
MiDAS: A Model-Driven Approach for Adaptive Software

José Bocanegra, Jaime Pavlich-Mariscal and Angela Carillo-Ramos
Departamento de Ingeniería de Sistemas, Pontificia Universidad Javeriana, Bogotá, D.C., Colombia

Keywords: Adaptation, Design, MDE, Requirements, Transformations.

Abstract: Some of the main problems in software engineering for adaptive software are: the lack of mechanisms to
specify adaptive characteristics in software requirements; the difficulty to obtain a functional adaptive system
based on the elicited requirements; and the need of maintaining synchronization and traceability between the
requirements, design and implementation. To address the above problems, this paper proposes MiDAS, a
framework that uses a model-driven approach to develop adaptive software. Specifically, MiDAS provides: (i)
a new language for requirements engineering process that takes into account uncertainty in adaptive software;
(ii) a method to derive concrete implementations in specific architectures supporting run-time adaptation; and,
(iii) a mechanism to maintain traceability and synchronization between requirements specifications, design
models and implementation architectures.

1 INTRODUCTION

An adaptive software system is a system able to
“modify itself at run-time due to changes in the sys-
tem, its requirements, or the environment in which it
is deployed” (Andersson et al., 2009). Adaptive soft-
ware plays an important role in several scenarios. One
of them is when there are frequent changes in the con-
text/goals/requirements during run-time. For exam-
ple, in a slow connection, an adaptive software may
modify its behavior at run-time and change the format
in which information is presented (from graphical to
textual) to give the user a better experience. Another
scenario is when users with different abilities inter-
act with software. For example, an Adaptive Learn-
ing Management System may adjust the contents pre-
sented to the student taking into account his/her skills,
and so, improving the educational process.

However, developing adaptive software is a task
far from trivial. Cheng et al., (2009a), identified
the main problems in software engineering for adap-
tive software. The first issue is the lack of mecha-
nisms to specify adaptive characteristics in software
requirements. In traditional software development
process, software engineers use standard phrases or
statements, called linguistic patterns, which are habit-
ual in requirement specifications (Durán et al., 1999).
Some traditional linguistic patterns are “The system
shall do this <objective>", or “The system shall store
information about <relevant concept>”.

Linguistic patterns facilitate requirements writing
because “requirements information is structured in
a fixed form, so requirements engineers know what
missing information must be searched, requirements
can easily be treated by a software tool” (Toro et al.,
1999). However, traditional linguistic patterns to
elicit requirements are not suitable to deal with un-
certainty, a key feature in adaptation (Esfahani and
Malek, 2013). According to Cheng et al., (2009a),
traditional linguistic patterns have a notion of manda-
tory behavior versus the optional behavior that could
be used to specify adaptive systems. Adaptive soft-
ware requires a new requirement vocabulary and new
linguistic patterns, such as The system might do this...,
but it may do this... as long as it does this..., or The
system ought to do this... but if it cannot, it shall even-
tually do this... (Cheng et al., 2009a).

The second issue is the difficulty to design and
implement a functional adaptive system based on the
elicited requirements. There are two many reasons.
First, in current approaches, the transition between a
set of functional requirements to a design is not direct,
repeatable, or constructive (Dromey, 2003). Second,
the adaptation logic is “typically specified at the code
level, tightly coupled with the main system function-
ality, making it hard to control and maintain” (Fleurey
and Solberg, 2009).

It is important to provide systematic methods to
automate the transition from requirements specifica-
tions to design and to concrete implementations that

281Bocanegra J., Pavlich-Mariscal J. and Carrillo-Ramos A..
MiDAS: A Model-Driven Approach for Adaptive Software.
DOI: 10.5220/0005486202810286
In Proceedings of the 11th International Conference on Web Information Systems and Technologies (WEBIST-2015), pages 281-286
ISBN: 978-989-758-106-9
Copyright c 2015 SCITEPRESS (Science and Technology Publications, Lda.)



support run-time adaptation (Salehie and Tahvildari,
2009). These methods should help to reduce or elim-
inate the need to code an adaptive system manually.

The third issue is the need to maintain coher-
ence between the requirements, design and imple-
mentation. Beatty and Cheng (2012), explain that a
change request in a requirements specification may
affect other parts of a system. A change request may
affect elements such as code, business requirements,
functional requirements, systems requirements, user
requirements, external interface requirements, qual-
ity attributes, architecture, user interface, software de-
sign, and source code. For instance, if there is a
change in a business requirement, this change may af-
fect architecture, user interface, or software design.

A possible solution to these issues is traceabil-
ity. Traceability is the ability to verify the history,
location, or application of an item by means of doc-
umented recorded identification. In software engi-
neering traceability provides a clear, bidirectional link
between requirement and design models, between
design and code, and between code and test cases
(Cleland-Huang et al., 2014).

To address all the problems mentioned above,
Model-Driven Engineering is a possible solution.
Model-Driven Engineering (MDE) (Kent, 2002) is
an approach to develop software. MDE uses mod-
els to specify different aspects of a system, from re-
quirements and domain-specific constructs, to the var-
ious aspects of design descriptions. A key element
in MDE is the use of transformation tools to auto-
matically create the code that realizes those models.
These transformation tools take as input a set of mod-
els representing domain-specific or design concepts,
and output code in a certain programming language
and platform that realizes those models.

Taking as reference the advantage of MDE, this
paper proposes MiDAS, a framework that uses a
model-driven approach to develop adaptive software.

The expected contributions of MiDAS will be the
following.

First, MiDAS will provide new languages to spec-
ify requirements and design in adaptive software.
These languages are depicted in Section 3.1 and 3.2.

Second, MiDAS will provide a mechanism to both
(i) derive a system implementation from requirements
and design specifications, and (ii) maintain traceabil-
ity and synchronization between requirements, de-
sign, and implementation models. These mechanisms
will be supported by a language that is detailed in Sec-
tion 3.3.

Third, MiDAS will provide a Case Tool that inte-
grates all of the above elements to support the entire
development process for adaptive software. This tool

is presented in Section 3.4.
Fourth, this paper presents the expected advan-

tages of use MiDAS. These advantages are presented
in Section 4.

This paper concludes with a set of conclusions and
future venues of research.

2 BASELINE AND RELATED
WORK

The requirements specification process in adaptive
systems has not been frequently addressed (Whittle
et al., 2010). Some authors indicate that “it is a chal-
lenging task due to the inherent uncertainty associated
with an unknown environment” (Cheng et al., 2009b).
Due to this uncertainty, variability in adaptive sys-
tems is hard to identify and model (Greenwood et al.,
2011).

Although models for adaptive systems are of-
ten constructed in an ad-hoc manner, several authors
((Espada et al., 2011), (Gnaho et al., 2013)) have an-
alyzed the use of well-known languages. Ahmad et
al., (2013) have studied the differences and potential
combinations of 4 different requirements modeling
languages in adaptive systems: KAOS(Lamsweerde,
2009), SysML (OMG, 2015), SysML/KAOS (Laleau
et al., 2010), and RELAX (Whittle et al., 2010). Al-
though all the above approaches address important is-
sues of adaptive systems, they do not address trace-
ability. Moreover, these works only take into account
static aspects of the system, and shelve the dynamic
aspects. In the specific case of RELAX, this is a tex-
tual language for dealing with uncertainty in adaptive
systems. However, the language “was not integrated
with modeling approaches used in the requirements
engineering community” (Whittle et al., 2010).

Model-Driven Engineering and adaptive software
have been studied, among others, by Vogel and Giese
(2014) . Those authors propose EUREMA, a model-
driven approach to develop adaptive software. How-
ever, EUREMA is only oriented to the specification
and execution of adaptation engines, but it does not
cover elements of requirements specification.

The above proposals combine adaptation, require-
ments engineering, and MDE. However none of them
provide an integrated approach to address all the chal-
lenges explained in the introduction of this work. Par-
ticularly, there are no approaches that propose a com-
plete process that covers requirements, design, and
implementation of adaptive software. Table 1 pro-
vides the comparison of related work.

WEBIST�2015�-�11th�International�Conference�on�Web�Information�Systems�and�Technologies

282



Table 1: Comparison of related work.

Approaches
Criteria KAOS SysML SysML RELAX EUREMA MiDAS/KAOS

Traceability Reqs/Design +
Design/Implem +

Static aspects
Goals + + + + +

User profiles + + + +
Context profiles + + + +

Dynamic aspects Processes + +

3 MiDAS

The analysis of the previous sections motivates the
proposal of a new approach to develop adaptive sys-
tems, called MiDAS. MiDAS is an acronym for
Model-driven approach for adaptive systems and is
expected to: (i) provide a new language for adaptive
systems; (ii) derive a functional system based on the
specified requirements; and, (iii) address traceability
and synchronization between requirements, design,
and implementation.

MiDAS comprises three key elements: (i) a Re-
quirements Specification Language for Adaptive Sys-
tems (RSLAS); (ii) a Design Modeling Language For
Adaptive Systems (DMLAS); and (iii) a Model Trans-
formation Language for Adaptive Systems (MTLAS).

The remainder of this section explains the features
of each language.

3.1 Requirements Specification
Language for Adaptive Systems
(RSLAS)

One of the fundamental objectives in a requirements
specification is to clearly define the problem to be
solved.

Adaptive systems differ from traditional systems,
since they dynamically change their behavior, based
on external inputs. These inputs, called adaptation
parameters, typically include logical conditions based
on user characteristics and context (Brusilovsky,
2001). Since adaptive systems are so dependent on
these inputs, requirements tend to be specified differ-
ently than traditional systems.

The first challenge in adaptive software is the de-
scription of the adaptation parameters in the require-
ments specification. However, when software engi-
neers develop adaptive software, they tend to specify
adaptation parameters in the source code and not as
part of the requirements specification (Cheng et al.,
2009a). This situation has several drawbacks:

1. The lack of formalism in modeling adaptive sys-
tems. This originates that the development of
adaptive systems are made, generally, on an ad-
hoc manner.

2. The difficulty of porting the application across
different architectures and platforms. This situ-
ation may increase the investment in time and re-
sources in the software development process.

3. The complexity to validate the system. This due
to that, for a user, is more complex understand a
source code that a more abstract specification.

4. Adaptive parameters are closer to the problem do-
main that the solution domain. The source code is
part of the solution domain, thus including adapta-
tion parameters into the source code would unnec-
essarily tangle them with concerns of the solution
domain.

Therefore, it is necessary that the requirements speci-
fication take into account adaptive parameters.

RSLAS will provide a new way to include
adaptive parameters in requirements specifications.
RSLAS will use a special language pattern in which
traditional sentences as “The system shall do this...”,
are replaced by conditional sentences, such as “The
system might do this...”, “But it may do this... as long
as it does this...”, or “The system ought to do this...
but if it cannot, it shall eventually do this...” (Cheng
et al., 2009a).

RSLAS will depict the main elements in a re-
quirements specification: goals, functional require-
ments, non-functional requirements, and storage in-
formation requirements. RSLAS also will provide a
set of reusable patterns, taking into account that in
software projects there are requirements that appear
with higher frequency than others (Kopczynska and
Nawrocki, 2014). These patterns may be depicted by
reusable templates that represent repetitive tasks, such
as CRUD operations or login processes.

Context plays an important role in adaptive soft-
ware, since it provides useful information to cus-

MiDAS:�A�Model-Driven�Approach�for�Adaptive�Software

283



tomize and personalize services. To enable context-
aware adaptation, context profiles (e.g., connection,
mobile device, location, etc.) and user profiles (e.g.,
personal data, interests, tastes, habits) could be speci-
fied with RSLAS.

Requirements elicitation in RSLAS relies on a
structured requirements model and not on an infor-
mal document written in natural language. This is im-
portant because RSLAS is expected to facilitate trans-
lation, modeling, and relating stakeholder’s expecta-
tions to adaptation requirements. For example, if a
non-technical stakeholder needs to review and vali-
date the requirements, RSLAS may use transforma-
tions to extract information from the structured re-
quirement model and create a document in a language
that the stakeholder understands. Additionally, with a
structured model is easier to derive automatically de-
sign models.

To develop this language, RSLAS may be inspired
by current languages that manage uncertainty, such as
RELAX, complemented and integrated to approaches
that provide support to model goals such as Tropos
(Bresciani et al., 2004) or Kaos (Dardenne et al.,
1993).

3.2 Design Modeling Language for
Adaptive Systems (DMLAS)

DMLAS provides support to store information about
static and dynamic components of adaptive software.
Regarding to static elements, DMLAS store informa-
tion about user, context, and additional profiles, which
will be tightly related to the adaptation parameters de-
fined by RSLAS.

Regarding behavior, DMLAS may use several ap-
proaches, such as Event-Condition-Action or BPMN,
among others.

DMLAS should provide several design elements
to realize the requirements specified by RSLAS.
These design elements should abstract different ap-
proaches to provide adaptation, such as if-else state-
ments, rule engines, expert systems, logic program-
ming, constraint programming, etc. With DMLAS
the designer should have the possibility to select and
combine the most convenient elements to create the
solution. DMLAS should also provide a design span-
ning several levels of abstraction (from those closer to
the problem domain to those closer to implementation
domain).

3.3 Model Transformation Language
for Adaptive Systems (MTLAS)

Another challenge in adaptive software is to main-
tain traceability and synchronization between require-
ments, design and implementation, because traceabil-
ity ensures that artifacts of subsequent phases of the
development cycle are consistent.

Although current tools for transformation such
as ATL or ETL provide mechanisms for traceabil-
ity, these tools only provide unidirectional traceabil-
ity(Macedo and Cunha, 2014).

An alternative of solution is to use bidirectional
transformations (Czarnecki et al., 2009). Bidirec-
tional transformations ensure that if some elements in
a model (e.g., in design models) are modified, other
models (e.g., requirements models) are automatically
and consistently synchronized.

The main problem with current languages for bidi-
rectional transformations (such as the Beanbag lan-
guage (Xiong et al., 2009)) it that some information
about the design may be lost, mainly because of the
mappings from models to code and vice versa are not
1:1.

To fix that issue, MTLAS may provide bidirec-
tional transformations to maintain traceability and
synchronization between requirements, design, and
implementation models.

3.4 Tool Support

Traditionally, CASE tools do not support the devel-
opment process for adaptive software in a whole per-
spective: requirements specification, design, and im-
plementation.

MiDAS will provide a CASE tool that supports
the proposed process to develop adaptive software:
requirements specification, design, and implementa-
tion. The CASE tool will support the requirements
specification process and the design of adaptive ap-
plications. In addition, the tool will perform semi-
automatic generation of adaptive applications from
the models, using a code generator.

This tool depends on several technologies. For
example, a visual workspace is necessary to create
the requirements models. It is important to explore
alternatives such as the Eclipse Graphical Modeling
Project, Eclipse Graphiti, or EuGENia. From these
alternatives, MiDAS may be use one or more, depend-
ing on the application context. Indeed, the definition
of criteria of use is part of the future work of this
project.

The tool should provide a workspace to customize
and execute semi-automatic transformations to create

WEBIST�2015�-�11th�International�Conference�on�Web�Information�Systems�and�Technologies

284



design models from the requirements models. These
transformations will be developed using MTLAS.

The tool also should provide support to transform
the models to an executable platform that supports
adaptation at run-time. For these transformations, the
tool should also use MTLAS.

Finally, the generated code by the case tool may be
complemented with set of predefined libraries. Those
libraries will be represented abstractly in the design
model.

4 ANALYSIS OF ADAPTIVE
SOFTWARE DEVELOPMENT
WITH AND WITHOUT MiDAS

In previous work, the authors of this project have
proposed an adaptive Virtual Learning Environment
named ASHYI-EDU, which assists teachers to create
especially-tailored plans for every student, taking into
account their specific personalities, learning styles,
competences, and abilities.

The development process in ASHYI-EDU was
made in a traditional way. For example, the models
were used just as a tool to capture ideas in brainstorm-
ing sessions. When the source code was modified,
models were not updated automatically, i.e., code and
models were not synchronized. Another issue is that
many adaptive design decisions were placed directly
into the code.

ASHYI-EDU was built using a Learning Manage-
ment System (LMS), called Sakai. Because of that,
the initial configuration of the development environ-
ment and the integration of adaptation concerns was
a complex task, requiring to invest a considerable
amount of time.

Last, but no least, migrating ASHYI-EDU to dif-
ferent LMS platforms, such as Moodle, would require
a high amount of time and resources, because it would
be necessary to develop the software using a different
programming language and architecture.

Using MiDAS in the development of ASHYY-
EDU models will fulfill an important role in the de-
velopment process. The adaptive parameters (e.g.,
personalities, learning styles, competences, and abil-
ities) will be specified directly in the models and not
in the code; and thanks to the semi-automatic code
transformations development process may be faster.
Switching between platforms can be done in less time
thanks to the abstraction provided by models. Addi-
tionally, the design decisions remain in models and
may be modified not in code but models.

5 CONCLUSIONS AND FUTURE
WORK

There are some approaches to bridge the gap between
the requirements specification, design and implemen-
tation. However, none of them provide an effec-
tive process to generate the design from requirements,
not only for traditional systems but adaptive systems.
This position paper proposes a framework that sup-
ports the entire development process for adaptive soft-
ware, spanning from requirements specification to de-
sign to implementation.

Ongoing work is the construction of this frame-
work, which is divided in several activities. The first
one is to define the languages for requirements spec-
ification and design. The second activity is to cre-
ate parameterizable transformations between require-
ments, design, and implementation. The goal is to an-
alyze and define the most recurrent scenarios and pa-
rameters in adaptive systems. The third activity is the
construction of the CASE tool. Finally, it is necessary
validate the framework through several case studies to
evaluate the approach and get feedback.

ACKNOWLEDGEMENTS

This paper is part of the project “ASHYI: Plataforma
basada en agentes para la planificación dinámica, in-
teligente y adaptativa de actividades aplicada a la ed-
ucación personalizada”, executed by the ISTAR re-
search group of the Pontificia Universidad Javeriana,
cofinanced by Colciencias, project 1203-569-33545.

REFERENCES

Ahmad, M., Araújo, J., Belloir, N., Bruel, J.-M., Gnaho,
C., Laleau, R., and Semmak, F. (2013). Self-adaptive
systems requirements modelling: Four related ap-
proaches comparison. In Comparing Requirements
Modeling Approaches Workshop, pages 37–42. IEEE.

Andersson, J., De Lemos, R., Malek, S., and Weyns, D.
(2009). Modeling dimensions of self-adaptive soft-
ware systems. In Software engineering for self-
adaptive systems, pages 27–47. Springer.

Beatty, J. and Chen, A. (2012). Visual Models for Software
Requirements. O’Reilly Media, Inc.

Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopoulos, J.,
and Perini, A. (2004). Tropos: An agent-oriented
software development methodology. Journal of Au-
tonomous Agents and Multi-Agent Systems, 8:203–
236.

Brusilovsky, P. (2001). Adaptive hypermedia. User Model-
ing and User-Adapted Interaction, 11(1-2):87–110.

MiDAS:�A�Model-Driven�Approach�for�Adaptive�Software

285



Cheng, B. H., De Lemos, R., Giese, H., Inverardi, P.,
Magee, J., Andersson, J., Becker, B., Bencomo, N.,
Brun, Y., Cukic, B., et al. (2009a). Software engineer-
ing for self-adaptive systems: A research roadmap. In
Software engineering for self-adaptive systems, pages
1–26. Springer.

Cheng, B. H., Sawyer, P., Bencomo, N., and Whittle, J.
(2009b). A goal-based modeling approach to develop
requirements of an adaptive system with environmen-
tal uncertainty. In Model Driven Engineering Lan-
guages and Systems, pages 468–483. Springer.

Cleland-Huang, J., Gotel, O. C. Z., Huffman Hayes, J.,
Mäder, P., and Zisman, A. (2014). Software trace-
ability: Trends and future directions. In Proceedings
of the FOSE, pages 55–69. ACM.

Czarnecki, K., Foster, J. N., Hu, Z., Lämmel, R., Schürr,
A., and Terwilliger, J. F. (2009). Bidirectional trans-
formations: A cross-discipline perspective. In Theory
and Practice of Model Transformations, pages 260–
283. Springer.

Dardenne, A., Van Lamsweerde, A., and Fickas, S. (1993).
Goal-directed requirements acquisition. Science of
computer programming, 20(1):3–50.

Dromey, R. G. (2003). From requirements to design: For-
malizing the key steps. In Conference on Software
Engineering and Formal Methods, pages 2–11. IEEE.

Durán, A., Bernárdez, B., Toro, M., Corchuelo, R., Ruiz,
A., and Pérez, J. (1999). Expressing customer require-
ments using natural language, requirements templates
and patterns. In Proceedings of IMACS/IEEE CSCC.

Esfahani, N. and Malek, S. (2013). Uncertainty in self-
adaptive software systems. In Software Engineering
for Self-Adaptive Systems II, volume 7475, pages 214–
238. Springer.

Espada, P., Goulão, M., and Araújo, J. (2011). Measuring
complexity and completeness of kaos goal models. In
Empirical Requirements Engineering (EmpiRE), 2011
First International Workshop on, pages 29–32. IEEE.

Fleurey, F. and Solberg, A. (2009). A domain specific
modeling language supporting specification, simula-
tion and execution of dynamic adaptive systems. In
Model Driven Engineering Languages and Systems,
pages 606–621. Springer.

Gnaho, C., Semmak, F., and Laleau, R. (2013). An
overview of a sysml extension for goal-oriented nfr
modelling: Poster paper. In Conference on Research
Challenges in Information Science, pages 1–2. IEEE.

Greenwood, P., Chitchyan, R., Rashid, A., Noppen, J.,
Fleurey, F., and Solberg, A. (2011). Modelling
adaptability and variability in requirements. In Re-
quirements Engineering Conference, pages 343–344.
IEEE.

Kent, S. (2002). Model-driven engineering. Lecture Notes
in Computer Science, 2335:286–298.

Kopczynska, S. and Nawrocki, J. (2014). Using non-
functional requirements templates for elicitation: A
case study. In Requirements Patterns (RePa), 2014
IEEE 4th International Workshop on, pages 47–54.

Laleau, R., Semmak, F., Matoussi, A., Petit, D., Hammad,
A., and Tatibouet, B. (2010). A first attempt to com-

bine sysml requirements diagrams and b. Innovations
in Systems and Software Engineering, 6(1-2):47–54.

Lamsweerde, A. V. (2009). Requirements engineering:
from system goals to UML models to software spec-
ifications. Wiley.

Macedo, N. and Cunha, A. (2014). Least-change bidirec-
tional model transformation with qvt-r and atl. Soft-
ware & Systems Modeling, pages 1–28.

OMG (2015). Sysml specification.
http://www.sysml.org/docs/specs/OMGSysML-
v1.3-12-06-02.pdf. Last accessed: January/2015.

Salehie, M. and Tahvildari, L. (2009). Self-adaptive soft-
ware: Landscape and research challenges. ACM
Transactions on Autonomous and Adaptive Systems
(TAAS), 4(2):14.

Toro, A. D., Jiménez, B. B., Cortés, A. R., and Bonilla,
M. T. (1999). A requirements elicitation approach
based in templates and patterns. In WER, pages 17–
29.

Vogel, T. and Giese, H. (2014). Model-driven engineering
of self-adaptive software with eurema. ACM Transac-
tions on Autonomous and Adaptive Systems (TAAS),
8(4):18.

Whittle, J., Sawyer, P., Bencomo, N., Cheng, B. H., and
Bruel, J.-M. (2010). Relax: a language to address
uncertainty in self-adaptive systems requirement. Re-
quirements Engineering, 15(2):177–196.

Xiong, Y., Hu, Z., Zhao, H., Song, H., Takeichi, M., and
Mei, H. (2009). Supporting automatic model incon-
sistency fixing. In Symposium on The foundations of
software engineering, pages 315–324. ACM.

WEBIST�2015�-�11th�International�Conference�on�Web�Information�Systems�and�Technologies

286


