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Abstract: Autonomous robots are required to avoid the obstacles during navigation. For this purpose unknown and 
unexpected obstacles have to be detected during motion. The proposed approach uses particle filters to 
process sensors data and estimate relative position of the robot with regard to the obstacles and to the goal. 
These relative position estimations are inputs to the velocity potential field approach for obtaining time 
varying velocity commands for the robot to avoid all obstacles and reach the goal. 

1 INTRODUCTION 

Robot motion control needs data about the absolute 
position of the goal and the relative positions of the 
unexpected obstacles with regards to the robot. 
Often, a map of the surrounding area is needed. A 
solution to the simultaneous localization and map 
building, presented by Dissanayake et al, 2001, 
permits an autonomous vehicle to start in an 
unknown location in an unknown environment and, 
using relative observations only, incrementally build 
a map of the world and to compute an estimate of 
vehicle location. Montemerlo et al, 2001, paper 
presents FastSLAM, an algorithm that recursively 
estimates the full posterior distribution over robot 
pose and landmark locations which scales 
logarithmically with the number of landmarks in the 
map.  Doucet et al, 2001, proposed sequential Monte 
Carlo methods for the case that prior knowledge 
about the phenomenon being modelled is available. 
This knowledge allows to formulate Bayesian 
models, relating prior knowledge with current 
observations, often done on-line. Particle filters offer 
a very interesting approach for obtaining such a 
local map from range sensing (Rekleitis, 2004), 
(Arulampalam, 2002, Svensson, 2014). Based on 
such maps, robot controllers have to provide 
commands for moving toward the goal while 
avoiding obstacles. Wang, 2009 proposed a generic 
force field method for robot real-time motion 
planning based on location, orientation, travel speed, 
priority, size, and the robot’s environment. A 
dynamic variable speed force field method was 
designed for applications in partially known and 

dynamically changing environments.  
An efficient approach for robot motion control 

without the risk of local minima is provided by 
velocity potential field approach, (Masoud, 2007). A 
fuzzy logic navigation and obstacle avoidance by a 
mobile robot in an unknown dynamic environment is 
proposed by Faisal et al, 2013.  

In this paper a robot motion controller for 
obstacles avoidance using particle filter method is 
proposed. When the robot detects the obstacles, a 
map of local environment can be re-built based on 
data received from the sensors of the robot. A novel 
approach for robot navigation is achieved using the 
integration of particle filter method with velocity 
potential field approach. 

2 SYSTEM MODEL 

The robot we use and its sensing range is shown in 
Figure 1, in which we can see that this sensing range 
of the robot is divided into three sections, i.e. left 
(yellow), right (green) and back (white). Local map 
is built with regard to front, left and right sections 
which sense obstacles. Since the robot will not move 
backwards in our experiments, we do not use back 
sections for detecting obstacles. The inner circle is 
the safety range; if obstacles lie in this area, the 
robot has to turn away in order to avoid them. The 
outer circle is the searching range, which shows the 
maximum range robot can detect. The blue ellipse in 
Figure 1 illustrates the obstacle. θk is the angle 
between the heading of the robot and the positive 
direction of x axis. βk denotes the angle between the 
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straight line from the robot pointing to the goal and 
the positive direction of x axis.  

Robots can find the minimum distance to 
obstacles with one specific beam. The coordinates of 
the intersection point of that beam with obstacles 
could be obtained. Based on knowing the position of 
the intersection point, two measurements with regard 
to that intersection point are enough to determine the 
position of the robot accurately; one is the distance 
dmin from the robot to the intersection point and the 
other is the angle α between the chosen beam and 
the positive direction of x axis, both shown in Figure 
1, 

We choose these two measurements for the 
output vector  

min, ,
T

k k ky d      (1)

where k indicates the measurements taken at time k. 
The detected obstacle is treated as a landmark or 
beacon in order to get the measurements.  

We use the coordinate (at time k) of the robot as 
hidden states 
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The state space model is   
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where uk is the control vector of the system and the 
noise sequences ωk and vk are assumed as 
independent white noise processes with known 
probability density function (pdf). We indicate the 
intersection point of the chosen beam and the 
obstacle as 
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Figure 1: Local map built when sensing obstacles. 

Based on the algorithm of obstacle avoidance using 
velocity potential field approach (Necsulescu, 2014, 
Nie, 2014), we can expand Equation (3) as  
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In equation (5), T is the time step for robot 
control.

ak ,
nk ,

tk are gains for attractive, normal 

repulsive and tangential repulsive velocity, 
respectively. dmin is the minimum detected distance 
from the robot to obstacles. Rgoal is the radius of a 
region around the goal; when robot enters that 
region it will decrease the speed. Rsafe is the radius 
with reference to the obstacles, such that when the 
distance dmin from robot to obstacles is less than that 
radius, the robot will activate obstacles avoidance 
algorithm. vmax and ωmax are the maximum velocity 
and angular velocity of the robot. Equation (5) is 
applied for two situations. First, when dmin is larger 
than Rsafe and, second, when dmin is less than or 
equals to Rsafe. In the first case, Equation (5) is 
adapted such that the robot has applied only the 
attractive velocity command. In the second case, the 
robot is also subject to the repulsive velocity 
command.  

For the first case, when obstacles are not present 
any more, equation (5) is reduced to which gives the 
trajectories of the robot to the goal. 
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For the second case, when obstacles are present, 
equation (5) is modified into the following equation 
(7).  
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Equation (7) contains a command for the robot to 
avoid obstacles with the attractive term of Equation 
(5)  removed as obstacles appear. When dimensions 
of left obstacles are larger than right ones, the robot 
will turn right in order to save energy and time in 
avoiding obstacles, and vice versa. We gauge the 
size of obstacles based on the number of intersecting 
points of sensor beams and obstacles.  

3 PARTICLE FILTERING TO 
TRACK THE ROBOT 

After modeling the system, next step in simulation is 
to produce N initial particles ݔ,

ା (i=1,…,N) based on 
the pdf p(x0). Since we already know the initial pose 
of the robot, we will produce particles right in the 
initial position of the robot. 

Then, based on the dynamics equation of 
equation set (5), we generate time propagation 
values for all particles  

   , 1 1, 1 1, , 1,...,i i
k i k k i k kx f x u i N 

     (8)

to obtain a new set of a priori particles. 
Then we compare ݄ሺݔ,

ି , ݑ
 , ݒ

 ሻwith yk, i.e. we 
evaluate ሺݕ|ݔ,

ି ሻ, and obtain corresponding ܹ
. It 

should be observed that since we have two 
measurements, the weight ܹ

 is composed of the 
product of two other weights as follows 

, ,
i i i

k k d kW W W    (9)

where ܹ,ௗ
  is the weight obtained based 

on	ሺݕ|ݔ,
ି ሻ. We use the normal distribution pdf to 

evaluate the weights comparing ݄ሺݔ,
ି , ݑ

 , ݒ
 ሻ with 

the measured distance dmin,k, i.e. yk. The more 
݄ሺݔ,

ି , ݑ
 , ݒ

 ሻ is closer to dmin,k, the bigger the 
weight of that particle is. Likewise, ܹ,ఈ

  is the 
weight related to	ሺݕ|ݔ,

ି ሻ, ݄ሺݔ,
ି , ݑ

 , ݒ
 ሻ close to 

 will have allocated a higher weight based on theߙ
pdf of normal distribution. We prefer particles 
whose ݄ሺݔ,

ି , ݑ
 , ݒ

 ሻ is close to dmin,k and ߙ, 
respectively, which result in larger ܹ

 because of 
larger ܹ,ௗ

  and larger ܹ,ఈ
 . Larger ܹ,ௗ

  or larger 

ܹ,ఈ
  only cannot produce larger ܹ

, since accurate 
tracking of the robot needs to combine two 
parameters (the distance and the angle) together. 
Equation (9) results from the need that the particles 
satisfy both the required distance and the required 
angle. 

After obtaining the weights ܹ
 for all particles 

,ݔ
ି (i=1,…,N), they are normalized to obtain a set of 

normalized weight sݓ
 (i=1,…,N). Until now we 

formed a first set of particles ൛ݔ,
ି , ݓ

 ൟ (i=1,…,N) in 
preparation for the next step resampling. 

There are lots of resampling methods introduced 
in the literature. In this paper we use the method in 
Svensson, 2014. These particles ݔ,

ା  after resampling 
with the same weight w are going to be propagated 
in time based on Equation (8) to arrive to the next 
iteration. The same process will be applied to the 
particles in next iteration.  

The particle filtering for robot path estimation is 
applied until there are no measurements left, since 
without measurements we cannot get the weight for 
each particle. Likewise, if the robot cannot detect an 
obstacle in the beginning, the particle filter is still 
not able to work because of no measurements. It 
would also be possible that the robot can find 
obstacles in the beginning, whereas during its 
navigation process to the goal there may be some 
time when the robot finds no obstacles. At that time 
the particle filter is not going to be active until robot 
can find obstacles again. 

After obtaining a new set of a posteriori particles 
though resampling, we can compute any desired 
statistical measure of this set of particles. Typically 
most interest is in evaluating the mean and the 
covariance for all these particles. 

When the estimation of robot path is already 
known, the estimation of landmark positions 
conditioned on the estimated robot path based on the 
measurements can be obtained. For each of the 
robot’s estimated position, the measurement without 
noise is considered, then the estimation of landmark 
from the corresponding measurements is obtained. 
Each measurement consists of the true measurement 
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and the noise and we use the true measurement 
without noise to better estimate the position of 
landmark. If there are several measurements of one 
landmark, Kalman filter has to be applied to get 
optimal estimation of that landmark based on all 
related measurements (Simon, 2006). In our 
experiments we assume that each landmark is 
reflected in one measurement only in the whole 
process, and we do not apply Kalman filter to 
landmark estimation. 

4 SIMULATION RESULTS FOR 
ROBOT NAVIGATION WITH 
OBSTACLE AVOIDANCE 

In the simulations, we consider robot navigation in 
the case of two obstacles with different dimensions 
to illustrate the performance of the proposed 
algorithm. Our simulation is conducted by using a 
switching controller such that the robot will choose 
proper turning direction based on the local map it 
created.      

In the simulation, one can see that the robot 
successfully chose a direction that resulted in a 
higher efficiency and saved more time in avoiding 
obstacles while finally reaching the goal. In the 
process, while the robot was travelling towards the 
goal, estimations of robot path and positions of 
landmarks (obstacles) were obtained.  
Figure 2 shows robot navigation toward the goal 
while avoiding two obstacles of different dimensions 
and too close to permit passing in-between. 
FastSLAM approach is used to obtain the 
estimations of robot path and positions of obstacles. 
In this simulation, the robot built a local map finding 
that O2 has larger dimension than O1, so that it 
turned left when close to the obstacles. At the same 
time, the red dotted line indicates the ideal robot 
path based on our controller, and the blue square 
illustrates the estimated robot path; asterisk signs 
around the obstacles indicate the estimated positions 
of obstacles. The obstacle avoidance algorithm is 
based on the proposed velocity potential fields 
approach, and the estimations with regard to robot 
path and obstacles are performed by using the 
FastSLAM approach. 

In Figure 2 several snapshots of robot navigation 
are shown. When the robot detected obstacles, 
estimations of the robot path used the measurements 
with regard to the obstacles. However, when robot 
bypassed obstacles and sensed the goal, the 
estimation of the robot path is based on 

measurements with regard to the goal only. The 
estimated robot path and the real robot path 
converge finally when robot reaches the goal.   

 
 

 
 

 

Figure 2: Robot travelling around two obstacles with the 
FastSLAM approach. 

Symbols used are:  
magenta diamond=  Goal, 
yellow square=  Obstacle, 
red dotted line= Ideal robot path, 
blue square= Estimated robot position wrt obstacles, 
blue asterisk= Estimated obstacle position, 
blue pentagram=Estimated robot position wrt the 
goal, 
green dashed line= Estimated measurement line. 
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5 EXPERIMENTAL RESULTS – 
TWO DIFFERENT OBSTACLES 

The experiments were performed using LabVIEWTM 
and MATLABTM. LabVIEW is used to control the 
robot reaching the goal without obstacles collision, 
and collect data regarding the measurements about 
obstacles and the goal. The measurement data is 
composed of distance measurement between the 
robot and obstacles/the goal and angle measurement 
between the chosen beam and the positive direction 
of x axis. After getting the measurement data, we 
utilized MATLAB to build the estimated map and 
the estimated robot path based on data we collected.  

In the experiment, we consider the same scenario 
used in the simulation, in which the robot has to 
avoid two obstacles with different dimensions. The 
experiments with a robot travelling around two 
obstacles will be illustrated in two parts. The first 
part is related to robot navigation with two obstacles 
avoidance using the velocity potential field 
approach. During this navigation process, we 
collected sensor data for each robot moving step and 
recorded them. Robot trajectory is composed of a 
large number of small steps. Due to the accuracy of 
the rotation sensor imbedded in the servo motor, we 
recorded the sensor data every π/8 of sensor rotation.  

In the second part of our experiment the 
estimations of robot path and obstacles are obtained 
based on the sensor data collected in order to build 
the local map, obtained using MATLAB.  
In Figure 3, the grey cylinder in the left top corner of 
the snapshot indicates the robot goal. Between the 
robot and the goal are two obstacles, a blue trash bin 
with a bigger size than the small obstacle, a wood 
block..  

Several snapshots are shown in Figure 3. The 
robot controller chooses proper direction to turn in 
order to save time and energy. We can see that the 
controller successfully drove the robot while 
avoiding obstacles to reach the goal. The results in 
Figure 3 also show the choice of turning left, a 
proper turning direction given obstacles dimensions.  

Sensor data were collected in the robot 
navigation process. Based on the data collected, a 
map was built using the estimations of robot 
positions and the local map robot sensed, as shown 
in Figure 4. 

In Figure 4, the magenta circle indicates the goal. 
The red solid line indicates the ideal robot path to 
the goal without obstacles collision, the green square 
denotes the estimation with regard to obstacles 
sensed by the robot, and the green diamond 
illustrates the estimation with regard to the goal. The 

green asterisk sign refers to the local map robot built 
based on the sensor data. We can see that, when 
robot detects the goal, the estimation of robot 
position performs better than that based on the 
measurements with regard to obstacles given the 
absolute position of the goal in the global map is 
known. Given that obstacle O2 is bigger than O1 the 
robot controller chose to turn left to avoid collision. 
The particle clouds representation of Figure 4 is 
shown in Figure 5. 

 

 

    

 

Figure 3: Robot navigation with two obstacles avoidance 
reaching the goal. 
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Figure 4: Estimations of robot positions and two obstacles. 

 
 

Figure 5: Particle clouds representation of Figure 4. 

6 CONCLUSIONS  

A novel combination of velocity potential field 
approach for motion control with a particle filter for 
unknown obstacles localization proved a good 
solution for obstacle avoidance without reching a 
local minimum. An improvement of the velocity 
potential field approach is included to select proper 
direction of robot turning in front of obstacles. 
Simulation and experimental results verified the 
proposed approach for the case of obstacles 
positioned in-between initial robot position and goal 
position. For future, much more complex scenarios 
could be investigated, such as moving obstacles or 
humans, in order to test the validity of the proposed 
approach. 
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