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Abstract: Given a set of criteria, an object o is defined to dominate another object o' if o is no worse than o' in each 
criterion and has better outcomes in at least a specific criterion. A skyline query returns each object that is 
not dominated by any other objects. Consider a scenario as follows. Given three types of datasets, including 
residents in a city, existing restaurants in the city, and candidate places for opening new restaurants in the 
city, where each restaurant and candidate place has its respective rank on a set of criteria, e.g., convenience 
of parking, we want to find the top-k candidate places that have the most potential customers. The potential 
customers of a candidate place is defined as the number of residents whose distance to this candidate is no 
larger than a given distance r and also regard this candidate as their skyline restaurants. In this paper, we 
propose an efficient method based on the quad-tree index and use four pruning strategies to solve this 
problem. A series of experiments are performed to compare the proposed method with a straightforward 
method using the R-tree index. The experiment results demonstrate that the proposed method is very 
efficient, and the pruning strategies very powerful. 

1 INTRODUCTION 

In the past decade, various spatial queries on spatial 
databases have attracted much attention, such as the 
k-nearest-neighbor (kNN) queries, the reverse k-
nearest-neighbor queries (RkNN), the range queries, 
and the skyline queries. There are also many studies 
focusing on the skyline computation since it plays an 
important role in the applications of multi-criteria 
decision making. Given a d-dimensional dataset, a 
data point p is said to dominate another data point q 
if it is better than or equal to q in all dimensions and 
with at least one dimension better than that of q. A 
data point is defined to be a skyline point if no data 
points can dominate it. Many different approaches 
have been proposed for efficient skyline 
computation, such as BNL (Borzsonyi, 2001), D&C 
(Borzsonyi, 2001), Bitmap (Tan, 2001), SFS 
(Chomicki, 2003), LESS (Godfrey, 2005), BBS 
(Papadias, 2005), SaLSA (Bartolini, 2006), ZSearch 
(Lee, 2007), and OSP (Zhang, 2009). 

Sharifzadeh and Shahabi (Sharifzadeh, 2006) 
addresses the spatial skyline queries which consider 
the Euclidean distances between a set of query 

points and a set of data points. Deng et al. (Deng, 
2007) addresses the multi-source skyline query and 
proposes efficient algorithms on its query processing 
in road networks. Chen and Lian (Chen, 2009) and 
Fuhry et al. (Fuhry, 2009) propose the metric skyline 
query, whose dynamic attributes are defined in the 
metric space. Papadias et al. (Papadias, 2005) is the 
first paper that mentions the dynamic skyline in 
which the preference on an attribute is defined to be 
better close to the requirement of the user. Dellis and 
Seeger (Dellis, 2007) introduces the reverse skyline 
query, which is a special skyline query and has the 
similar concept to reverse k-nearest-neighbor queries. 
Given a query point q, the reverse skyline query 
returns the data points whose dynamic skyline 
results contain q. For example, two features 
including manufacture year and engine displacement 
are considered while buying a second-hand car. The 
operator of a second-hand car shop may want to 
retrieve the number of customers who consider a 
specific car as their dynamic skyline results for 
deciding whether to import this car. We can make 
more profitable decisions through the reverse 
skyline query. On the other hand, the reverse k-
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nearest-neighbor (RkNN) query (Kang, 2007), (Korn, 
2000), (Lin, 2003), (Stanoi, 2000), (Stanoi, 2001),  
(Tao, 2004), (Wu, 2008), (Yang, 2001) has also 
received significant research attentions since it was 
introduced in (Korn, 2000). An RkNN query 
regarding a query point q finds all data points which 
regard q as one of their corresponding k nearest 
neighbors. Since q is close to such data points, q is 
said to have high influence on these data points. The 
RkNN answer set with respect to q is called the 
influence set of q (Korn, 2000). 

In some applications, skyline queries may be 
issued with a range constraint. Consider a scenario 
as follows. There are some office buildings and 
restaurants located in a city. Each restaurant has its 
own scores in different criteria such as service or 
average price. A lot of workers from the office 
buildings have to find a restaurant for lunch. They 
may issue a range query with a distance r to indicate 
that only the restaurants within this distance will be 
considered. Moreover, they most likely will choose 
the skyline restaurants within this distance to have 
lunch. That is, a worker may issue a constrained 
skyline query to find their target restaurants. For a 
restaurant, we define its popularity by the number of 
times it appears as an answer in the constrained 
skyline queries issued from the workers. The 
popularity of a restaurant can be computed by 
reverse constrained skyline queries. 

Now assume we want to open new restaurants in 
the city at several candidate locations. We want to 
determine top-k candidates based on their popularity 
such that a good business can be expected. For 
solving this novel top-k query, in this paper, we 
propose a basic method and an advanced method. 
Three pruning strategies are provided for reducing 
the number of competitors while computing the 
number of potential customers for each candidate. 
Moreover, a pruning strategy focuses on reducing 
the number of customers which cannot be the 
potential customers of a target candidate. Rooted at 
these four strategies, the advanced method 
outperforms the basic method, substantially reducing 
the computation time. The experiment results 
demonstrate that the pruning strategies have a strong 
pruning power.  

The remainder of the paper is organized as 
follows. The formal problem definition and a basic 
solution to this problem are given in Section 2. An 
advanced solution and its index structures are 
described in Section 3. The performance evaluation 
on the proposed algorithm is reported in Section 4. 
Finally, Section 5 concludes this work. 

2 PRELIMINARIES 

In this section, we formally define the problem to be 
solved and also propose a basic solution for it. 

2.1 Problem Formulation 

Referring to the scenario mentioned in Section 1, we 
have two datasets including a set of office buildings 
(customers) and a set of existing restaurants. In 
addition, we have another dataset of candidates for 
opening new restaurants. All of the datasets are on a 
two dimensional space used to represent their 
locations and moreover, the datasets of candidates 
and the existing restaurants have the other n 
attributes representing the features of the restaurants 
such as service or average price. 

Assume each customer finds a restaurant within 
a distance r from his/her location. This search area 
forms a circle with the center being the location of 
the customer and a radius of r as shown in Figure 1, 
where the triangle point represents the customer. If a 
restaurant is located within this search area and is 
the skyline point among all restaurants in this area 
considering the other n attributes, this restaurant gets 
one point from the corresponding customer. For 
example, there are five restaurants located in the 
search area as shown in Figure 1. The values of the 
other 2 attributes of these restaurants representing 
service ranking and food ranking are (6, 3), (5, 4), 
(4, 5), (7, 5), and (6, 6), respectively. As a result, the 
three restaurants with attributes (6, 3), (5, 4), and (4, 
5) are skyline restaurants in this search area 
(assuming smaller values of the attributes are better). 
Each of them gets one point from the corresponding 
customer. 

 

Figure 1: An illustration of the search area of a customer. 

The problem of determining the top-k candidates 
by reverse constrained skyline queries is formally 
defined as follows. There are three sets of data 
points on a two dimensional space, representing 
customers, competitors, and candidates. Moreover, 
the competitors and candidates have the other n 
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attributes. Given the above three datasets and a 
distance r, we return k data points which have the 
highest scores from the set of candidates. The 
scoring function is mentioned as above and in 
addition, when we compute the score of a candidate, 
we only consider the dominating relationship 
between the candidate and competitors but not the 
candidate and other candidates. 

2.2 The Basic Solution 

The basic approach to this novel top-k query is 
based on the R-tree index (Guttman, 1984). We 
assume that the R-tree indices of the set of customers 
R and the set of competitors C are constructed in 
advance. Each data point in the set of candidates is 
kept in a sequence. We sequentially process each of 
them to compute their corresponding scores and then 
return the top-k results.  

For a candidate, we trace the index of customers 
to find the customers whose distance to the 
candidate is less than r. On the other words, a range 
query with a center equal to the location of the 
candidate and a distance r is issued. The returned 
customers are kept in another sequence. Then, for 
each returned customer, another range query is 
issued to find the competitors whose distance to the 
customer is less than r. The index of competitors can 
help to efficiently answer this query. After that, we 
compare the candidate with the corresponding 
competitors on the other n attributes to check 
whether the candidate is a skyline point. If yes, it 
gets one score from the corresponding customer. 
Following the above steps, the score of each 
candidate can be computed.  

3 TOP-K QUERY PROCESSING  

In this section, an advance approach to solving the 
top-k query considering dominating relationship is 
proposed. The index structure used in this approach 
is discussed in Subsection 3.1 and then we detail this 
approach in Subsection 3.2. 

3.1 The Index Structures 

The advance approach is based on two types of 
index structures. One is built for customers, while 
the other is built for competitors. Each of them is an 
instance of quadtree. A quadtree index is a tree data 
structure in which each internal node has four 
children. Quadtree is often used to partition a two-
dimensional space by recursively subdividing it into 

four quadrants (regions). Initially, we subdivide the 
whole space into four regions with equal sizes. If a 
new region still contains objects, it will be further 
subdivided into four smaller regions as well. A 
region will be recursively subdivided into smaller 
regions until no objects contained in a region or the 
amount of objects in a region is less than a suitable 
number.  

We use the quadtree structure to index customers, 
called amount-quadtree. In each internal node, we 
additionally record the amount of the customers in 
its child nodes. An example is shown in Figs. 2(a) 
and 2(b). The triangle points are regarded as 
customers. As mentioned, while computing the 
quadtree index, the whole space is recursively 
subdivided into smaller regions. The circles are 
viewed as the internal nodes of amount-quadtree and 
moreover, the square point is the root node of 
amount-quadtree. As shown in Fig. 2(b), for the root 
node and each internal node, we record the amount 
of the customers in it corresponding child node.   

 
(a) An example of the index structure of customers. 

 

(b) An illustration of amount-quadtree. 

Figure 2: Examples of the index structure of customers 
and amount-quadtree. 

We also use the quadtree structure to index 
competitors, called superiority-quadtree. Again, 
initially, we subdivide the whole space into four 
regions with equal sizes. If a new region still 
contains objects, it will be further subdivided into 
four smaller regions as well. In each internal node, 
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we additionally record the best value of each n 
dimension with respect to its child nodes. An 
example is shown in Figs. 3 and 4. The star points 
are regarded as competitors. The circles are used to 
represent the internal nodes of superiority-quadtree. 
The square is the root of superiority-quadtree. As 
shown in Fig. 4, we use the second quadrant to 
explain the concept of superiority-quadtree. We find 
the best values in x-dimension and y-dimension from 
all of the child nodes of a corresponding internal 
node. Suppose that we prefer the smaller value in 
both x-dimension and y-dimension. The data point 
(1, 4) is the competitor that has the best value in x-
dimension. The data point (2, 2) is the competitor 
that has the best value in y-dimension. Then, we 
record (1, 2) in the corresponding internal node.  

 

Figure 3: An example of the index structure of competitor.    

 
Figure 4: An illustration of superiority-quadtree. 

3.2 The Advanced Solution 

In the following, we first introduce four strategies 
used in our advanced algorithm for efficiency 
enhancement, three of which are used to reduce the 
amount of competitors and the other one is used to 
reduce the amount of customers when computing the 
score values for candidates. Then, we detail the 
advanced algorithm. 

Property 1. Given a candidate, if the distance 
between the candidate and a specific competitor is 
larger than 2r, this competitor cannot affect the score 
of the given candidate.■  

This property is quite straightforward. The 
influence region of the competitor, i.e., the circle 
with a center equal to the location of the competitor 
and a radius of r cannot overlap the influence region 
of the candidate since the distance between the 
candidate and competitor is larger than 2r. 
Accordingly, this competitor cannot affect the score 
of the candidate. 

Property 2. Given a candidate, the competitors 
which cannot dominate the given candidate cannot 
affect the score of the candidate.■ 

For a candidate, the competitors who cannot 
dominate the candidate cannot decide whether the 
candidate is a skyline result or not, no matter where 
the locations of the competitors are. Since only the 
skyline results can get the score from a customer, 
these competitors cannot affect the score of the 
candidate. On the other hand, if a candidate is 
dominated by a specific competitor, we can ensure 
that the candidate cannot get any score from the 
customers located at the overlap of the two 
corresponding influence regions. This is because due 
to the competitor, the candidate cannot be the 
skyline result with respect to the customers in the 
overlap.  

 
Figure 5: An example of Property 3. 

Property 3. Given a competitor within a distance r 
to a specific candidate, which dominates the specific 
candidate, the competitor forms a do-not-care area 
in which the other competitors need not be 
considered while computing the score of the specific 
candidate.■ 
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We use an example shown in Fig. 5 to introduce 
the do-not-care area with respect to a competitor and 
detail the concept of Property 3. As mentioned in 
Property 3, there are two intersection points 
(denoted checkpoint1 and checkpoint2 in Fig.5) 
generated by the influence region of the start-shape 
competitor and that of the specific candidate. A line, 
passing through checkpoint1 and checkpoint2, 
partitions the circle with the center equal to the 
location of the candidate and a radius of 2r into two 
semicircles, one of which contains the candidate 
while the other one contains the start-shape 
competitor. The area formed by the semicircle 
containing the start-shape competitor subtracting the 
influence region of checkpoint1 and that of 
checkpoint2 is the do-not-care area with respect to 
the start-shape competitor. The dark black area 
shown in Fig.5 is the do-not-care area with respect 
to the start-shape competitor.  

Any other competitors located at the do-not-care 
area need not be considered to compare with the 
specific candidate. This is because the overlap of the 
influence region of the candidate and that of another 
competitor located at the do-not-care area is always 
fully contained in the overlap of the influence region 
of the candidate and that of the start-shape 
competitor. To the customers in the overlap of the 
influence region of the candidate and that of another 
competitor located at the do-not-care area, the 
candidate need not be compared with the competitor 
since the candidate is already dominated by the start-
shape candidate, not able to get scores from the 
customers. 

 

Figure 6: An example of Property 4. 

Property 4. Given a competitor which dominates a 
specific candidate, any customers located in the 
overlap of the two corresponding influence regions 
formed by the candidate and competitor cannot 
contribute scores to the candidate.■  

As shown in Fig. 6, suppose that we prefer small 
values in both attributes, the candidate with (3, 5) is 

dominated by the competitor with (2, 4). Any 
customers located in the overlap of the two 
corresponding influence regions formed by the 
candidate and competitor will not contribute scores 
to the candidate since to these customers, the 
candidate always cannot be the skyline results due to 
the competitor who dominates it. 

 
Algorithm 1: (The ECE algorithm). 
Input: amount-quadtree of customers R, superiority-
quadtree of competitor S, candidates, r, and k 
Output: Top-k results from candidates  
 
Main function ( ): 
1    For each candidate c 
2        Trace amount-quadtree to compute the number of  

customers located within a distance r to c 
3        Sort the candidates into a decreasing order 

according to the number of counted 
customers. 

4    Compute the scores for the first k candidates in 
      the sorted list. The smallest score is used to be 
      the threshold T and these k candidates are 

regarded as potential results 
7    For the unchecked candidate c in the sorted list    
8        If the number of  customers located within a 

distance of r to c < T 
9            Prune c 
10      else 
11          Compute the score of c 
12          If the score of c is larger than T 
13              T = the score of c 
14              Replace the candidate with the smallest score 

 in the potential result by c 
15   Return the top-k results 

 
The advanced algorithm named ECE (Efficient 

Candidate Elimination) detailed in the following is 
based on the amount-quadtree index of customers 
and the superiority-quadtree index of competitors. 
We assume that the amount-quadtree index and the 
superiority-quadtree index are constructed in 
advance. The pseudo codes of the ECE method are 
shown in Algorithm 1.  

First, we sequentially process each candidate by 
tracing amount-quadtree from the root to get the 
number of customers located in the influence region 
of a candidate. By using the amount-quadtree index 
structure, we can efficiently get the number of 
customers located in the influence region of a 
corresponding candidate because in some cases, we 
can obtain the number of customers from the records 
of the internal nodes, without reaching for leaves. 
After that, we sort the candidates into a decreasing 
order according to the number of customers located 
in their corresponding influence regions. For each 
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candidate in the sorted list, we calculate its exact 
score. Once we get k exact scores, the smallest score 
is used to be the lower bound. The candidates in the 
sorted list with the number of customers located in 
the corresponding influence regions can be pruned 
as they have no chances of being the top-k results. In 
the following, we focus on how to compute the exact 
score of a candidate. 

By Properties 1-3, we can prune most of the 
competitors that need not be considered while 
computing the exact score for a specific candidate. 
For a specific candidate, we first prune the 
competitors with a distance to it more than 2r by 
Property 1. Then, by using the superiority-quadtree 
index structure, we can efficiently get the 
competitors that dominate the candidate because of 
the record kept in the internal node. When traversing 
superiority-quadtree, if the records kept in the 
internal node are dominated by the target candidate, 
we can prune the competitors in that branch by 
Property 2 since the competitors who cannot 
dominate the target candidate cannot affect the score 
of the candidate. Then, by sequentially checking the 
competitors that dominate the target and are with a 
distance to the candidate smaller than r, we can 
prune the competitors located in the corresponding 
do-not-care area. After the above checking, the 
remainder competitors are really taken into accounts 
for computing the exact score of the target candidate. 
At the very beginning, issuing a range query from 
the target candidate, we find the customers that we 
need to check. Before processing each 
corresponding customer, we can reduce the number 
of customers to be checked by Property 4. After all 
of the above pruning check, we use the concept of 
Basic to compute the exact score for the target 
candidate.  

4 EXPERIMENTS 

In this section, a series of experiments are performed 
to evaluate our approaches and the experiment 
results are also presented and analyzed.  

4.1 Experiment Setup 

We use the data generator RandD to generate three 
synthetic datasets with the independent, correlated, 
and anti-correlated distributions as shown in Table 
1. All objects in the datasets have coordinates within 
the range of ([0, 2000], [0, 2000]). The competitors 
and candidates have two attributes within a range of 

([0, 2000], [0, 2000]). We also conduct the 
experiments on a real dataset, obtained from the 
website (http://www.census.gov/geo/www/tiger). Its 
distribution is shown in Fig. 7. The real dataset 
represents the resident locations in Los Angles. The 
data size of this real dataset is approximate 360K. 
We regard this data points as the customers. We also 
generate 100K of the competitors and 1K of the 
candidates with two attributes by the independent 
generator [RandD]. The coordinates of each object 
are within the range of ([0, 3100], [0, 1800]) and the 
two attributes are within the range of ([0, 3100], [0, 
3100]). 

Four variables including r, number of customers, 
number of competitors, and number of candidates 
are used to be the factors in the experiments as 
shown in Table 2. Moreover, k is set to 5 in the 
experiments. All of the algorithms are implemented 
in C++ and performed on a PC with the Intel Core 
i5-2500 3.30GHz CPU, 8GB main memory, and 
under the windows7 64bits operating system.  

Table 1: The distributions of the test datasets. 

Distribution Description 

Independent 
The attributes of each data point are 
generated uniformly and randomly. 

Correlated 
If a data point has an attribute with low 
value, the other attributes of this data 
point may likely have low values as well. 

Anti-
Correlated 

If a data point has an attribute with a 
low value, the other attributes of this 
data point may likely have high values. 

Table 2: Experimental factors. 

Factors  Default Range 
# of customers  200K 150K - 300K  
# of competitors 5K 3K - 6K  
# of candidates  500 250 - 1000  
R 200 160 - 240  

 

Figure 7: The data distribution of the real dataset. 
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(a) Execution time.                                    (b) Indexing time.                                  (c) Pruning rate. 

Figure 8: The varying number of customers on the independent dataset. 

        
(a) Execution time.                      (b) Indexing time.         (c) Pruning rate. 

Figure 9: The varying number of competitors on the independent dataset.  

        
(a) Execution time.                                    (b) Indexing time.                                    (c) Pruning rate. 

Figure 10: The varying number of customers on the correlated dataset. 

        
(a) Execution time.                                    (b) Indexing time.                                   (c) Pruning rate. 

Figure 11: The varying number of competitors on the correlated dataset. 

       
(a) Execution time.                                      (b) Indexing time.                                   (c) Pruning rate. 

Figure 12: The varying number of customers on the anti-correlated dataset. 
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(a) Execution time.                                   (b) Indexing time.                                    (c) Pruning rate. 

Figure 13: The varying number of competitors on the anti-correlated dataset. 

4.2 Experiment Results 

As mentioned, we use three synthetic datasets in the 
experiments, including the independent dataset, the 
correlated dataset, and the anti-correlated dataset. 
The results on varying number of competitors and 
the results on varying number of customers are 
shown in Figs. 8-13. The running time of these two 
methods is shown in the type (a) of Figs. 8-13. 

 
(a) Execution time. 

 
(b) Pruning rate. 

Figure 14: The varying number of candidates on the 
independent dataset. 

When r becomes large, the curve of running time 
becomes sharp. This is because a large distance r 
may have more chances of making the number of 
competitors and customers large. Obviously, in both 
of the two methods, the more the r value is, the 
longer the running time will be. Moreover, the more 
the competitors and customers are, the longer the 
running time will be. In each case, the running time 
of ECE is much shorter than that of Basic, since 
ECE computes the upper bound of the score for each 
candidate and also uses four strategies to 

substantially reduce the computation of calculating 
the exact scores.  

 
(a) Execution time. 

 
(b) Pruning rate. 

Figure 15: The varying number of candidates on the 
correlated dataset. 

The indexing time of the two methods is shown in 
the type (b) of Figs. 8-13. The indexing time of ECE 
is a bit longer than that of Basic, yet both of them 
use just several seconds for dealing with customers 
at the scale of approximate 200K even 300K. These 
two methods both are practicable in the index 
construction phase. 

The pruning capabilities of the strategies on 
reducing the number of competitors are shown in the 
type (c) of Fig. 8-13. As can be seen, the pruning 
capability of each strategy is different in each 
synthetic dataset, yet overall, the pruning rate of 
adopting these three properties is quite high in each 
dataset, e.g., over 90%, and even achieving 
approximate 97% in the independent dataset. The 
pruning rate is defined as the radio of pruned data 
points. We show the pruning rate with the executing 
order of adopting Properties 1, 2, and 3. 
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The results on varying number of candidates are 
shown in Figs. 14-16. The running time and the 
pruning rate are shown in the types (a) and (b) of 
Figs. 14-16, respectively. The indexing time is fixed 
due to the fixed number of customers and that of 
competitors. Similarly, ECE outperforms Basic in 
terms of running time. The pruning rates are also 
quite high in this experiment. Moreover, the 
experiment results on the real dataset are shown in 
Fig. 17. From the experiment results shown above, 
we conclude that under the environment of setting a 
reasonable r and a reasonable k, even varying the 
number of customers, competitors, or candidates, 
ECE outperforms Basic. 

 
(a) Execution time. 

 
(b) Pruning rate. 

Figure 16: The varying number of candidates on the anti-
correlated dataset. 

 

Figure 17: Execution time on the real dataset. 

5 CONCLUSION 

In this paper, we make the first attempt to issue a 
new top-k query which takes into account reverse 

constrained skyline queries on spatial data. Given 
three types of datasets, including customers, 
candidates, and competitors, and a restricted 
distance of r, the novel top-k query returns k 
candidates with the most potential customers. We 
propose a basic method denoted Basic, and an 
advanced method named ECE to solve this problem. 
The basic method uses the R-tree index while ECE is 
rooted at the extended quad-tree index. Three 
pruning strategies are provided for reducing the 
number of competitors while a pruning strategy is 
provided to focus on reducing the number of 
customers unable to contribute the score for a target 
candidate, when computing the score for each 
candidate. Based on these four strategies, ECE 
outperforms the basic method, substantially reducing 
the computation time.  
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