
Adapting Service Development Life-cycle for Cloud  

George Feuerlicht1,2,3 and Hong Thai Tran1 
1Faculty of Engineering and Information Technology, University of Technology, Sydney, Australia 

2Department of information technology, University of Economics, Prague, w. Churchill sq. 4, Prague 3, Czech Republic 

3Unicorn College, V Kapslovně 2767/2,130 00 Prague 3, Czech Republic 
 

Keywords: Cloud Computing, Service-oriented Architecture, Service Life-cycle. 

Abstract: As the adoption of cloud computing gathers momentum, many organizations are facing new challenges that 
relate to the management of cloud computing environments that may involve hundreds of autonomous cloud 
services provided by a large number of independent service providers. In this paper we argue that the large-
scale use of externally provided cloud services in enterprise applications necessitates re-assessment of the 
SOA paradigm. The main contribution of this paper is the identification of the differences between service 
provider and service consumer SDLC cycles and the description of the service consumer SDLC phases. 

1 INTRODUCTION 

Over the last decade, SOA (Service Oriented 
Architecture) has become the architecture of choice 
for most large organizations, providing a flexible 
and responsive enterprise computing architecture 
that addresses the business needs of modern 
organizations. Large-scale adoption of SOA has 
been facilitated by wide industry support and high 
level of web services standardization resulting in 
comprehensive tools and methods that support the 
entire SDLC (Systems Development Life Cycle) of 
service-oriented enterprise applications. A key 
benefit of SOA is that it enables close alignment of 
IT (Information Technology) with the business 
objectives of the organization, and at the same time 
facilitates high-levels of business process 
automation by using discrete, loosely coupled 
services. Another important benefit of SOA is that it 
enables organizations to participate in the emerging 
world of cloud computing and consume software 
and hardware services provided by other parties. 
However, the recent shift towards the use of 
externally provided cloud services in enterprise 
applications has altered the basic premise of SOA 
and requires a re-assessment of the SOA paradigm 
and in particular the SOA SDLC. The underlying 
assumption of traditional IT architectures, including 
SOA, is that application services are developed and 
deployed on-premise by the end-user organization. 
More specifically, traditional SOA assumes that the 

life cycle of enterprise services is controlled by the 
end-user organization, i.e. that most of the services 
are designed, developed and provisioned by the 
same organization that deploys the services in its 
enterprise applications. Although, SOA services can 
be consumed over the Internet or a private network 
from remote locations (e.g. using SOAP or REST 
protocols), the primary focus of traditional SOA is 
support for on-premise application services. This 
model is no longer valid in situations where a 
significant part of enterprise systems is delivered in 
the form of cloud services with a large number of 
cloud service providers involved (Joshi et al., 2009). 
With increasing adoption of cloud computing 
(Khajeh-Hosseini et al., 2010), the primary role of 
the IT consumer (end-user) organizations is shifting 
from on-premise implementation of SOA 
applications to integration of cloud services and 
management of a hybrid environment that involves 
both on-premise and cloud services (Farrell, 2011). 
Public cloud services are hosted on the provider 
infrastructure and controlled and managed by 
external service providers that make the services 
available to consumers on a pay-per-use basis 
(Breiter and Behrendt, 2009). Service consumers do 
not have full control over the data and applications 
that are provided as cloud services, and 
consequently cannot guarantee the level of security 
and availability that they are typically expected to 
provide (Breiter and Behrendt, 2009). In response to 
such concerns, there has been significant interest in 

366 Feuerlicht G. and Thai Tran H..
Adapting Service Development Life-cycle for Cloud.
DOI: 10.5220/0005470803660371
In Proceedings of the 17th International Conference on Enterprise Information Systems (ICEIS-2015), pages 366-371
ISBN: 978-989-758-098-7
Copyright c 2015 SCITEPRESS (Science and Technology Publications, Lda.)



hybrid cloud architectures where enterprise 
applications are partly hosted on-premise, and partly 
in public cloud environments (Hajjat et al., 2010). 
These developments impact on SOA SDLC as well 
as on SOA architectural features and functions, 
resulting in divergence between service consumer 
and service provider SDLC cycles. As a direct 
consequence of providing cloud services to large 
populations of service consumers, cloud service 
providers cannot take into account the needs of 
individual service consumers and their service 
development schedules. Although the investigation 
of architectural requirements for cloud computing 
has been the subject of recent research interest and 
standardization efforts (Liu et al., 2011), most of the 
work takes the perspective of service providers, and 
relatively little research has been done so far on 
issues that impact service consumers. The detail 
definition of service consumer SDLC and 
methodological support for cloud service consumers 
are still an open research problems. In our previous 
work, we discuss the challenges of managing 
enterprise applications in the cloud context 
(Feuerlicht and Tran, 2014a) and describe a 
consumer-side solution in the form of a Service 
Consumer Framework (SCF) (Feuerlicht and Tran, 
2014b). In this paper, our focus is on service 
consumer SDLC; we specify service consumer 
SDLC phases and describe architectural components 
required to support the lifecycle activities. The next 
section (section 2) is a review of related work, and 
section 3 is a discussion of the traditional SOA 
SDLC from a service provider perspective. Section 4 
describes service consumer SDLC referring to 
architectural components that are required to support 
this SDLC. Section 5 contains our conclusions and 
proposals for future work. 

2 RELATED WORK 

The NIST (National Institute of Standards and 
Technology) Cloud Computing Standards Roadmap, 
Hogan et al. (2011) separate the role of service 
provider and service consumer and define a set of 
cloud computing system development life cycle 
activities and functions. The activities of cloud 
providers include service deployment, service 
orchestration, cloud service management, security 
and privacy. Activities of cloud consumers include 
identifying (suitable) services, requesting services, 
negotiating service contracts, and deploying 
services. In early research, Papazoglou (2008) 
proposes a service development lifecycle that 

contains a preparation planning phase as and five 
life cycle phases: analysis and design, construction 
and testing, provisioning, development, and 
execution and monitoring. The paper describes a 
methodology and roadmap to assist service 
providers and service aggregators in assembling 
multiparty business processes. In a more recent 
paper, Papazoglou et al. (2011) propose a change-
oriented service life-cycle to address issues that arise 
with changes that cascade across multiple services. 
The life-cycle starts with the identification of the 
need for service change and scoping its extent, and 
then progresses to a service analysis phase that uses 
the model of the current state of the services (as-is 
model) and the to-be service model to perform gap 
analysis. Following the analysis of the impact of the 
required changes, decisions are made about how to 
deal with overlapping and conflicting service 
functionality. During the final change life-cycle 
phase new services are aligned, integrated, tested 
and released into production. Using a simple travel 
service scenario, Ruz et al. (2011) describe a flexible 
SOA cloud life cycle using SCA (Service 
Component Architecture) as a model for managing 
the life cycle of service-based applications. The life 
cycle consists of three phases: initial design and 
deployment, runtime monitoring, and design 
modification and reconfiguration. Authors also 
introduce an integrated and open framework for 
supporting flexible cloud service management based 
on SOA principles. Gu and Lago (2007) present a 
three phase stakeholder-driven service life cycle that 
involves three separate roles: service provider, 
service consumer and service broker. The main 
objective of this approach is to decouple the 
activities of service consumer and service provider 
across development phases: design time, runtime, 
and change time. In this stakeholder-driven life 
cycle model, service provider is responsible for 
service design, service development and testing, and 
service consumer is responsible for service 
orchestration, negotiation and monitoring. Focusing 
on SDLC of cloud service, Breiter and Behrendt 
(2009) describe a service lifecycle and study the 
relationship of managing this life cycle and ITIL. 
This approach focuses on managing IT functionality 
as one or more aggregated resources exposed as a 
cloud service. Another approach to managing an 
integrated lifecycle of IT services in a cloud 
environment is proposed by Joshi et al. (2009). 
Authors propose cloud service lifecycle that consist 
of five sequential phases: requirements, discovery, 
negotiation, composition, and consumption. The 
authors have identified performance metrics 

Adapting�Service�Development�Life-cycle�for�Cloud

367



associated with each phase: data quality, cost, 
security, service gap, SLA (Service Level 
Agreement), QoS (Quality of Service), consumer 
satisfaction, etc. Pot’vin, et al. (Pot'vin et al., 2013) 
present a cloud service life cycle that aims to deliver 
greater adaptability for dynamic business needs, 
significant operational efficiencies, and lower 
overall costs. The authors argue that to achieve the 
best value from the cloud infrastructure, it is 
important to have end-to-end management and 
automated workflows for various activities during 
all the phases of the cloud life cycle; starting with 
planning and setting up the cloud, to end-user self-
service provisioning and de-provisioning of 
applications, to metering and charging back for the 
cloud resource usage. While the authors 
acknowledge that there are multiple stakeholders 
related to the service lifecycle, they apply Oracle 
Enterprise Manager 12c Cloud Control (EMC12c) as 
integrated business and software service lifecycle 
framework that treats cloud SDLC from the provider 
perspective. To support the full lifecycle from 
request to retirement, Farrell (2011) introduces a 
cloud lifecycle management that aims to ensure 
successful use of the cloud by implementing policy-
driven provisioning processes through a self-service 
portal supported by a service catalogue. The cloud 
lifecycle starts with service request submitted by a 
consumer using self-service portal, and then goes 
through three different steps: orchestration and 
provisioning, operations and governance, and 
service retirement. 

Most of the research work on cloud service 
lifecycle reviewed in this section focuses on 
provider-side SDLC and proposes methods and 
procedures that aim to assist providers (or service 
brokers) to successfully deliver cloud services to 
consumers. This neglects to address important issues 
that service consumers face in cloud computing 
environments. Our focus in this paper is on service 
consumer SDLC that has its own distinct phases and 
characteristics that substantially diverge from 
provider service SDLC. By explicitly identifying the 
differences between service provider and consumer 
SDLC cycles, and describing the consumer SDLC 
phases we aim to develop a lifecycle methodology to 
support cloud service consumers. 

3 SERVICE PROVIDER SDLC 

Before we discuss the specifics of service consumer 
SDLC in the next section (section 4), we briefly 
review service provider SDLC in this section. While 

there are some differences in various approaches, 
most researchers include the lifecycle phases 
illustrated in Figure 1.  The figure represents an 
iterative and incremental lifecycle process that 
includes a preparatory Planning phase and five 
distinct main phases: Analysis and Design, 
Implementation, Provisioning, Deployment, and 
Execution and Monitoring (Papazoglou, 2008, 
Papazoglou and Heuvel, 2007).  

The planning phase is a preparatory phase that 
analyses the business case for different combinations 
of development approaches and realization 
strategies. This business case analysis includes gap 
analysis, and risk analysis. Gap analysis compares 
planned services with available software services 
that can be assembled to implement the new 
business processes. Gap analysis matches high-level 
descriptions of new services that make up a business 
process against the available services and includes 
scenario analysis that considers costs, risks, benefits, 
and ROI (Return on Investment) associated with the 
development of new business processes. Risk 
analysis compares costs and benefits in provisioning 
scenarios and verifies the feasibility of specific 
options. The impact and probability of events that 
may influence the performance of services is 
estimated. Finally, ROI is calculated for each option 
based on net benefits and costs.  

 

Figure 1: Service Provider SDLC. 

The analysis and design phase aims to identify and 
conceptualize business processes as a set of 
interacting services. Service analysis captures all 
activities required for the identification and 
contextualisation of a service, and helps to prioritize 
business processes that offer potential improvements 
in business value. Services are scoped aggregating 
simple services and decomposing complex services 
to reflect business requirements. This step is 
followed by service design, during which the 

ICEIS�2015�-�17th�International�Conference�on�Enterprise�Information�Systems

368



technical details of service interfaces are specified 
using design principles that include minimization of 
coupling and maximization of service cohesion. 
Importantly, this phase involves decisions about 
service granularity and grouping of service 
operations ensuring that the overlap between the 
functionality of different services is minimized. The 
emphasis is on maximising the potential for reuse of 
resulting services in different application contexts. 
The design activities are dependent on the specific 
type of service and may vary according to a delivery 
strategy.  

Service design forms the input for the 
implementation phase and includes all activities that 
are related to the realisation of the services based on 
the detail design developed during the previous 
phase. As services are reused in different application 
scenarios services need to be exhaustively tested 
before they can be published in a service repository. 
Testing involves ensuring that requirements as 
specified in previous SDLC phase have been met 
and that the deliverables are of acceptable quality 
and conform to the relevant industry standards 
(Kohlborn et al., 2009). Service provisioning phase 
involves implementing service governance, 
certification, auditing, metering, and billing, and 
controlling the behaviour of services during their 
use.  

Service provisioning can be local or over a 
network and can involve a complex mixture of 
technical and business aspects that support various 
client activities (Farrell, 2011).  

The deployment phase involves registering 
services in various service marketplaces and 
repositories, determination of access rights, pricing 
models, and specifying details of the corresponding 
SLAs.  

Service execution and monitoring phase covers 
activities during service runtime when services are 
operational, and their progress can be monitored. 
This phase includes outage management with the 
objective of maximizing availability of services. 
Some methodologies (e.g. ITIL) include an 
additional service improvement phase that involves 
service revisions and result in the creation of new 
and improved service versions.  

4 SERVICE CONSUMER SDLC 

As noted earlier, traditional SOA does not explicitly 
differentiate between service provider and service 
consumer SDLC cycles, and assumes that the 
services are designed, developed and provisioned by 

the same organization that deploys the services in its 
on-premise enterprise applications. This assumption 
is valid in most traditional SOA environments, but 
does not hold in situation where enterprise 
applications consume a large number of cloud 
services provided by external providers with 
autonomous service lifecycles.  In the context of 
cloud computing, service providers and service 
consumers are separate entities that perform 
different tasks throughout their SDLC cycles. 
Service providers are responsible for the 
implementation and reliable operation of services 
they provide, while service consumers are primarily 
responsible for the selection of suitable services, 
integration of cloud services into their enterprise 
applications, and ensuring continuity of operation at 
runtime. We have identified the following five 
phases of service consumer SDLC: Requirements 
Specification, Service Identification, Service 
Integration, Service Monitoring, and Service 
Optimization (Figure 2).  We classify these phases 
into design-time activities that include requirements 
specification, service identification, and service 
integration, and run-time activities that involve 
service monitoring, and service optimization. The 
service consumer SDLC is closely interrelated with 
the Service Consumer Framework (SCF) that 
provides support for lifecycle phases and activities 
and consist of Service Repository, Workflow 
Engine, Service Adaptors, and a Notification Centre 
(Feuerlicht and Tran, 2014b). 

Figure 2: Service Consumer SDLC. 

During the service requirements specification phase, 
the service consumer describes functional and non-
functional requirements that a given service needs to 
fulfil. Functional specifications of the service 
describe what functions the service should provide. 
While there are differences in the specification 

Adapting�Service�Development�Life-cycle�for�Cloud

369



according to the type of service (e.g. application 
service, infrastructure service, etc.), typically the 
specification includes technical details of the service 
interface (e.g. WSDL interface) and may also 
include details of the technological environment 
(e.g. specific hardware platforms, programming 
languages, etc. in the case of infrastructure and 
platform services). The non-functional attributes 
include service availability, response time, and 
security requirements, and may also include 
requirements regarding data location, security 
certification and the maximum cost of the service. 
Once the service is fully described and classified, the 
service consumer may create a Request for Service 
(RFS) and record the information in the service 
repository (Joshi et al., 2009). 

Service Identification (discovery) is constrained 
by the functional and non-functional requirements 
documented in the previous phase (requirements 
specification phase). Service identification phase 
begins by searching the service consumer repository 
to attempt to match the service requirements with 
services that are already recorded in the repository 
and certified for use. If no existing service matches 
the requirements, the service consumer will search 
the service repositories of cloud service providers, or 
contact a preferred service provider directly to locate 
a suitable cloud service. Service selection involves 
identification of suitable cloud services, their testing 
and approval. Service approval is an internal 
certification process that certifies cloud services for 
use in enterprise applications within the 
organization. Given the large number of available 
cloud services, the selection of suitable services can 
be time consuming, in particular if this task is 
performed multiple times in the context of different 
projects that require similar services. Using the 
consumer service repository to store information 
about approved cloud services ensures that services 
are shared among different projects and that the 
service selection and approval process is not 
unnecessarily repeated. In some instances, the 
consumer may be able to negotiate details of the 
SLA with the service provider, although this will 
depend on the type and volume of services involved.  

Following service identification phase cloud 
services need to be integrated into consumer 
enterprise applications. This process consists of the 
registration of the application and design of 
workflows using certified services already available 
in the repository. Workflow design involves 
searching the service repository for approved 
services that match the requirements of enterprise 
applications and composing workflows that control 

the service execution sequence at runtime. Designers 
match the desired QoS attributes values against 
information stored in the repository and define the 
processing rules that determine the sequence of 
service execution at run-time (Feuerlicht and Tran, 
2014b). This phase involves measuring QoS 
attributes and comparing their values with those 
specified in the corresponding SLAs. Typically, both 
the service provider and service consumer perform 
service monitoring independently, and both parties 
are responsible for resolving service quality issues 
that may arise. The SCF incorporates a Notification 
Centre that records service status of cloud services 
in a runtime log and is used by application 
administrators to monitor service utilization, planned 
maintenance activities, and to perform statistical 
analysis of response times and throughput for 
individual cloud services.   

Service optimization phase is concerned with 
continuous service improvement. This can be done 
by replacing existing services with new versions as 
these become available, or by identifying alternative 
cloud services from a different provider with 
identical functionality. For example, the payment 
service PayPal could be replaced by the SecurePay 
service. Using service utilization data recorded in 
the SCF log and information available from cloud 
service providers (or service brokers), the consumer 
makes decisions about replacing existing services 
based on cost and performance, and other relevant 
QoS parameters. SCF supports this process of 
service optimization allowing service replacement 
without impacting on existing enterprise 
applications. In addition to optimizing individual 
services entire business processes can be optimized 
by redesigning corresponding workflows.  

5 CONCLUSIONS 

In this paper, we have argued that the recent shift 
towards large-scale use of externally provided public 
cloud services in enterprise applications has altered 
the basic premise of SOA, and that this necessitates 
re-assessment of the SOA paradigm.  In particular, 
the assumption that the life cycle of enterprise 
services is controlled by the end-user organization 
(service consumer) is no longer valid. The 
traditional SOA model that focuses on on-premise 
application services is no longer sustainable in 
situations where a significant part of enterprise 
infrastructure and applications is delivered in the 
form of cloud services with a large number of cloud 
service providers involved. In our previous work, we 

ICEIS�2015�-�17th�International�Conference�on�Enterprise�Information�Systems

370



have described a proposal for consumer-side 
solution in the form of a Service Consumer 
Framework (SCF) that proposes architectural 
extensions designed to support operation in cloud 
computing environments. In this paper, we have 
identified the differences between service provider 
and service consumer SDLC cycles, and we have 
provided high-level description of the service 
consumer SDLC. Our future efforts will focus on 
refining the task descriptions within the various 
service consumer SDLC phases, and developing a 
set of corresponding principles and guidelines that 
will provide methodological support for cloud 
service consumers.  

REFERENCES 

Breiter, G. & Behrendt, M., 2009. Life cycle and 
characteristics of services in the world of cloud 
computing. IBM Journal of Research and 
Development, 53, 3:1-3:8. 

Farrell, K., 2011. Cloud Lifecycle Management: 
Managing Cloud Services from Request to Retirement. 
BMC Software. 

Feuerlicht, G. & Tran, H. T., 2014a. Enterprise 
Application Management in Cloud Computing 
Context. In The 8th International Conference on 
Research and Pratical Issues of Enterprise 
Information Systems (CONFENIS), Ha Noi, Vietnam. 
ACM. 

Feuerlicht, G. & Tran, H. T., 2014b. Service consumer 
framework: Managing Service Evolution from a 
Consumer Perspective. In ICEIS-2014. 16th 
International Conference on Enterprise Information 
Systems, Portugal. Springer. 

Gu, Q. & Lago, P., 2007. A stakeholder-driven service life 
cycle model for SOA. In 2nd international workshop 
on Service oriented software engineering: in 
conjunction with the 6th ESEC/FSE joint meeting. 
ACM, 1-7. 

Hajjat, M., Sun, X., Sung, Y.-W. E., Maltz, D., Rao, S., 
Sripanidkulchai, K. & Tawarmalani, M., 2010. 
Cloudward bound: planning for beneficial migration 
of enterprise applications to the cloud. SIGCOMM 
Comput. Commun. Rev., 41, 243-254. 

Hogan, M., Liu, F., Sokol, A. & Tong, J., 2011. NIST 
cloud computing standards roadmap. NIST Special 
Publication, 35. 

Joshi, K., Finin, T. & Yesha, Y., 2009. Integrated lifecycle 
of IT services in a cloud environment. In Proceedings 
of The Third International Conference on the Virtual 
Computing Initiative (ICVCI 2009), Research 
Triangle Park, NC. 

Khajeh-Hosseini, A., Greenwood, D. & Sommerville, I., 
2010. Cloud migration: A case study of migrating an 
enterprise it system to iaas. In Cloud Computing 
(CLOUD), 2010 IEEE 3rd International Conference 

on. IEEE, 450-457. 
Kohlborn, T., Korthaus, A. & Rosemann, M., 2009. 

Business and Software Service Lifecycle 
Management. In Enterprise Distributed Object 
Computing Conference, 2009. EDOC '09. IEEE 
International. 87-96. 

Liu, F., Tong, J., Mao, J., Bohn, R., Messina, J., Badger, 
L. & Leaf, D., 2011. NIST cloud computing reference 
architecture. NIST Special Publication, 500, 292. 

Papazoglou, M. 2008. Web Services Development 
Lifecycle. Web services: principles and technology. 
Pearson Education. 

Papazoglou, M. P., Andrikopoulos, V. & Benbernou, S., 
2011. Managing Evolving Services. IEEE Software, 
28, 49-55. 

Papazoglou, M. P. & Heuvel, W.-J. v. d., 2007. Business 
process development life cycle methodology. 
Commun. ACM, 50, 79-85. 

Pot'vin, K., Akela, A., Atil, G., Curtis, B., Gorbachev, A., 
Litchfield, N., Nelson, L. & Sharman, P. 2013. Cloud 
Lifecycle Management. Expert Oracle Enterprise 
Manager 12c. Apress. 

Ruz, C., Baude, F., Sauvan, B., Mos, A. & Boulze, A., 
2011. Flexible SOA Lifecycle on the Cloud Using 
SCA. In Enterprise Distributed Object Computing 
Conference Workshops (EDOCW), 2011 15th IEEE 
International. 275-282. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Adapting�Service�Development�Life-cycle�for�Cloud

371


