size (PSIZE) of each product is:

PSIZE = SIZEP + SIZER + SIZEA (8)

4.2 SPL ROI: Tracing Impact in Short,
Mid and Long Terms

In his estimation model COPLIMO (Boehm et al.,
2004), Boehm presents a “macro” cost estimation of
SPL development cycle, without taking into
consideration tracing politic. Also, as SPL are reuse
systems, the effort of producing an element can
differ whether it is based on existing elements,

adapted ones, or newly created artifacts. Therefore,
COPLIMO as a generic model that gives a global
SPL cost estimation.

In our METra-SPL model, we consider the
impact of tracing on SPL development. We also
distinguish, as described earlier, between different
SPL processes: DE, AE and maintenance.

Let us consider a case study in an environment of
aircraft-spacecraft production (Boehm et al., 2004).
COPLIMO shows a positive SPL ROI starting from
3 products to develop. The same case study, but
using METra-SPL estimation model, and taking into
consideration SPL phases and tracing strategy (a
targeted traceability in that case, where just efficient
traces are created), shows some different results: As
shown to Figure 1, tracing in DE costs. In fact, for
an efficient tracing, one needs to adopt a traceability
approach to identify efficient links, and use a
support to store created links (e.g., tracing matrix).
This can be time and effort consuming. However,
we are still at the beginning of SPL implementation
process.

Figure 1: ROI in SPL DE based on METra-SPL.

Figure 2: ROI in SPL AE based on METra-SPL.

ICEIS�2015�-�17th�International�Conference�on�Enterprise�Information�Systems

466

Figure 3: ROI in SPL maintenance phase based on METra-SPL.

In fact, in AE phase (Figure 2), with tracing,
SPL ROI become positive starting from 5 products
to generate. This is due to some new links to create,
and the existing ones to adapt. Profitability of
tracing is more visible in maintenance phase (Figure
3), where ROI already shows positive values for 2
products in the SPL: Maintenance is even easier
when traceability is applied as the latter helps
defining relations between different artifacts, and,
consequently, change impacts are quickly and easily
identified.

5 CONCLUSION

Despite the importance that studies accord to
traceability in software engineering in general,
implementing trace links in SPL is globally avoided
as project managers are aware of initial tracing costs,
but cannot quantitatively measure its benefits in the
mid to long term (Cleland-huang et al., 2012).

Therefore, we conducted a study to quantify SPL
ROI when introducing traceability in the short (DE),
mid (AE) and long term (maintenance). This study
was established based on an analysis of the METra-
SPL model estimations, and comparison with
COPLIMO results.

In general, METra-SPL allows a more detailed
analysis of SPL ROI compared to COPLIMO.
METra-SPL estimated values, however, are close to
the generic one provided by COPLIMO.

Further studies can be conducted to study the
impact of adopting a specific Traceability
Information Model (TIM) (Mäder and Gotel, 2012)
with automated link generation process, and possible
new factors that may impact SPL ROI to be
consequently introduced in our METra-SPL model.

REFERENCES

Anquetil, N. et al., 2010. A model-driven traceability
framework for software product lines. Software &
Systems Modeling, 9, pp.427–451.

Anquetil, N. et al., 2008. Traceability for Model Driven,
Software Product Line Engineering. ECMDA
Traceability Workshop Proceedings.

Berg, K., Bishop, J. & Muthig, D., 2005. Tracing Software
Product Line Variability - From Problem to Solution
Space. Proceedings of the 2005 annual research
conference of the South Africain institute of computer
scientists and information technologists on IT
research in developing countries, pp.182–191.

Boehm, B. et al., 2004. A Software Product Line Life
Cycle Cost Estimation Model.

Cavalcanti, Y.C. et al., 2011. Towards metamodel support
for variability and traceability in software product
lines. In Proceedings of the 5th Workshop on
Variability Modeling of Software-Intensive Systems -
VaMoS ’11. New York, New York, USA: ACM Press,
pp. 49–57.

Cleland-Huang, J. et al., 2014. Software Traceability:
Trends and Future Directions. In 36th International
Conference on Software Engineering (ICSE),.
Hyderabad, India.

Cleland-huang, J., Gotel, O. & Zisman, A., 2012. Software
and Systems Traceability,

Cmmi Product Team, 2006. CMMI ® for Development ,
Version 1 . 2. , (August).

Egyed, A., Biffl, S., et al., 2005. Determining the Cost-
Quality Trade-Off for Automated Software
Traceability. In Proceedings of the 20th IEEE/ACM
international Conference on Automated software
engineering. pp. 360–363.

Egyed, A., 2006. Tailoring software traceability to value-
based needs. In Value-Based Software Engineering.
Springer Berlin Heidelberg, pp. 287–308.

Egyed, A. et al., 2009. Value-Based Requirements
Traceability : Lessons Learned. In Design

Return�on�Investment�of�Software�Product�Line�Traceability�in�the�Short,�Mid�and�Long�Term

467

Requirements Engineering: A Ten-Year Perspective.
pp. 240–257.

Egyed, A., Rey, M. Del & Grünbacher, P., 2005. A Value-
Based Approach for Understanding Cost-Benefit
Trade-Offs During Automated Software Traceability.
In The 3rd ACM Int. Workshop on Traceability in
Emerging Forms of Software Engineering, TEFSE
2005, Held with the 20th IEEE/ACM Int. Conf.
Automated Software Engineering, ASE2005. ACM,
pp. 2–7.

Ghanam, Y. & Maurer, F., 2008. An Iterative Model for
Agile Product Line Engineering. SPLC (2), pp.377–
384.

Ghanam, Y. & Maurer, F., 2009. Extreme Product Line
Engineering : Managing Variability and Traceability
via Executable Specifications. In 2009 Agile
Conference. pp. 41–48.

Gotel, O., Cleland-Huang, J., Hayes, J. H., Zisman, A.,
Egyed, A., Grünbacher, P., Dekhtyar, A., Antoniol, G.,
Maletic, J. & Mäder, P., 2012. Traceability
fundamentals. In Software and Systems Traceability.
Springer London, pp. 3-22.

Heindl, M. & Biffl, S., 2005. A case study on value-based
requirements tracing. Proceedings of the 10th
European software engineering conference held
jointly with 13th ACM SIGSOFT international
symposium on Foundations of software engineering -
ESEC/FSE-13, p.60.

Jirapanthong, W. & Zisman, A., 2005. Supporting product
line development through traceability. In Proceedings
- Asia-Pacific Software Engineering Conference,
APSEC. pp. 506–514.

Lindvall, M. & Sandahl, K., 1996. Practical Implications
of Traceability. Software: Practice and Experience,
26(10), pp.1161–1180.

Mäder, P. & Gotel, O., 2012. Ready-to-Use Traceability
on Evolving Projects. In Software and Systems
Traceability. pp. 173-194

Northrop, L. & Clements, P., 2005. Software Product
Lines. Carnegie Engineering Institute, pp.1–105.

Northrop, L. M., 2002. SEI’s software product line tenets.
IEEE Software, 19(4), pp.32–40.

Ramesh, B. & Jarke, M., 2001. Towards Reference
Models for Requirements Traceability. Software
Engineering, IEEE Transactions on, 27(1), pp.58–93.

ICEIS�2015�-�17th�International�Conference�on�Enterprise�Information�Systems

468

