
A Type-theoretic Approach to Cloud Data Integration

Pavel Shapkin and Gregory Pomadchin
Department of Cybernetics and Information Security,

National Research Nuclear University MEPhI (Moscow Engineering Physics Institute),
31 Kashirskoe shosse, Moscow, Russian Federation

Keywords: Type Theory, Data Integration.

Abstract: We propose an architecture that helps to integrate data accessible via cloud application APIs. The central part
of the platform is the domain ontology which is based on type theory. Typing is used to automate the build-
ing of integration solutions as well as for automatic verification of program code and compatibility between
components.

1 INTRODUCTION

Cloud applications rapidly penetrate into companies
of all sizes attracting users with low low costs. Al-
though as side effect data end up “locked” in the
cloud and this dramatically complicates migration be-
tween different systems and inhibit transition to new
solutions. At the same time every SaaS application
often has its own API, and a pressure to keep the
costs low doesn’t allow SaaS developers to implement
complete support for different standards and data ex-
change tools. In modern environment of fast-evolving
technologies there is often a need to move to a new
system without sacrificing historical data. In this con-
text comprehensive solution to migration problem is
needed that will not only simply map data formats but
will also preserve data consistency as well as classi-
fier relations. Over 30% of SaaS-applications users
use more than one system and require integration.

In this paper we describe architecture of a cloud-
based platform for migration, consolidation and inte-
gration of data. It is a program complex that facilitate
connection of multiple SaaS applications using auto-
matically created integration solution.

Core value of this solution for target users is the
capability to untie the data and “free” it from specific
cloud apps. Usage of such an environment allows one
to smoothly transfer the data between applications, as
well up- or download it using different formats and
protocols. Users can exploit their data in a whole new
way as a self-standing entity that can be freely moved
between cloud applications.

The central component of the system is an ontol-

ogy model of a subject field that accumulates knowl-
edge about object structure and their relative map-
ping. It is augmented every time a new system is at-
tached. Technology is unique in using ontology for
automated search for connections between different
systems. Ontology is represented as a conversion sys-
tem between different object representations united
by the means‘ of type theory.

The paper is structured in the following way. Sec-
tion 2 describes general principles of building ad-
dressed architecture. In section 3 the mathematical
basis and formalization of architectural components
are given. Section 4 covers important features of pro-
gram implementation. In the conclusion we sum up
obtained results and outline the future work.

2 LEVELS OF DATA
REPRESENTATION FOR
INTEGRATION

Following processes form the basis of integration so-
lution: data extraction, transformation and loading.
These processes are very similar to those in ETL
systems (extract-transform-load) (Vassiliadis, 2009).
Let’s consider these steps and data structures required
for applying them.

We start from the data transformation as it plays
a central role in the whole process. Key requirement
for transformation building toolkit is “sense-making”
of the results. Formally this means that the resulting
object can be safely uploaded into the target system.

164 Shapkin P. and Pomadchin G..
A Type-theoretic Approach to Cloud Data Integration.
DOI: 10.5220/0005495301640169
In Proceedings of the 11th International Conference on Web Information Systems and Technologies (WEBIST-2015), pages 164-169
ISBN: 978-989-758-106-9
Copyright c 2015 SCITEPRESS (Science and Technology Publications, Lda.)



In other words we need an ability to validate trans-
formations against some data model. In terms of pro-
gramming transformations are some kind of functions
and thus naturally they can be validated with the aid of
type checking. Data model is represented by the type
structure (or object-oriented classes). Hence the data
model is the crucial piece of the integration platform
and enables to check the consistency of data transfor-
mations.

Now let’s consider data extraction and loading.
Every time the data is extracted an external system’s
API is called and the obtained data is transformed into
the ontological representation. Data load is a reverse
process. So, in our method, data extraction and load-
ing steps can be split into two operations. First — the
API call — is specific for every external system or for
every standard data exchange protocol. For the most
part it can be implemented with standard libraries or
SDK if available. Second operation is essentially a
transformation of data to or from the ontological data
model.

2.1 Core Ontological Representation

According to what we’ve described above core data
model is meant for data transformations consistency
check. For greater effectiveness this model has to be
composed of most accurate possible object classes de-
scriptions, their dependencies and consistency condi-
tions. This data model combined with a set of trans-
formations we will call an ontology (Gruber et al.,
1993): on one hand it provides complete description
of subject field semantics, on the other hand using
transformations it enables new data “deduction” from
available data. The data representation that is con-
sistent with ontology will be referred as ontological.
One of the main features of ontological representation
is that all connections between objects must be repre-
sented in explicit form: no intermediate identificators
are allowed.

Let’s assume that for every domain entity there
is a corresponding type. Formal definition can be
found in 3.1, here we understand types as in pro-
gramming languages: the simplest way is to interpret
them as records with named fields. In their turn these
fields can be represented as functions that return cor-
responding values from the object — “getters”.

In turn, external data formats used in systems be-
ing integrated can be associated with types used in
corresponding software libraries serving certain pro-
tocols: SDKs for API access or for certain data for-
mats processing.

In such a manner we’ve unified ontological repre-
sentation and external representation — both are col-

lections of types. The main difference is that unified
(“ontological”) representation explicitly describes in-
terconnections of objects, whereas types of “external”
representation usually describe data structure within
single message transferred over a communication pro-
tocol used in API of a given system. An API mes-
sage usually describes only a single entity: connec-
tions with other objects are represented by their iden-
tificators. And since identificators are only meaning-
ful within a single application — each application can
use specific identification method or even specific list
of entities — in ontological representation identifi-
cators are omitted altogether. The transformation of
data from external representation into ontological is
carried out by connectors.

2.2 Representation of External API
Messages

Transformations used to exchange data with external
systems are different from all other in a way that on-
tological representation is always only “on one end”:
it is either the result (data extraction) or the argument
(data loading) of the transformation. On the “other
end” of transformation is a data model that represents
the structure of the API message.

The key difference between the API message
structure and the corresponding ontological represen-
tation is that in messages links between objects are
defined through identificators. in ontological repre-
sentation all connected objects must be presented in
explicit form (see figure 1).

Thus, type assignment will be carried out based
on the API semantics and structure of a message and
every service will be unambiguously mapped into cor-
responding class structure.

Acquiring message data structure can also be done
in two steps by obtaining a syntactic structure first and
then transforming it into a semantic one. For instance,
for XML data message a syntactic structure will be a
DOM-tree of the XML document while the semantic
structure is defined by corresponding XML schema
and can be represented with some abstract object.

A�Type-theoretic�Approach�to�Cloud�Data�Integration

165



(a) External service XML message (b) Ontological model
Figure 1: Mapping of external service message into ontological model.

3 FUNCTIONAL
REPRESENTATION OF
CONCEPTUAL DOMAIN
MODELS

3.1 Introduction to Type Theory

Let us introduce some basic definitions of the type
theory which we will be using further as the text goes.

Definition 3.1. Type system — is a flexible syntacti-
cal method of proving nonexistence of certain kinds
of behaviuor in a program using classification of lan-
guage expressions according to the kinds of in values
they compute.

In formal, the Type Theory (TT) studies processes
of type inference and type checking in programs. For
this purpose, it is necessary to have a formal repre-
sentation of programs — l-calculus, where programs
are interpreted like the composition of computable
functions. We will be giving only major definitions
omitting details that can be found in (Harrison, 1997;
Wolfengagen and Ismailova, 2003).

Basic construct in l-calculus — l-term — is de-
fined as follows.

Definition 3.2. (l-terms)

� Variables are denoted by arbitrary strings of let-
ters and numbers.

� Constants are also denoted by strings. We will
distinguish them based on a context.

� Abstraction of l-term M by a variable x — lx:M
is an unary function of parameter x.

� Application — is an application of a function
(term) M to an argument N and is denoted as
(MN). Braces have left associativity and can be
omitted if possible.

Key moment here is a concept of a function as an
obect. This, in particular, relieve from the necessity to

consider miltiplace functions — they can be regarded
as a function of single variable, computational result
of wchich is a new function and so on.

Basic rule of computing (“reduction”) a value of
expression is (b):

(lx:M)N = M[x := N],

where M[x := N] is a result of substituting all occu-
rances of x for N in M. This rule is also equiped with
a set of rules that enable reduction of not only full
term but of it’s parts as well.

Types are defined as follows:

Definition 3.3. (Types)

� If V is a type variable or constant then V is a type.
� If V and U are types then V !U is a type.

And finally, the typing rules. Let G be some con-
text, then G ‘ m : V means that term m has type V in
a context G. For instance for simple terms like vari-
ables this is stated explicitly. For the consideration
of architecture at the top level, without details of the
implementation, it is enough to observe simply typed
l-calculus wich has the following system of typing
rules:

G ‘ t : V ! T G ‘ u : V
G ‘ t u : T

(Application)

G;m : V ‘ n : T
G ‘ lm:n : (V ! T )

(Abstraction)

We also introduce a special notation for types that
have a similar structure. In programming terms, these
types called “generics”. For example, the type (class
in object oriented programming) List[T ] represents a
family of types for lists of elements of type T . An-
other example is the type “optional value of type T
” denoted as Option[T ] which allows to represent a
value that may be missing. Although, on the one
hand, this notation has a complex structure and, in

WEBIST�2015�-�11th�International�Conference�on�Web�Information�Systems�and�Technologies

166



fact, depends on the type of parameter, we understand
it as a name of an atomic simple type.

3.2 Mathematical Basis for Ontology
and Inference Formalization

It follows from the above that domain ontology could
be represented by a system of abstract types equipped
with a set of transformation functions. The set of
transformation functions consists of different groups.
The first group of transformations are directly repre-
sented as functions by the programmer. For instance,
function that transforms Document-type objects into
Invoice-type objects. The fact that not every docu-
ment can be transformed into an invocice can be re-
flected in function type making it’s value optional:
Option[Invoice].

Other groups of transformations could be derived
implicitly, e.g.:

� Field accessors of objects; for example, func-
tion name ‘transforms’ an object of type Person
into a string, and function work transforms an
object of type Employee into an object of type
Organization.

� Coercion functions implementing subtyping; for
inctance, if types Person and Company inherit
type Client that means there are implicit type
transformation functions:

Person!Client and Company!Client,

implementing rules “Each person (company) is a
client”.

� Inverse coercion functions; for instance, in terms
of previous example the assertion “Some clients
are persons (companies)” can be represented by
the corresponding functions returning the value of
an optional type:

Client! Option[Person] and
Client! Option[Company].

The rules above a uniform way to represent both
specialized transformations and field values as well
as taxonomical relations. And vice versa we can see
that specialized transformations can interpreted as ex-
tensions of the domain taxonomic structure — for in-
stance, from given example it can be inferred that type
Invoice can be regarded as subtype of the Document
type1.

1In explicit form this idea is implemented in some
programming languages with so called coercive subtyping
(Luo, 1999).

4 FUNCTIONAL MODEL OF THE
INTEGRATION PLATFORM

Domain entities as well as the structure of their API
representation can be presented as types that allows to
simulate the system purely with mathematical meth-
ods — as a set of functions.

To complete the platform, in addition to the on-
tology (with transformations), it is required to have
special objects to communicate with external systems
by API — connectors. Let us consider the structure
of these objects.

Each of the integrated applications provides ac-
cess to different types of objects. Within the data syn-
chronization task such an access means an opportu-
nity to send and receive a set of objects in order to
synchronize data between systems.

To structure the connectors the ‘repository’ pat-
tern was used: each connector is a set of repositories
— objects of type Repository[T ], which provide ac-
cess to entities of type T . In other words, the reposi-
tory is a set of two functions:

pull : Unit! List[A] and push : List[A]!Unit.

The function pull is responsible for loading ob-
jects of type A. The function push is responsible for
uploading objects of type A.

Unit is a special type with only one value. We use
the type Unit as input or output value types of func-
tions that do not accept or do not return any values.
In other words, the value of type Unit has no infor-
mation attached to it and is unique because there is no
way to distinguish it from other values of this type.

The main problem in the development of connec-
tors is the development of bidirectional conversions
between ontology objects and types of API messages.

4.1 Levels of Data Access

As it was described above, due to the presence of
explicit relations there is no need for identifiers in
ontological representation while the communication
with external services predominantly consists in the
exchange of identifiers: to upload an object with links
we have to upload linked objects first to get their iden-
tifiers and so on. For simplicity, we assume that iden-
tifiers are strings — type String.

For this purpose connectors are equipped with a
set of advanced repositories with additional functions:

pushId : List[A]! List[String] and
pullId : List[String]! List[A].

The function pushId is responsible for uploading
set of objects of type A and returns a list of identifiers

A�Type-theoretic�Approach�to�Cloud�Data�Integration

167



Figure 2: Multilevel repository structure.

of uploaded objects. The function pullId is responsi-
ble for loading objects by a list of identifiers.

As a result, there are two types of repositories:
one operates on ontology types while the other op-
erates with API classes by sending or receiving API
messages to or from external services (see figure 2).
Repository which operates with ontology classes is
responsible for converting ontological representations
to external message structure types and vice versa.

There was made an attempt to automate or to
semi-automate building of conversions of external
API messages to inner classes. As a result, the best
decision was to generate classes and conversion rules
for external API messages. The same approach may
be used to automate building of the internal transfor-
mations.

5 IMPLEMENTATION

Software implementation of the proposed architecture
is made in the Scala programming language. To solve
the problem of automating the composition requires
a detailed research of the type system and means of
processing type information in Scala (Odersky et al.,
2004). In formal, the solution can be expressed as a
set of rules or theorems describing the methodology
of building the function composition of the original
list. Software implementations of such solutions can
be divided into two groups:

� expression of all rules with the type system;

� code generation of rules, with reference to the
types of processed objects.

The first approach in fact carries all the processes
of building function compositions on the compiler. In
Scala, this feature is available through the presence of
the so called implicit values that are implicitly calcu-
lated by the compiler: the programmer specifies only
the type of the desired value. On the one hand, this
approach is most similar to the direct use of the Type
Theory and the Curry-Howard isomorphism. On the
other hand, Scala compiler implicits search is often

ineffective and fails on a large amounts of calcula-
tions.

The second approach is in defining a “macros” —
functions, generating in code fragments in compile-
time. In this case, macros can use the informa-
tion about the types. In fact, the macros in Scala
implement a sort of static reflection: a developer
can describe programs that are driven by type struc-
tures, however type-dependent parts of the program
are evaluated at a compile-time with a type checking.
This ensures type safety of the resulting code. In con-
trast to the use of implicit values, which are calculated
implicitly by the compiler, the programmer must de-
scribe the whole algorithm of code-generation explic-
itly.

6 CONCLUSIONS

We described an approach to integration solutions
creation which is based on representing the domain
model semantics in form of abstract type systems. It
helps to employ the same tools for automatic code
verification as well as automatic integration solution
generation. Authors implemented the proposed ap-
proach in the development of Tylip cloud integration
platform2.

REFERENCES

Gruber, T. R. et al. (1993). A translation approach to
portable ontology specifications. Knowledge acqui-
sition, 5:199–199.

Harrison, J. (1997). Introduction to functional program-
ming. Lecture Notes, Cam.

Luo, Z. (1999). Coercive subtyping. Journal of Logic and
Computation, 9(1):105–130. 00118.

Odersky, M., Altherr, P., Cremet, V., Emir, B., Maneth, S.,
Micheloud, S., Mihaylov, N., Schinz, M., Stenman,
E., and Zenger, M. (2004). An overview of the Scala
programming language. LAMP-EPFL.

2http://www.tylip.com

WEBIST�2015�-�11th�International�Conference�on�Web�Information�Systems�and�Technologies

168



Vassiliadis, P. (2009). A Survey of Extract-Transform-Load
Technology:. International Journal of Data Ware-
housing and Mining, 5(3):1–27.

Wolfengagen, V. E. and Ismailova, L. Y. (2003). Combina-
tory logic in programming. Citeseer.

A�Type-theoretic�Approach�to�Cloud�Data�Integration

169


