
Using the Dependence Level Among Requirements to Priorize the
Regression Testing Set and Characterize the Complexity of

Requirements Change

André Di Thommazo1,2, Kamilla Camargo3, Elis Hernandes1,2, Gislaine Gonçalves1, Jefferson Pedro1,
Anderson Belgamo2,4 and Sandra Fabbri2

1IFSP - São Paulo Federal Institute of Education, Science and Technology, São Carlos, SP, Brazil
2LaPES - Software Engineering Research Lab, Federal University of São Carlos, UFSCar, São Carlos, SP, Brazil

3Experteasy, Ribeirão Preto, SP, Brazil
4IFSP - São Paulo Federal Institute of Education, Science and Technology, Piracicaba, SP, Brazil

Keywords: Requirements Traceability, Regression Test Prioritization, Requirements Traceability Matrix.

Abstract: Background: When there are changes in software requirements, other phases of software development are
impacted and frequently, extra effort is needed to adjust the previous developed artifacts to new features or
changes. However, if the development team has the traceability of requirements, the extra effort could be not
an issue. An example is the software quality team, which needs to define effective tests cycles in each software
release. Goal: This papers aims to present an approach based on requirements dependence level to support
the regression test prioritization and identify the real impact of requirement changes. Method: The designed
approach is based on automatic definition of Requirements Traceability Matrix with three different
dependence levels. Moreover, dependence between requirement and test case is also defined. A case study in
a real software development industry environment was performed to assess the approach. Results: Identifying
the dependence level among requirements have allowed the quality assurance team priorize regression tests
and, by means of these tests, defects are early identified if compared with tests execution without priorization.
Moreover, the requirements changes complexity is also identified with the approach support. Conclusion:
Results shows that definition of dependence levels among requirements gives two contributions: (i) allowing
test prioritization definition, which become regression test cycle more effective, (ii) allowing characterize
impacts of requirements changes, which is commonly requested by stakeholders.

1 INTRODUCTION

The requirements management is an important
activity for the software development process
(Cleland-Huang et al., 2012); (Sommerville, 2010);
(Zisman and Spanoudakis, 2004). The requirements
traceability is the ability to follow the requirement life
cycle in both directions: past, related to the features
before the inclusion of the requirement, future, related
to features after the requirements inclusion (Götel and
Finkelstein, 1997).

Requirements management is important because
since a requirement is modified or added in a
requirements document, all stages of the software
development are affected requirements engineering,
software modelling, code development and software
testing, regardless of the software development

process to be followed. To map and manage the
requirements linking and other artefacts should be
established the requirements traceability. Several
authors emphasize the importance of traceability in
the software development process as part of
requirements management activities (Salem, 2006);
(Oliveto et al., 2007).

The requirements traceability is defined as the
ability to describe and follow the life of a requirement
throughout its life cycle (Guo et al., 2009). This
control should cover the whole requirement
existence, from its origin - when the requirement is
elicited, specified and validated - to the other stages
of the software development, including code
development and testing phases. Thus, the
requirements traceability is a technique that allows
the identification and visualization of the dependence
between a requirement with other requirements

231Di Thommazo A., Camargo K., Hernandes E., Gonçalves G., Pedro J., Belgamo A. and Fabbri S..
Using the Dependence Level Among Requirements to Priorize the Regression Testing Set and Characterize the Complexity of Requirements Change.
DOI: 10.5220/0005468902310241
In Proceedings of the 17th International Conference on Enterprise Information Systems (ICEIS-2015), pages 231-241
ISBN: 978-989-758-097-0
Copyright c 2015 SCITEPRESS (Science and Technology Publications, Lda.)

and/or other artefacts produced during a software
development process.

Cleland-Huang et al., (2012) define two types of
traceability:
• Horizontal: occurs when there is relationship

between requirements and different artefacts such
as models, source code and testing artefacts; and

• Vertical: when the relationship occurs in the same
artefact, for example the relationship between
requirements. The dependence between the
requirements, in general, is recorded in the
Requirements Traceability Matrix (RTM).

In this paper, the vertical traceability is handled by
exploiting the level of dependence between the
functional requirements (FRs) and the horizontal
traceability is handled by using the relationship
between each FR and its test cases (TC).

In the context of horizontal traceability, an
example is the possibility of identification and
prioritization of regression testing from the level of
dependence between FRs and between FRs and TCs.
According to Rothermel et al., (2001), regression
tests are important, but they can also be expensive. In
addition, the high cost has motivated several studies
to find a better cost effective, especially with the
prioritization of TCs (Salem, 2010). As the time
devoted to testing activity is limited, prioritization
allows to increase the number of serious defects
found (Malz et al., 2012).

In the context of vertical traceability, establish the
dependence between the Functional Requirements
(FRs) can support to predict the impact of changes in
software. The analysis of the impact changes allows
the project manager to take decisions more effective
during the change management of the software
development (Kama and Azli, 2012). If a change
occurs in a FR with a strong dependence with other
requirements, it makes sense to imagine that the
maintenance complexity is greater than a FR with no
dependence. In this case, the project manager should
make some decisions in order to satisfying the
stakeholder´s needs. For example, the decision may
be related to identifying the level of expertise
required to implement the changes.

Despite of the benefits of the requirements
traceability, a major challenge for the software
development process is to achieve and maintain
traceability in a manual way (Sommerville, 2010).
Thus, this research group has conducted several
studies to propose approaches to automatically
generate the RTM. In this sense, the RTM-E and
RTM-NLP have been proposed (Di Thommazo et al.,
2012). A combination between RTM-E and RTM-
NLP approaches enabled the development two new

approaches: RTM-N (Di Thommazo et al., 2013a)
using neural networks and RTM-Fuzzy (Di
Thommazo et al., 2013b) using fuzzy logic. A brief
summary of these approaches is presented in Section
II. In general, the combination of these approaches
allowed the decrease of the number of false positives
generated. The problem of false positive is identified
in the literature as a typical problem when NLP is
used for determining traceability (Sundaram et al.,
2010). In addition to reducing the number of false
positives, the combination of these approaches
indicates the level of dependence between FRs: weak
or strong dependence. This feature is a novelty in
relation to studies found in the literature. From the
dependence level it is possible to generate the TCs
prioritization and to identify the change complexity in
FRs, as described in Section 5.

Based on the scenario previously presented, this
research group developed an approach to define a set
of regression tests with prioritized TCs according to
the level of dependence between the FRs.
Furthermore, we sought to characterize the impact of
a change in FRs. This proposal was evaluated by a
case study in a real system aiming to show the
traceability advantages in order to characterize the
impact of changes in the FRs as well as to determine
a prioritized set of regression tests with priority.

Thus, the objectives of this paper are:

 To present an approach for selecting a set of
regression TCs;

 To show how the level of dependence between
FRs in a RTM can be useful in the process of
prioritizing a set of regression TCs;

 To show how this novel approach can characterize
the impact of changes in FRs, identifying changes
with a greater complexity;

 To show the approach application in a real case
study.

Note that this paper is not intended to detail the
approaches to automatically determine the RTM,
since these have been previously published by Di
Thommazo et al., (2012), Di Thommazo et al.,
(2013a), Di Thommazo et al., (2013b) and Di
Thommazo et al., (2013c). It also highlights that,
despite having several experimental studies to show
the effectiveness of these four approaches, for the
novel approach, presented in this paper, has not been
possible to find a large population such as that
undertaken in previous experimental studies. This is
because the case study involves monitoring all the
software development process, from its requirements
specification to software testing, in more than one
development cycle, as shown in Section 5.

We also emphasize that there are two systematic

ICEIS�2015�-�17th�International�Conference�on�Enterprise�Information�Systems

232

reviews (Singh et al., 2012); (Engström et al., 2010)
about the selection of test cases (CTs) for regression
testing. It is important to note that in the systematic
reviews there were not initiatives that select the
Regression Testing Cases with prioritization from the
traceability matrix of functional requirements and
levels of dependence, as proposed in this paper. In
these two studies in the literature are listed techniques
to generate Regression Testing with prioritization.
One of the techniques cited traceability (Filho et al.,
2010) however, this is traceability between models,
source code and CTs. Another cited technique
(Srikanth et al., 2005) focuses on the requirements,
but the definition and prioritization of test cases are
not based on traceability. The other techniques
mentioned in the work do not have focused on
requirements.

This paper is organized as follows: Section 2
presents the definitions of requirements traceability;
Session 3 details the regression test concepts and
prioritization of TCs; Section 4 shows the proposed
approach; Section 5 presents the case study
performed; Section 6 presents the findings and future
works.

2 REQUIREMENTS
TRACEABILITY

The main purpose of requirements management is the
requirements organization and storage as well as the
management of the changes that occur throughout the
development process (Sommerville, 2010); (Zisman
and Spanoudakis, 2004). One way to manage the
requirements is the establishment of traceability
requirements, defined as the ability to describe and
monitor the requirements throughout its life cycle
(Guo et al., 2009). Generate the link between FRs and
the connection between FRs and other artefacts
produced is a laborious task of requirements
management (Sundaram et al., 2010). The
requirements traceability can provide the basis for
evolution on requirements changes, in addition to
acting directly on the software process quality
assurance (Guo et al., 2009). A representation to
mapping the dependence between FRs is the creation
of RTM, where each FR is represented in one row and
one column of the matrix. The dependence between
two requirements is recorded in the corresponding
cell (line/column intersection). Several authors show
the importance of the RTM for the software process
development, since the matrix can help predict the
impact of a change or of a new FR in the system
(Cleland-Huang et al., 2012); (Sommerville, 2010)

(Guo et al., 2009); (Goknil et al., 2011.
This research group has proposed four approaches

for the automatic generation of RTM. These
approaches take into account the FRs of the software,
establishing the level of dependence between each
pair of FR.

The approaches were developed in COCAR tool
(Di Thommazo et al., 2012); (Di Thommazo et al.,
2013a); (Di Thommazo, 2013b); (Di Thomazzo et al.,
2014), aiming to provide computational support for
requirements management process IBM (2012). The
COCAR tool uses a template (Kawai, 2005) to store
all the requirements. The main purpose of this
template is to standardize the data of FRs, avoiding
inconsistencies, omissions and ambiguities.

Thus, the four approaches are available in the
COCAR tool, aiming to generating the RTM:
• RTM-E: based on input data from FRs and

explained in Di Thommazo et al., (2012);
• RTM-NLP: based on natural language processing

(NLP) and explained in Di Thommazo et al.
(2012);

• RTM-Fuzzy: combines the RTM-E and RTM-
NLP approaches using fuzzy logic (Di Thommazo
et al., 2013b). The pertinence functions of the
fuzzy system were defined by genetic algorithms,
as described in Di Thommazo et al., (2014);

• RTM-N: combines the RTM-E and RTM-NLP
approaches using neural networks (Di Thommazo
et al., 2013a).

In COCAR tool is also possible to register TCs and
associated them to FRs previously recorded. This
feature supports the vertical traceability.

3 REGRESSION TEST AND TEST
CASE PRIORITIZATION

The process of verifying the modified software in
maintenance phase is called Regression Test
(Maheswari and JeyaMala, 2013). The regression test
should be performed after the software suffer any
change, either by a new requirement or changes in an
existing requirement, in order to validate if those
modifications do not have inserted new faults. The
number of test cases for regression test have a
continuously grow whilst software is developed, and
re-execute all of them is not always feasible due to
schedule constraints (Kukreja et al., 2013).

The regression test is an expensive phase of
software testing process, a modification in the
software can require re-execute all set of test cases for
a module, for example. If the regression test suite is

Using�the�Dependence�Level�Among�Requirements�to�Priorize�the�Regression�Testing�Set�and�Characterize�the�Complexity
of�Requirements�Change

233

too large more effort will be required. The execution
of a regression test requires a plan, which includes
planning how, who and when will be executed (Myers
et al., 2004). The planning allows a better efficiency
in this activity.

Researchers have considered various techniques
to reduce costs of regression tests between them: test
case selection and test suite minimization (Rothermel
et al., 2001). The test case prioritization is a technique
that helps the identification of a subset of test cases
that will require less effort and time to be executed
during regression test phase. This subset, which
comprises test cases prioritized, helps the team in
early achievement of goals of the tests (Maheswari
and JeyaMala, 2013). In this technique the team will
sort the test cases according with his priority,
following a selection criterion. Test cases with lower
priority will be executed after the test cases with
higher priority (Rothermel et al., 2001). This can
increase the probability of finding faults early during
test process. As soon the faults are revealed faster the
software can be fixed, which means less time to
product delivery. The test case prioritization should
follow a clear criteria that allows identify why a test
case has higher priority than other. This criteria need
to be aligned with the expected goal to be achieved
by decreasing the set of regression tests: costs
reduction, increase fault detection rate, reduces
product delivery time, between others.

The next section presents the proposed approach,
which use the dependence level between functional
requirements as criteria for the test case prioritization.

4 PROPOSAL APPROACH

In this section we present the proposed approach to
address the changes in FRs during the software
development process. It is noteworthy that when we
mention changes in requirements, we are referring to
the modification of some existing functionality
already implemented or the inclusion of a new FR.
The objective of this proposal is to select a set of
regression TCs, by means of prioritization, from any
modifications in a FR or in a set of FRs. The approach
was based on the level of dependence between FRs
during the RTM generation.

Thus, once the system FRs are specified and
associated with their respective TCs, the regression
tests executed after any FR modification/inclusion are
prioritized in order to show different alternatives of
testing execution. As previously mentioned, the
COCAR tool was used to support the proposed
approach by means of FRs registration, RTM

generation (Di Thommazo et al., 2012); (Di
Thommazo et al., 2013a); (Di Thommazo et al.,
2013b); (Di Thommazo et al., 2014) and the
registration of TCs for each FR.

To illustrate the approach, consider a software that
was developed and its FRs and TCs have already
registered in COCAR tool. Any software
modification should be realized by means of FR
modification, codification and testing. Figure 1 shows
the flowchart of the proposed approach. Note that the
result of the approach is that the set of regression tests
have priorities according to the level of dependence
between the FRs. The higher the priority of the TC,
more chances it will have to find a defect and,
therefore, must be run first (Rothermel et al., 2001).

In addition to setting the TCs priority, this
approach allows to characterize the impact of changes
in the software. Therefore, the development team
should know and convey the complexity related to
each of the changes before the implementation. Based
on this information can be taken actions for risk
management, aiming to create contingency plans for
great complexity changes, or even to decide the best
time to implement complex changes. It may also be
possible to allocate more experienced staff members
to deal with more complex problems. It is noteworthy
that this approach does not define a metric to measure
the impact of changes related to effort in person-hour
or function points. The idea is to present a comparison
among the changes, so you can characterize among
all of them, which one presents the highest risk due to
the highest dependence among the FRs. As
previously mentioned, the definition of regression
tests is based on the dependence among the FRs and
between the FRs and the TCs. Therefore, we used the
same dependencies to characterize the complexity of
the changes, assuming that the greater the dependence
among the FRs, the harder it is to be maintained.

If a FR has dependence with several others, any
change in this FR implies to adjust models with strong
dependence with another models and source-code
snippets with strong dependence with other features.
Thus, the understanding of other code snippets are
necessary to make the change in the FR. In general,
the effort to understand third-party source code
involves a considerable time and attention from
developers. Since this is a possible source of defects,
the testing and correction effort may be longer.
Moreover, to modify or insert a FR, that has a weak
dependence (or no dependence) with others FRs
implemented, does not present difficulty of adjusting
to implement other functions already created. To
characterize the impact of change, we used the
amount of TCs that must be performed for each

ICEIS�2015�-�17th�International�Conference�on�Enterprise�Information�Systems

234

Figure 1: Steps to select prioritized TCs based on the dependence of FRs.

change, considering their respective priorities. A
simple counting of FRs with dependencies should not
be realized because if a FR has many TCs, it may
indicate that one FR has a complex business rule. On
the other hand, if a FR has only one associated TC, it
may indicate that your business rule is simple.

Thus, to characterize the impact of changes we
took into account the priority of the TCs, setting
weight 3 for high priority and weight 1 for low
priority. Consider the priority of TC is the same the
dependence level of the FRs. Equation 1 shows how
it is done the calculation of this complexity. The
weight values were defined considering that a
complex change can be 3 times harder than a simple
change. It is understood that this value can be
adjusted based on other data being collected by the
project manager. It is noteworthy that, in this study,
these values were consensus on the development
team.

Cୖ୶ ൌ ሺqtdPrHigh ∗ 3ሻ ሺqtdPrLowሻ (1)

In Equation 1, qtdPrHigh is the amount of TCs with
high priority identified by the approach to change the
FRx and qtdPrLow is the amount of TCs with slow
priority identified by the approach to chnge the FRx.
Figure 2 summarizes the approach for the complexity
characterization.

In the next section we present the case study of a
professional system, whose evolution and changes in

the FRs followed this approach.

5 CASE STUDY

This case study was conducted to evaluate the set of
regression testing with test cases prioritized based on
the level of dependence between FRs and traceability
between FR and TC. The case study also
characterizes complexity for the modification of a
FR, also using the level of dependence between FRs
(as defined in the RTM) and regression tests that were
determined to test the requested change.

The software that was developed during the case
study has the target of evaluating physical activity of
patients undergoing step test efforts. The software
was part of a project of the Department of
Physiotherapy at UFSCar and is linked with a patent
for a new product. During the evolution of this
product several changes had been necessary in the
software. In this iterative and interactive scenario
changes, the ability to deal with changes in
requirements assists the product development
process. When we talk about selection of CTs with
prioritization, we are referring to the ability to set the
priority of each CT that will identify more defects and
faster, in addition to covering the changes that
occurred in the software. The steps performed in the
case study were:

Using�the�Dependence�Level�Among�Requirements�to�Priorize�the�Regression�Testing�Set�and�Characterize�the�Complexity
of�Requirements�Change

235

Figure 2: Proposed approach to characterize the complexity
of changes in functional requirements.

Step 1) Record of Functional Requirements in
COCAR Tool: requirements were elicited with people
who would be users of the system. All requirements
were registered in COCAR tool, by adding the
description, processing, data entry, constraints,
outputs and stakeholders involved;

Step 2) Generation RTM According to the RTM-
Fuzzy Approach: Figure 3 illustrates the RTM
generated. Green color cells indicate a weak
dependence between FRs. Red color cells indicate a
strong dependence between FRs. The RTM-Fuzzy
approach was detailed in Di Thommazo et al.
(2013b);

Step 3) Insertion of TCs in COCAR Tool: from the
analysis of each FR were created functional test cases
related with each requirement. As the TCs were
created from the FRs, traceability between FR and
TCs was established automatically in the tool. This
traceability is required for identifying the priority of
test cases. If a FR is changed then it is necessary
execute first all TCs linked to this FR in regression
test phase, as detailed in the sequence;

Step 4) Software Development: the development
process involved two developers and was developed
with C # language to desktop environment.

Step 5) Test Case Execution of to find Bugs in the
Software Developed: the test cases produced on step
3 were executed after completion of software
development phase. The errors found were fixed and
the TCs that raised defects were executed again. The
execution of 106 test cases spent about 160 minutes.

After these steps the software was delivered to the
Department of Physiotherapy for the acceptance test
phase. The software was used in day to day evaluation
of patients undergoing physical stress tests. It was
expected that after the first execution of the
acceptance test, improvements were requested in the
proposed software: both as regards the change in the
existing FRs and the insertion of new FRs. In
addition, it was expected that defects could be found
which were not detected in the first test phase.

Step 6) Changes Treatment: after two weeks of use,

Figure 3: RTM obtained from the system of case study, before the proposed changes.

ICEIS�2015�-�17th�International�Conference�on�Enterprise�Information�Systems

236

the development team met with users to evaluate the
software. The following requests for modification
were made:

• Change in FR9 related to the patient record,
inserting a new field;

• New FR related to the inclusion of the
completion of a questionnaire by patients (will
be called FR31);

• New FR related to the system backups (will be
called FR32).

The steps used to determine the implementation of
these modifications are described in Figure 1. A
detailed description of each step performed in this
case study is presented following.

To deal with the change in FR9 it was necessary
to review the documentation relating to all TCs that
are related with this FR (Figure 1 step A). When an
FR is modified, the CTs related to it should be
reviewed and updated to continue according to the
FR. After an analysis was made to check if you need
to create some new TC, which did not occur for the
requirement in question, the FR9 (Figure 1 step B).

Following it was identified all TCs related FR9.
The selected TCs were TC34, TC35, TC36 and TC37
(Figure 4 step A). These four TCs were inserted in the
regression test set with high priority, according with
the step C of Figure 1.

The next step was to identify all FRs that had
strong dependence with FR9 (according to the RTM-
Fuzzy approach (Di Thommazo et al., 2013b). The
only FR that had a strong dependence was the FR10.
This requirement is related to the update of a patient
in the system. This relationship is shown by the red
arrow in Figure 4. All the FR10 TCs were entered into
the regression test universe with high priority (TC38,
TC39 and TC40). It was necessary to create a new
TC, called TC107, so that the new inserted field could
be validated. This TC was also inserted into the
regression test universe with high priority, according
the Figure 1 step 4 and represented by Figure 4-B.

Finally, were recovered the FRs which had low
dependence with the FR9 (FR5, FR6, FR7 and Fr8)
labelled with green arrow in Figure 4 and their
respective TCs (TC19 to TC33) as described in
Figure 1 step E. These TCs were added to regression
test suite with low priority, as shown in Figure 4-C.

The last step of the proposed tests would be
provide for the test team the TCs from TC34 to TC40
with high priority and the TC23 to TC33 with low
priority (Figure 1 step F).

Another change in the set of requirements was the
insertion of the FR31, related to the completion of a
survey by patients. After the inclusion of this
requirement more TCs were created for this

functionality (TC108, TC109 and TC110). They were
added to the regression test suite with high priority
(related to results of Figure 1 step F and shown in
Figure 5-A).

Following the proposed approach, we find out in
the RTM generated by the RTM-Fuzzy approach all
FRs with strong dependence with the FR31. In this
case, there was no FR in this situation (Figure 1 step
D).

The next step (Figure 1 step E) was identified
which FRs have weak dependence with the FR that
was inserted (FR31). In this case were recovered FR9,
FR10, FR11, FR12, FR25 and FR26. These weak
dependencies are marked in Figure 5 by the green
arrows. The TCs related to these six FRs were
recovered and inserted into the set of regression TCs
with low priority. These TCs recovered from the
insertion of the FR31 were made available to the test
team (Figure 1 step G).

Finally, we detail the insertion of the FR32,
related with the creation of import system backups.
As this is a new FR, the first action was to create the
TCs for this FR (Figure 1 step F shown in Figure 6).
The next step was to search the FRs with strong
dependence and then select the TCs connected to
them (Figure 1 step D). There were no FRs with
strong or weak dependence (Figure 1 step E). Thus,
only the TCs created specifically to address this
requirement (FR32) were inserted into the set of
regression TCs.

Figure 4: Changes in FR9.

Using�the�Dependence�Level�Among�Requirements�to�Priorize�the�Regression�Testing�Set�and�Characterize�the�Complexity
of�Requirements�Change

237

Figure 5: Insertion of the FR31.

Figure 6: Insertion of the FR32.

The result of the execution of the steps described

in Figure 1 was a set of regression tests. Note that the
TCs TC34, TC35, TC36 and TC37 were given high
priority when the FR9 was modified and low priority
when the FR31 was inserted. In these situations
should always be considered the highest priority, as
detailed in Figure 1 step G.

Step 7) Characterization of the Impact of Changes:
to illustrate the characterization of complexity from
the approach, Table 1 was built with case study data.
Equation 1 was used to characterize the complexity
of each change in the FRs. In the following (Equation
2) is an example of the calculation was made for the
change in FR9:

ோிଽܥ ൌ 8 ∗ 3 15 ൌ 39 (2)

The same procedure was used to describe the
complexity of FR31 and FR32 requirements. It is
possible to realize that the change in FR9 and FR31
requirements has a greater impact than the FR32. This
information can help the project manager to allocate
more experienced people for more complex tasks.
Despite, when there are several changes with great
complexity, this information can helps the project
manager estimate what will be the time for a new
software release. With time and knowledge of the
company under its own process is possible to trace the
relationship of the absolute value of the complex with
man-hour efforts or function points that was made to
calculate the change in FR9.

Step 8) Implementation of the Changes in the
Software: the change in FR9 and insertion of FR31
and FR32 were implemented by the development
team;

Step 9) Application of Regression Testing for
Defects Detection: in this step, the set of regression
tests with priority was performed in software built in
the previous step (step 7). This set of TCs had two
categories:

Table 1: Complexity of the FRs modifications.

FR
TCs from
FR

TCs that must
be performed
with high
priority

TCs that must be performed with
low priority

TCs quantity
with high
priority
(qtdPrHigh)

TCs quantity
with low priority
(qtdPrLow)

Characterization
of the complexity
to modify the FR

FR9

TCTC34,
TC35,
TC36,
TC37

TC34, TC35,
TC36, TC37,
TC38, TC39,
TC40, TC107

TC19, TC20, TC21, TC22, TC23,
TC24, TC25, TC26,TC27, TC28,
TC29, TC30

8 15 39

FR31
TC108,
TC109,
TC110

TC108, TC109,
TC110

TC34, TC35, TC36, TC37, TC38,
TC39, TC40, TC107, TC41, TC42,
TC43, TC44, TC45, TC46, TC79,
TC80, TC81, TC82, TC83, TC84,
TC85, TC86, TC87, TC88

3 25 34

FR32
TC111,
TC112,
TC113

TC111, TC112,
TC113, TC114

- 4 0 12

ICEIS�2015�-�17th�International�Conference�on�Enterprise�Information�Systems

238

 15 TCs with high priority: TC34, TC35, TC36,
TC37, TC38, TC39, TC40, TC107, TC108,
TC109, TC110, TC111, TC112, TC113 and
TC114;

 28 TCs with low priority: TC19, TC20, TC21,
TC22, TC23, TC24, TC25, TC26, TC27, TC28,
TC29, TC30, TC41, TC42, TC43, TC44, TC45,
TC46, TC79, TC80, TC81, TC82, TC83, TC84,
TC85, TC86, TC87 and TC88.

The execution of High Priority tests had the following
results: 6 cases failed and 9 passed. The TCs that
failed were: TC37, TC40, TC107, TC112, TC113 and
TC114. Approximately 20 minutes was spent to
perform these 15 tests. After running the Low Priority
tests following TCs failed: TC42, TC44, TC84.
Approximately 35 minutes was spent to perform these
28 tests.

In order to measure the difference between the
performances of all 114 TCs without the prioritization
the tests were executed again, with the same version
of software built in step 8. The TCs were performed
in ascending order (the TC01 to the TC114). It was
spent about 160 minutes and the same 9 tests that
failed in the previous step failed. Table 2 summarizes
the data of this step.

Step 10) Evaluate the Effectiveness of Regression
Testing: based on the data of Table 2 it can be seen
that:

 The time to perform regression testing was
approximately three times shorter than the time
used to perform all the tests (50 minutes versus
160 minutes);

 All defects found during the execution of the
entire test suite were also found in the set of
priority regression tests;

 The high priority TCs detected more defects
compared to low priority TCs (6 versus 3).

The most critical defects were found first, which
shows that the test case prioritization can increases
the defect detection rate. This allows that the most
serious defects that are early identified can be fixed
first. In a test design, with enough time constraints for
regression test or limited budget, prioritization helps
ensure the quality of the product even after such a
modification there is not enough time to perform the
entire set of tests during test regression.

As threats to validity of the case study can be
highlighted the fact that the test team did not have
great practical experience in software testing. The test
team received a brief conceptual training before the
start of activities. It also highlights the fact that
although generate a product to market, there were few

involved people in software development: two
analysts, two software developers and a tester.

Table 2: Case study data summarization.

 # of TCs
Time spent

(min)
Raised
defects

Regression
Tests

High
priority

15

40

20

50

6

9
Low
priority

25 30 3

TCs of all tests cycles 114 160 9

6 CONCLUSIONS AND
FURTHER ACTIONS

This paper presented an approach to select TCs
regression with prioritization and characterize the
complexity of changes in FRs. This approach was
based on the dependence levels between FRs defined
in RTM. The evaluation approach was taken in a real
case study.

The identification of dependence levels between
FRs allowed the identification of the priority of each
TC and characterization of the complexity of the
changes in requirements. The results of the case study
shows that the approach reduced the set of tests with
the same efficacy as if performed the entire test suite
in the software maintenance phase (regression tests).
The reduced set to 9 TC found the same defects, but
approximately three times faster. This indicates that
the prioritization of TCs become more efficient then
execution of all TCs. The identification of the TCs
that should be part of Regression Test with the
priorization are defined automatically by COCAR
tool after a FR to be inserted or modified.

Regarding the characterization of the complexity
of the changes the approach estimated the changes
that would be more complex to be performed in
software. We cannot ensure a direct relation between
the complexity and the effort to implement them.
Further studies are planned to assess the results of this
approach. Despite the characterization of complexity
make sense for the team (analysts, developers and
testers) it needs to be investigated and measured by
other studies that will be conducted by the group.

As future work for the selection of regression tests
with prioritization, we intend to use in addition of the
relation between each other FRs in the RTM and the
relationship between FRs and the TCS, the
relationship between the TCs. Therefore, we can
improve the selection of regression and prioritizing

Using�the�Dependence�Level�Among�Requirements�to�Priorize�the�Regression�Testing�Set�and�Characterize�the�Complexity
of�Requirements�Change

239

tests. Currently is being implemented in the COCAR
tool a module that deals with the definition of that
traceability between TCs for the refinement of the
approach and conducting new case studies. The
private aviation company that work as a partner of the
research group in the work reported in Di Thommazo
et al., (2012) and Di Thommazo et al., (2013a) has
prepared the environment and engaged to conduct the
new case study.

During the execution of this work was also
realized that it is possible to map the relationship
between the complexity of the stress changes to
metrics such as man/hour, and metrics related to the
software size, for example, function points. The same
company previously mentioned has a good historical
basis, whose data can confirm this characterization.

REFERENCES

Cleland-Huang, J., Gotel, O., Zisman, A. (2012) Software
and Systems Traceability, Springer, Berlin.

Di Thommazo, A., Malimpensa, G., Olivatto, G. , Ribeiro,
T., Fabbri, S. (2012). Requirements Traceability
Matrix: Automatic Generation and Visualization. In:
Brazilian Symposium on Software Engineering, SBES,
Natal, Brazil, Sep. 2012. Los Alamitos: IEEE Press.

Di Thommazo, A., Ribeiro, T., Olivatto, G., Rovina, R.,
Werneck, V., Fabbri, S. (2013a) Detecting traceability
links through neural networks. In: International
Conference on Software Engineering and Knowledge
Engineering, SEKE, Boston, USA. July 2013. Illinois:
Knowledge Systems Institute.

Di Thommazo, A., Ribeiro, T., Olivatto, G., Werneck, V.,
Fabbri, S. (2013b) An automatic approach to detect
traceability links using fuzzy logic. In: Brazilian
Symposium on Software Engineering, SBES, Brasília,
Brazil, Sep. 2013. Los Alamitos: IEEE Press.

Di Thommazo, A., Rovina, R., Ribeiro, T., Olivatto, G.,
Hernandes, E., Werneck, V., Fabbri, S. (2014) Using
artificial intelligence techniques to enhance traceability
links. In: International Conference on Enterprise
Information Systems, ICEIS, Lisboa, Portugal. April
2013. Lisboa: INSTIC Press.

Engström et al. A Systematic Review on Regression Test
Selection Techniques (2010) Information and Software
Technology, 52, 1, 2010, p. 14–30

Filho et al. Supporting concern based regression testing and
prioritization in a model driven environment (2010). In:
Annual Computer Software and Applications
Conference Workshop, COMPSAC, Seul, July 2010.
New York: ACM Press.

Goknil, A., Kurtev, I., Van den Berg, K., Veldhuis, J. W.
(2011) Semantics of Trace Relations in Requirements
Models for Consistency Checking and Inferencing.
Software and Systems Modeling, 10, 1, Feb. 2011.

Götel, O., Finkelstein, A. (1997) Extended requirements
traceability: results of an industrial case study In: Third

IEEE International Symposium on Requirements
Engineering, Annapolis, USA

Guo, Y., Yang, M, Wang, J., Yang, P., Li, F. (2009) An
Ontology based Improved Software Requirement
Traceability Matrix. In: International Symposium on
Knowledge Acquisition and Modeling, KAM , Wuhan,
China, Nov. 2009, Los Alamitos: IEEE Press.

IBM. (2012) Ten Steps to Better Requirements
Management. Available at:
http://public.dhe.ibm.com/common/ssi/
ecm/en/raw14059usen/RAW14059USEN.PDF.
(Accessed: 18 January 2015).

Kawai, K. K. (2005) Guidelines for preparation of
requirements document with emphasis on the
Functional Requirements (in portuguese). Master in
Computer Science, Federal University of São Carlos,
Brasil, 170 f.

Kama, N.; Azli, F. (2012) A Change Impact Analysis
Approach for the Software Development Phase. In:
Asia-Pacific Software Engineering Conference,
APSEC, Hong Kong, Dec. 2012. New York: ACM
Press.

Kukreja, N.; Halfond, W.G.J.; Tambe, M. (2013)
Randomizing regression tests using game theory. In:
IEEE/ACM International Conference on Automated
Software Engineering, ASE, San Francisco, USA, Nov.
2013, Los Alamitos: IEEE Press.

Maheswari, R. U.; JeyaMala, D., "A novel approach for test
case prioritization. (2013). In: IEEE International
Conference on Computational Intelligence and
Computing Research, ICCIC, Tamilnadu, India, Dec.
2013, Los Alamitos: IEEE Press.

Malz, C.; Jazdi, N.; Gohner, P. (2012) Prioritization of Test
Cases Using Software Agents and Fuzzy Logic. In:
IEEE Software Testing, Verification and Validation,
ICST, Montreal, Canada, Apr. 2012, Los Alamitos:
IEEE Press.

Myers, G. J. et al. (2004) The art of software testing. Nova
Jersey: John Wiley and Sons, 2004.

Oliveto, R.; Antoniol, G.; Marcus, A.; Hayes, J. (2007)
Software Artefact Traceability: the Never-Ending
Challenge. In: IEEE International Conference on
Software Maintenance, ICSM, Paris, Oct. 2007, Los
Alamitos: IEEE Press, pp.485,488.

Rothermel, G.; UnCTh, R.H.; Chengyun Chu; Harrold,
M.J. (2001) Prioritizing test cases for regression testing.
IEEE Transactions on Software Engineering, 27, 10.
October 2001. pp.929,948

Sundaram, S.K.A., Hayes, J.H.B., Dekhtyar, A.C.,
Holbrook, E.A.D. (2010) Assessing Traceability of
Software Engineering Artifacts. In” International IEEE
Requirements Engineering Conference, Sydney,
Australia, Sep. 2010, Los Alamitos: IEEE Press.

Salem, A. M. (2006) Improving Software Quality through
Requirements Traceability Models. In: ACS/IEEE Int.
Conf. Computer Systems and Applications, AICCSA,
Dubai, Sharjah, March 2006. Los Alamitos: IEEE
Press.

Salem, Y. I.; Hassan, R. (2010) Requirement-based test
case generation and prioritization. In: Computer

ICEIS�2015�-�17th�International�Conference�on�Enterprise�Information�Systems

240

Engineering Conference, ICENCO, Giza, Egypt, Dec,
2010, Los Alamitos: IEEE Press.

Singh et al. Systematic Literature Review on Regression
Test Prioritization Techniques (2012). Informatica, 36,
2012, p. 379–408

Sommerville, I. (2010) Software Engineering. Addison
Wesley, New York, 9th edition

Srikanth, H.; Williams, L.; Osborne, J. (2005) System test
case prioritization of new and regression test cases. In:
International Symposium on Empirical Software
Engineering, Noosa Heads, Australia, November 2005.
Los Alamitos, IEEE Press.

Zisman, A., Spanoudakis, G. (2004) Software Traceability:
Past, Present, and Future. The Newsletter of the
Requirements Engineering Specialist Group of the
British Computer Society, September 2004.

Using�the�Dependence�Level�Among�Requirements�to�Priorize�the�Regression�Testing�Set�and�Characterize�the�Complexity
of�Requirements�Change

241

