
WeXpose: Towards on-Line Dynamic Analysis of Web Attack Payloads
using Just-In-Time Binary Modification

Jennifer Bellizzi and Mark Vella
PEST Research Group, University of Malta, Msida, Malta

Keywords: Web Code-injections, Dynamic Binary Instrumentation, JIT Binary Modification.

Abstract: Web applications constitute a prime target for attacks. A subset of these inject code into their targets, posing
a threat to the entire hosting infrastructure rather than just to the compromised application. Existing web in-
trusion detection systems (IDS) are easily evaded when code payloads are obfuscated. Dynamic analysis in
the form of instruction set emulation is a well-known answer to this problem, which however is a solution
for off-line settings rather than the on-line IDS setting and cannot be used for all types of web attacks pay-
loads. Host-based approaches provide an alternative, yet all of them impose runtime overheads. This work
proposes just-in-time (JIT) binary modification complemented with payload-based heuristics for the provision
of obfuscation-resistant web IDS at the network level. A number of case studies conducted with WeXpose, a
prototype implementation of the technique, shows that JIT binary modification fits the on-line setting due to
native instruction execution, while also isolating harmful attack side-effects that consequentially become of
concern. Avoidance of emulation makes the approach relevant to all types of payloads, while payload-based
heuristics provide practicality.

1 INTRODUCTION

Code injection attacks function by hijacking a tar-
get program’s control flow, redirecting it to a code
payload that would have been smuggled inside its
memory space disguised as input data (Van der Veen
et al., 2012). Exploitation of buffer overflow and
dangling pointer bugs in C/C++ applications are tar-
gets for such attacks. This is also the case for web
applications, that although typically associated with
higher level programming/scripting languages, are ul-
timately executed on top of C-written application
servers. Still, web applications add two further levels
in which code injection exploitable flaws can be intro-
duced. These are the script and the (command) shell
levels, where the injected payloads contain server-
side script statements (e.g. PHP) or shell command
sequences (e.g. Bash), rather than machine code (see
section 2.1). The end result of code injections extends
beyond tampering with the vulnerable web applica-
tion and can lead to the entire hosting infrastructure
to be compromised. The situation is further aggra-
vated when one considers how popular web program-
ming languages seem to facilitate the introduction of
security vulnerabilities in application code, and which
is further magnified when the same vulnerable appli-

cation is deployed at multiple sites. One notorious
example is PHP. This is the language in which, for
example, the popular phpBB, Joomla and WordPress
applications are written in. When one considers that
there are million of sites hosting them, the impact of
just a single flaw alone could already be devastating.

On the network level, the state-of-the-art detec-
tion options for web code injection attacks is still
that of signature-based intrusion detection systems
(IDS). Whether web-specific1 or part of a more
generic network IDS having HTTP support2, their
static analysis-based mechanism poses the main lim-
itation. Code payloads, at any of the three injection
levels, can be encoded in ways to express the same
runtime behavior while coming across as completely
different to an IDS, thus evading detection. Com-
plementing static analysis with dynamic analysis is
a well-known answer for addressing this issue, pos-
sibly applied at the host or the network level. At
the host level, program runtime monitoring could be
used in a way to keep track of sequences of system
calls, keeping an eye for ones known to be produced
by attack payloads or malware (Srivastava and Giffin,

1www.modsecurity.org
2www.snort.org

5Bellizzi J. and Vella M..
WeXpose: Towards on-Line Dynamic Analysis of Web Attack Payloads using Just-In-Time Binary Modification.
DOI: 10.5220/0005502600050015
In Proceedings of the 12th International Conference on Security and Cryptography (SECRYPT-2015), pages 5-15
ISBN: 978-989-758-117-5
Copyright c 2015 SCITEPRESS (Science and Technology Publications, Lda.)

2010), or else differing from what the application un-
der normal conditions should produce (Maggi et al.,
2010). Other options could even foil successful in-
jection by blocking control flows that do not abide to
expected program behavior (Wang and Jiang, 2010),
or even change the processor’s instruction set in order
to render the injected payloads useless (Portokalidis
and Keromytis, 2010). Whichever option, host-level
solutions are bound to introduce runtime overheads.

On the network level, the use of instruction set em-
ulators seems, at first glance, applicable (Polychron-
akis et al., 2006) (section 2.2). In this approach,
suspect machine code fragments are emulated, rather
than executed, in order to allow for safe examina-
tion of potential malware. An obvious hurdle is that
existing solutions are built with machine code pay-
loads in mind and would therefore require adaptation
to accommodate the other two payload types. A more
fundamental limitation is presented by performance.
Since emulation is essentially software implementa-
tion of hardware instructions, the unavoidable blow-
up in the number of CPU cycles when compared to
native execution render this technique impractical for
an on-line setting. Essentially, the resulting web IDS
would start lagging behind the monitored web server
so much so as to void its purpose.

This work proposes the use of just-in-time (JIT)
binary modification as the basis of a solution to en-
hance web IDS with dynamic analysis capabilities,
providing resistance to code obfuscation-based eva-
sion. The essence of JIT binary modification lies in
dynamically modifying instruction traces on the fly,
immediately before execution (Bruening et al., 2012)
(section 2.3). Native instruction execution used by
JIT binary modification addresses the limitations of
instruction set emulation regarding CPU cycle blow-
up and non-machine code payloads, while dynamic
instrumentation could provide the required isolation.
The use of ’payload starting-point’ heuristics is pro-
posed as a way to economize on dynamic analysis
in order to bring down computational costs (section
3). A prototype implementation, WeXpose, was eval-
uated on attack and benign web traffic generated by a
widely-used penetration testing framework and PHP
applications (section 4). Results show that WeXpose
is resistant to code obfuscation for all three types of
web code injections through secure dynamic analy-
sis. Performance results show that the employment
of payload starting-point heuristics is compulsory for
practicality. Yet, real-time alerting can only be at-
tained at a substantial additional cost in terms of com-
putational power.

This work makes the following contributions:

• Demonstrates how JIT binary modification can be

used to provide web IDS with dynamic analysis
capabilities, as well as to isolate harmful effects
of the analyzed attack payloads.

• The use of ‘payload starting-point’ heuristics as a
way to economize on dynamic analysis.

• WeXpose - a prototype implementation of a web
IDS having dynamic analysis capabilities.

2 BACKGROUND

2.1 Web Code Injection Target Levels
and Obfuscation

Web applications can be targeted at three levels: the
i) the infrastructure, ii) server-side scripting and the
iii) command shell levels. At the infrastructure level
one finds the execution of, typically, a compiled
C/C++ code-base that makes up the web server pro-
cess as well as the runtime environments supporting
web application level-code. Code injection attacks
exploiting this level use payloads made up of ma-
chine instruction sequences and that can be obfus-
cated, amongst others, by XOR’ing the payload bytes
with a bit-string of the same length (Erickson, 2008).

Listings 1 and 3 show one example. In this exam-
ple the attack payload starts immediately aftervar1=.
Given that in their majority the attack bytes do not
correspond to printable characters the attack payload
is mostly URL-encoded as per HTTP (% followed by
the hexademical representation of each byte). In any
case, the sequence only makes sense once disassem-
bled as partly shown in listing 2. A typical IDS signa-
ture in this case would focus on the attack string rather
than on the rest of the non-attack exclusive bytes, as
otherwise false alerts would ensue. However the ob-
fuscated version shown in listing 3 is totally different
from the original payload and would therefore evade
detection.

POST / HTTP/ 1 . 1

. . SNIP . . .

Content−Type : a p p l i c a t i o n / x−www−form−u r l e nc ode d

var1=%BD%3C%0As1%DB%C7%D9t%24%F4%5E%2B%C9%B1%0B

%83%C6%041n%0E%03R%04%91%C4%C0%13%0D%BE . . . SNIP

. . .

Listing 1: Original infrastructure-level attack.

0 : bd 3c 0a 73 31 mov ebp , 0 x31730a3c

5 : db c7 fcmovnb s t , s t (7)

7 : d9 74 24 f4 f n s t e n v [esp−0xc]

. . . SNIP . . .

Listing 2: Attack payload disassembly.

SECRYPT�2015�-�International�Conference�on�Security�and�Cryptography

6

POST / HTTP/ 1 . 1

. . . SNIP . . .

Content−Type : a p p l i c a t i o n / x−www−form−u r l e nc ode d

var1=%BB%8DA%08%21%DB%C5%D9t%24%F4X3%C9%B1

%26%83%C0%041X%0E%03%D5O%EA%D4%5BM%3E%090%88. . .

SNIP . . .

Listing 3: Obfuscated infrastructure-level attack using
XOR-encoding.

Web applications hosted on top of compiled in-
frastructure code are typically written in higher-level
languages (e.g. Java, C#) or scripts (e.g. PHP,
Ruby). While avoiding memory corruption vulnera-
bilities this level is still prone to code injections that
target server-side scripting. Due to their interpreted
nature, scripting languages tend to allow the dynamic
creation of script statements and which are then exe-
cuted on the fly, e.g.eval() in PHP. Whenever user-
supplied inputs are passed on to these dynamic eval-
uation functions without proper checks, the avenue
for injecting server-side script payloads is created.
Another opportunity for such injections is provided
whenever application code does not check the content
of uploaded files, that can turn up containing server-
side scripts. Obfuscation techniques in this case could
simply comprise the use of legitimate script obfusca-
tion tools intended for source code protection. One
such example is shown in listings 4 and 5 where a se-
quence of PHP string functions and variable renam-
ings alter the original attack string. Note that contrary
to listings 1 and 3, here the payloads consist of script
statements rather than machine instructions.

POST / up load . php HTTP/ 1 . 1

. . . SNIP . . .

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−f13a0bf78a1b

Content−D i s p o s i t i o n : form−d a t a ; name=” a t t a c h ”

<?php $c = ba s e 64de c ode (”

Y2F0IC9ob21lL2plbm5pZmVyL2hvc3QuYyA +

IG15ZmlsZTEudHh0 ”) ; @ s e tt i m e l i m i t (0) ;

@ i g n o r e u s e r a b o r t (1) ; i n i s e t (’

ma x e xe c u t i on t ime ’ , 0) ; $AtBa= @ in i ge t (’

d i s a b l e f u n c t i o n s ’) ; i f (! empty ($AtBa)){ $AtBa=

p r e g r e p l a c e (’ / [,] + / ’ , ’ , ’ , $AtBa) ; $AtBa=

e xp lode (’ , ’ , AtBa) ; $AtBa= arraymap (’ t r im ’ , $AtBa

) ; } e l s e{ $AtBa= a r r a y () ; } i f (FALSE!== s t r p o s (

s t r t o l o w e r (PHPOS) , ’ win ’)) { $c=$c . ” 2>&1\n ” ; }

. . . SNIP . . . ?>

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−f13a0bf78a1b−−

Listing 4: Original server-side script-level attack.

POST / up load . php HTTP/ 1 . 1

. . . SNIP . . .

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−3 a 654 fbc c f08

<?php $ f f c e 0 = ba s e 64de c ode (ba s e 64de c ode (’

WTJGMElDOW9iMjFsTDJwbGJtNXBabVZ5TDJodmMzUXVZ

eUErSUcxNVptbHNaVEV1ZEhoMA== ’)) ; @ s e tt i m e l i m i t

(0) ; @ i g n o r e u s e r a b o r t (1) ; @ i n i s e t (ba s e 64de c ode

(’ bWF4X2V4ZWN1dGlvbl90aW1l ’) , 0) ; $v ika1 = @ in ige t (

ba s e 64de c ode (’ ZGlzYWJsZV9mdW5jdGlvbnM = ’)) ; i f (!

empty ($v ika1)){ $v ika1 = p r e g r e p l a c e (ba s e 64de c ode

(’ L1ssIF0rLw== ’) , ba s e 64de c ode (’LA== ’) , $v ika1) ;

$v ika1 = e xp lode (ba s e 64de c ode (’LA== ’) , $v ika1) ;

$v ika1 = array map (ba s e 64de c ode (’ dHJpbQ == ’) ,

$v ika1) ;} e l s e{ $v ika1 = a r r a y () ;} i f (FALSE !== s t r p o s

(s t r t o l o w e r (PHPOS) , ba s e 64de c ode (’ d2lu ’))){

$ f f c e 0= $ f f c e 0 . ba s e 64de c ode (’ IDI+JjEK ’) ;} . . .

SNIP . . . ?>

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−3a654fbcc f08−−

Listing 5: Obfuscated server-side script-level attack using
string manipulation and variable renaming.

Server-side scripting environments tend to support
functions that let programmers call shell commands
from within scripts, e.g. PHP’sexec()function,
which can be exploited in a similar manner to server-
side script injections. The only difference is that
attack payloads are made up of shell command se-
quences rather than script statements. Obfuscation
can be applied through the use of alternate commands.
For example, in order to overwrite the content of
index.php as part of a defacement attack, an attacker
could utilize theecho command (with redirected stan-
dard output) as per payload in listing 6. However, the
same outcome is achieved if an attacker had to upload
a file that is copied overindex.php’s content using
thecat command as shown in listing 7.

GET / mainpage . php ? a=some%3Becho%20%3E%20inde x .

php HTTP/ 1 . 1

. . . SNIP . . .

Listing 6: Original command shell-level attack.

GET / mainpage . php ? a= o t h e r%3Bcat%20malup load%20%3

E%20inde x . php HTTP/ 1 . 1

. . . SNIP . . .

Listing 7: Obfuscated shell-level attack that uses an
alternate command.

2.2 Attack Payload Emulation

Attack payload emulation is a malware analysis task
where the use of processor emulators becomes handy
as they can protect from harmful side-effects caused
by payload execution (Egele et al., 2012; Polychron-
akis et al., 2006; Kruegel, 2014). Processor emulators
essentially provide a software implementation for de-
coding and executing machine instructions, with the
consequential slow-down in execution performance.
Emulation is restricted to the instructions making up
the payload being analyzed. In particular, any calls to
external code such as calls to functions inside linked

WeXpose:�Towards�on-Line�Dynamic�Analysis�of�Web�Attack�Payloads�using�Just-In-Time�Binary�Modification

7

libraries or traps to kernel code, are merely simulated
in order to keep emulation going further in a best ef-
fort attempt. While providing the required isolation
this method would be problematic if it had to be used
for non-machine code payloads. Emulation of script
or shell command-based payloads would require the
execution of their corresponding interpreter/shell with
the payload as input. However a best effort execution
approach does not suffice for the successful emulation
of interpreter code. Concluding, the use of processor
emulators for web attack payloads seems inadequate
and a more suitable approach is needed.

2.3 Binary (code) Instrumentation

JIT binary modification is a way to carry out dy-
namic binary instrumentation, where the object code
of a program is extended or modified in-memory dur-
ing runtime. Instrumentation granularity varies from
function/system call entry/exit points to the individual
instruction level e.g. DynamoRIO, PIN. At runtime,
instructions making up the execution trace are first
copied to a code cache where they can be manipulated
prior to execution. An analysis application using JIT
binary modification has total control over the execu-
tion trace given that every instruction is bound to pass
through the code cache and any necessary modifica-
tion can be applied. This may not be the case in other
instrumentation approaches, say in-place re-writing
(e.g. Detours). Say some application that is inter-
ested in instrumenting all calls toa function() used
in-place re-rewriting at the start of execution, any dy-
namically generated calls to this function would be
completely missed.

JIT binary modification presents an interesting op-
tion for the on-line dynamic analysis of attack pay-
loads required for our solution given that it carries
out native execution. Therefore the slow-down and
script/command payload issues associated with a pro-
cessor emulator approach can be avoided. Further-
more, JIT binary modification provides the opportu-
nity to modify the analyzed payloads in a manner so
that harmful side effects can be isolated. Therefore
JIT binary modification provides a promising founda-
tion for the dynamic analysis of web attack payloads,
yet not a complete solution per se. In particular, any
form of dynamic analysis is always bound to be more
computationally expensive than plain static analysis
of network packet content, and thus further thought is
required to render the complete solution suitable for
an on-line setting.

3 ON-LINE EXTRACTION AND
SECURE DYNAMIC ANALYSIS
OF WEB CODE INJECTION
PAYLOADS

The proposed JIT binary modification-based tech-
nique for providing an obfuscation resistant Web
IDS is embedded inside an HTTP-aware network
level IDS, code-named WeXpose, deployed out-of-
line from the protected web server, as shown in figure
1, that imposes no runtime overheads. Once network
packets are captured and filtered by the packet filter-
ing sub-system of the network router, they are passed
through the following processing stages:

Stream Reassembly.The individual network packets
making up an HTTP request must first be prop-
erly reassembled according to the TCP protocol.
This is required because a single request could be
split into multiple network packets that arrive out
of order.

Attack Vector Extraction. The strings that belong to
HTTP header or body fields that could embed at-
tack payloads are extracted for individual process-
ing.

Payload Start Position Identification. Attack payloads
are not expected to appear at the very start of
an attack vector. Therefore in order to conduct
successful dynamic analysis all possible starting
points of a payload have to be considered. Since
brute-forcing all positions would be wasteful, this
stage makes use of payload starting-point heuris-
tics to reduce the number of dynamic analysis at-
tempts.

JIT Binary Modification. Each candidate payload
from the previous step is dynamically analyzed
for the presence of any of three possible types of
injection payloads in a secure manner.

Behavior-based Detection and Recovery Guidance.
System call traces are expected to be produced
only by actual payloads rather than by content
that happens to coincide with a decode-able
instruction sequence. This reasoning derives from
the fact that data content wrongly interpreted as
machine instructions, scripts statements or shell
commands, very improbably results in setting
up system calls. Therefore the presence of such
traces can be used as the basis for detection
besides containing valuable information to trigger
recovery. Static analysis-based signatures could
also be generated for the detected payloads to
promptly detect re-occurrences.

SECRYPT�2015�-�International�Conference�on�Security�and�Cryptography

8

� �

�����������	
����
����	

��
����
���������

����	��
���
���	����	������������	

�������
���	��������	

������	
��������������	�
���	��
�� !�����

"�� ��
������
����	

������
����	��
������	

��	
�

��� �#����
�����

$���������

�%!���� ����������	���

��������

&����
�%!����

������	��
����������

������

Figure 1: WeXpose’s deployment and web traffic analysis
stages.

This setup assumes that WeXpose has access to
an unencrypted web traffic stream, which is a re-
quirement shared by all network-level IDS, and there-
fore encryption proxies must be used. The remaining
part of this section presents the details for individ-
ual stages. Design decisions are scoped in terms of
the common Internet-facing platform: x8664/Linux
(with Bash) and an Apache/PHP-based web applica-
tion server. Given that TCP stream re-assembly is a
well-known procedure that is implemented in readily-
available tools (e.g. tcpflow), explanation proceeds
immediately to the second step.

3.1 Attack Vector Identification

Attack vectors are chosen on the basis of how HTTP
GET and POST requests are expected to be processed
by web and application server processes. For exam-
ple in the case of a GET request (see figure 2), the
entire first line is expected to be loaded in a buffer to
be parsed in its entirety by web server code. Once
parsed, the URL sub-string could be parsed on its
own and thus copied to a separate buffer to assist in
fetching the required resource, while the query string
in its entirety or as separate query string argument/-
value pairs could be required by application server
scripts. Finally, a query string value could also in-
clude URL (percent) encoding for control characters
requiring escaping. However, both the encoded and
decoded strings are expected to be processed at one
stage or another when processing a request. There-
fore multiple vectors can be produced from a single
string.

The list of all vectors and encodings that are taken
into consideration are the following:

HTTP GET Requests:

• GET request field: Full request line, URL, query
string, individual query string argument/value

0,���1		�����������
��	
�����2���3	���	4�	�5�	���6����4�
�����2����6��47�&����727
&	��-��	����	��
82

Figure 2: Attack vector identification - a single request field
generates multiple attack vectors (as per delineation).

pairs, individual values. Applicable encoding:
URL encoding.

• Cookie field: Full string, individual value pairs,
individual values.

• All other request fields: Full strings.

HTTP POST Requests:

• All vectors applicable to HTTP GET requests.

• application/x-www-form-urlencoded
payload: Full payload string, individual ar-
gument/value pairs, individual values. Applicable
encoding: URL encoding.

• multipart/form-data payload: Full payload,
name/values of each individual part, content
of each individual part. Applicable encoding:
base64.

3.2 Payload Start Position Identification

Payload start position identification is carried out us-
ing payload starting-point heuristics, defined on the
basis of content that has to be present within payloads
even when obfuscated. For machine code payloads,
heuristics focus on instructions that enable position-
independent execution. This condition holds particu-
larly for obfuscated payloads where a perpended de-
coder is required to reference the encoded payload ir-
respective of its absolute position in memory (Siko-
rski and Honig, 2012). In the case of 32-bit pay-
loads, sequences of instructions referred to as Get
PC instructions are typically used to get the program
counter. They operate the same overall 3-step strat-
egy: 1- Call an instruction that places the value of the
program counter in memory; 2 - Retrieve the value
and load in some register; 3 - Reference a fixed off-
set from its current value where the encoded payload
is expected to be found. The are two classes of such
sequences: those that leverage the call instruction and
those that leverage instructions that save the FPU state
- fsave, fnsave, fxsave, fstenv, fnstenv. 64-bit
payloads have the luxury of utilizing RIP-relative ad-
dressing, meaning that the operands of data flow in-
structions can be defined in terms of fixed offsets from
the program counter. Thus, no Get PC instruction se-
quences are required even if it is possible that these
are utilized just the same.

WeXpose:�Towards�on-Line�Dynamic�Analysis�of�Web�Attack�Payloads�using�Just-In-Time�Binary�Modification

9

A third way to write position independent attack
payloads in both 32 and 64-bit modes is when any
other user-level accessible register other than the pro-
gram counter can be utilized in the same manner. In
such cases no special provisions must be taken by at-
tack authors other than making sure not to write to
such registers before reading them. In this case the
identification of possible position-independent code
is more difficult. Therefore an alternate strategy is
taken based on the presence of a decoder, expected to
require a loop construct implemented with some con-
trol transfer instruction -loop, call, jmp, jxx. Given
these observations, the payload starting-point heuris-
tics for the infrastructure level are:

• Get PC instruction opcode,

• Instruction with a RIP-relative addressing bit se-
quence,

• Control transfer instruction opcode.

input : av (the attack vector),
lst = [start1,start2, ...,startn]

begin
for i=0 to n-1 do

next av = substring(av, lst[i],
length(av)-lst[i])
JIT binary modify(nextav);

end
end

Algorithm 1: Send attack vectors to the JIT binary modifi-
cation step.

This same procedure is repeated for the remain-
ing two injection levels: the script and shell command
levels. In these two cases heuristics are based on the
requirement that certain control characters must be
present so that the target application server or com-
mand shell gets confused and starts considering input
data following these special characters as script state-
ments or shell commands. Thus, any characters im-
mediately following these characters provide suitable
start positions for payloads. In the case of script-level
(PHP) injection the heuristic is:

• Character following a semi-colon (;).

For the command shell-level (Bash) these are:

• Character following a semi-colon (;),

• Character following a pipe (|),

• Character following a back-tick (‘).

3.3 JIT Binary Modification

Figure 3 shows the process for dynamic analyzing
candidate attack payloads based on JIT binary modi-
fication. The first step prepares the execution environ-
ment that replaces the exploited process (step 1). This
host process is created from a simple binary contain-
ing just dummy instructions required to kick-start the
JIT binary modification process, the operating sys-
tem’s runtime (e.g. libc), and the mapped JIT binary
modification engine. WeXpose makes use of the Dy-
namoRIO runtime code manipulation framework to
implement this part.

� �

'�
��������

(��������

push …

push …

call …

mov …

���
���	��������	
�� ��

)��
������

push …

push …

mov …

mov …

call …

mov …

�����
����
���
���	����
	������	
����
���
���	��������	�� ��
���*����������������	��
���+	�������	�����	��	��������
����������
���	��������	
���,���!����	�����������	��

�

��	����	�	�-�����.���#	
����/.���� �����
����� ��������	��
���	�

�

�

�

�

Figure 3: The dynamic analysis host process and steps.

For each identified starting position inside an at-
tack vector the candidate payload is mapped into the
host process (step 2). In the case of machine code
payloads these are read from an input stream and
placed in an executable location on the heap (set up
usingmmap() andmprotect()). In the case of script
and shell command-level payloads the host processes
actually consist of the entire interpreter/shell pro-
cesses executed with the candidate payloads as input.
Once mapped, the candidate payload is transferred to
the code cache (step 3). In the case of machine code
payloads the JIT binary modification engine prepends
an unconditional jump (jmp) to the dummy instruc-
tion trace, with the destination address being that of
the loaded payload. This modification causes the pay-
load instructions to be loaded in the code cache next.
In the case of script and shell command payloads the
machine code instructions triggered as a result of the
parsed script/commands eventually also get loaded in-
side the code cache.

Once loaded, the machine code instructions of
these candidate payloads are modified (step 4) for
three purposes: a) insertion of dynamic analysis in-
strumentation, b) favoring successful analysis, and
c) isolation of harmful side-effects. Instrumentation

SECRYPT�2015�-�International�Conference�on�Security�and�Cryptography

10

consists of instruction sequences prior to all system
call instructions -sysenter, syscall, int x80 -
that dump the system call number along any argu-
ments of interest into a log file. The current version
of WeXpose dumps full paths of opened files and ex-
ecuted commands, as well as IP addresses/port num-
bers of all attempted network connections.

While code injection payloads are expected to
be much more compact and less dependent on
environment-based triggers as compared to stand-
alone malware, infinitely running payloads and ones
that put the host process in a blocked state could
still thwart analysis - say a payload that infinitely at-
tempts to establish a connection to a remote server
from where to download a backdoor malware, or
one that establishes a listening socket and blocks
on accepting incoming connections. Therefore JIT
binary modification also keeps an execution count
for each instruction. When the execution count of
some instruction exceeds a configurable threshold,
dynamic analysis is terminated through the addition
of an exit() library call. The same mitigation is
followed when anaccept() blocking system call is
encountered. Handling ofread(socket,...) and
recv/recvfrom/recvmsg() system calls is not nec-
essary given further modifications applied to file and
networking operations which are explained next.

The last set of binary modifications isolate mali-
cious behavior. They are thought out in a way to ren-
der the payloads harmless while at the same time not
compromising analysis. Specifically:

• Re-direction of file output - File writing opera-
tions have their file descriptors substituted with
one associated with an open dummy file, pur-
posely created so that no application/system file
gets compromised. Re-direction is chosen over
out-right blocking given that such file operations
could occur very early during payload execution,
compromising analysis.

• Blocking of network connection attempts - Net-
work connection establishment is considered to be
such a security-critical operation that is actually
stopped right away. Given the detection/identifi-
cation approaches we take (see section 3.4), at this
point of execution the payload’s behavior would
already have been substantially uncovered.

• Deleting system calls that modify permis-
sions/privilege levels - In the case that a
chmod()/chown()/seteuid()/setegid()/setfs
uid()/setreuid()/setregid() system call is
encountered, the respective instruction is deleted
from the instruction trace. Execution resumes in
a best effort approach without compromising the
security of the machine hosting WeXpose.

The final step (step 5) consists of native execu-
tion. Importantly, the JIT binary modification engine
is also mapped in any child processes spawned by the
payload so that the full system call trace is generated.

3.4 Behavior-based Detection and
Recovery Guidance

Instrumentation instructions prior to system calls cre-
ate log file entries that in case of attack payloads pro-
duce a system call trace. Listing 8 shows a fragment
of an example log file produced for the attack previ-
ously introduced in listing 4. An alert is raised every
time that such a log file is produced. Additionally an
alert is also raised for every dynamic analysis attempt
that is terminated prematurely due to the aforemen-
tioned infinite execution/blocking and isolation mea-
sures. This trace by itself already contains valuable
information to guide recovery from an attack, e.g. the
potential compromise of passwords whose hashes are
stored in/etc/passwd in the case of listing 8. A pos-
sible recovery procedure therefore consists in reset-
ting all of them.

E xe c u ta b le C on te n t Found in :<?php $c =

ba s e 64de c ode (”

Y2F0IC9ob21lL2plbm5pZmVyL2hvc3QuYyA +

IG15ZmlsZTEudHh0 ”) ; . . . SNIP . . .

. . . SNIP . . .

System C a l l : f c n t l 6 4

System C a l l : s e t r o b u s t l i s t

System C a l l : c l o s e

System C a l l : dup2

System C a l l : c l o s e

System C a l l : execve , E xe c u t i ng F i l e : / b i n / sh ,

Command : c a t / e t c / passwd> myf i l e 1 . t x t

System C a l l : read , F i l e D e s c r i p t o r used : 6

System C a l l : c l o s e

System C a l l : w a i t p i d

. . . SNIP . . .

Type : S c r i p t I n j e c t i o n , Found in F i l e :

127 . 000 . 000 . 001 . 39306−127 . 000 . 000 . 001 . 01575

Listing 8: A (fragment of a) suspicious system call trace
generated by the execution of an attack vector containing
a code injection payload.

PASSWDATTACK:− System C a l l : c l o s e\nSystem C a l l :

dup2 (.∗ ?) System C a l l : execve , (.∗ ?) / e t c / passwd

(. ∗ ?)\nSystem C a l l : read , (.∗ ?)

Listing 9: Behavior signature.

System call traces can also form the basis for
behavior signatures so that any re-occurrence of the
same attack that is disguised with obfuscation would
still be identified as a re-occurrence of a known at-
tack. In this manner the same recovery procedure

WeXpose:�Towards�on-Line�Dynamic�Analysis�of�Web�Attack�Payloads�using�Just-In-Time�Binary�Modification

11

could be applied without the need of having to re-
examine the log file. Listing 9 shows an example be-
havior signature (PASSWD ATTACK) made up of a reg-
ular expression defined over the trace in listing 8, and
that matches the obfuscated version previously pre-
sented in listing 5. Its trace log file is shown in listing
10. It is noteworthy that despite the different payload
content the same system call trace is still produced
by dynamic analysis, and which therefore matches
the predefined signature. Furthermore all detection
logs include the attack vector in which the payload
was found, providing the basis for generating a static
analysis-based IDS signature enabling the fast detec-
tion of re-occurrences of the exact same attack.

E xe c u ta b le C on te n t Found in :<?php $ f f c e 0=

ba s e 64de c ode (ba s e 64de c ode (’

WTJGMElDOW9iMjFsTDJwbGJtNXBabVZ5TDJodmMzUXVZeUEr

SUcxNVptbHNaVEV1ZEhoMA== ’)) . . . SNIP . . .

. . . SNIP . . .

System C a l l : c l o s e

System C a l l : dup2

System C a l l : c l o s e

System C a l l : execve , E xe c u t i ng F i l e : / b i n / sh ,

Command : c a t / e t c / passwd> myf i l e 1 . t x t

System C a l l : read , F i l e D e s c r i p t o r used : 6

. . . SNIP . . .

Type : S c r i p t I n j e c t i o n , Found in F i l e :

127 . 000 . 000 . 001 . 55528−127 . 000 . 000 . 001 . 01575

Match : PASSWDATTACK

Listing 10: Behavior signature match.

4 EVALUATION

WeXpose’s capabilities of conducting secure dynamic
analysis in an on-line setting, and therefore its capa-
bility of detecting evasive attacks, was evaluated us-
ing attack traffic generated by the Metasploit Frame-
work (MSF). MSF is a widely used penetration test-
ing framework that incorporates exploits for various
vulnerabilities as well as realistic payloads and en-
coders for their obfuscation. Benign traffic is made
of up HTTP requests derived from browsing sessions
of phpBB and Joomla, two widely deployed PHP ap-
plications and so deemed representative. A number
of case studies based on a combination of this traffic
were used to qualitatively evaluate the approach, pro-
viding the opportunity to closely observe how it re-
sponds to scenarios that are representative of expected
deployments.

4.1 Obfuscation Resistance with Secure
Dynamic Analysis

The first set of case studies verified the expected ben-
efit of obfuscation resistance stemming from the em-

ployment of dynamic analysis. Tables 1 and 2 show
the utilized exploits and payloads for the attacks. All
three levels of code injection are covered.

Table 1: Exploits.

Exploited vulnerability Injection
level

PeerCast Remote Buffer Overflow Machine
code

Bugtraq: 1704
Mitel Audio and Web Conferencing
Command Injection

Shell

OSVDB: 69934
WeBid Multiple Remote PHP Code In-
jection

Script

Bugtraq: 48554
Wordpress Asset Manager Plugin ‘up-
load.php’ Arbitrary File Upload

Script (file
upload)

Bugtraq: 53809

Table 2: Attack payloads and obfuscation.

Injection Payload Obfuscation
Binary

Shell
XOR encoding
(shikataga nai)

Shell Defacement (file-
overwriting in web-path)

Alternate
commands

Script Information leakage
(/etc/passwd copy to
web-path)

Base64

In all cases the obfuscated attacks were detected
successfully whilst dynamic analysis was conducted
securely. Listing 11 shows the detection of the shell
payload where dynamic analysis is terminated prior
to theaccept() system call. Listing 12 shows the
detection of the defacement payload. Here, the file
descriptor intended for output (0) was replaced by
one (7) associated with a dummy file opened by the
JIT binary modification engine. The same isolation
technique is also triggered for the information leakage
payload as shown in listing 13. Furthermore, the call
to setreuid() was logged but subsequently deleted
from the instruction trace.

E xe c u ta b le C on te n t Found in : 1\DB\F7\E3SCSj#\89\

E1\ B 0 f [ˆ Rh#\00#\ j #QP\89\ E 1 j f X \89A#\B3#\

B 0 f C \ B 0 f \93 Yj? X I y \F8h / / shh / b in\89\E3PS\89\

E1\B0# \00

System C a l l : s y ss o c k e t

System C a l l : s ysb ind , Socke t Number : 5 , P o r t

Number : 4444 , IP Address : 0 . 0 . 0 . 0

System C a l l : s y sl i s t e n

System C a l l : s y sa c c e p t

Dynamic a n a l y s i s STOPPED

Type : She l l c ode I n j e c t i o n , Found in F i l e :

127 . 000 . 000 . 001 . 55669−127 . 000 . 000 . 001 . 01575

Match : ACCEPTATTACK

Listing 11: Isolation of the shell payload.

SECRYPT�2015�-�International�Conference�on�Security�and�Cryptography

12

E xe c u ta b le C on te n t Found in : c a t> i nde x . php

System C a l l : execve , E xe c u t i ng F i l e : / b i n / c a t

. . . SNIP . . .

System C a l l : f a d v i s e 6 46 4

System C a l l : read , F i l e D e s c r i p t o r used : 0

System C a l l : w r i t e , F i l e D e s c r i p t o r a t t e m p t : 1

used : 7

System C a l l : read , F i l e D e s c r i p t o r used : 0

Type : Command I n j e c t i o n , Found in F i l e :

127 . 000 . 000 . 001 . 55541−127 . 000 . 000 . 001 . 01575 NO

MATCH

Listing 12: Isolation of the defacement payload.

4.2 Performance

A further case study was carried out to measure
WeXpose’s performance in terms of analysis times
and false positives. Measurements were taken
for browsing sessions from phpBB and Joomla.
Both sessions included a run-through of the main
functionality of each application using authenticated
crawling. Results are shown in table 3. The third
column shows the analysis time taken by WeXpose
using the starting-point heuristics as compared to
brute-forcing. The times for the brute-force approach
shown in brackets indicate that despite native execu-
tion WeXpose would have never been fit for on-line
usage without the inclusion of the starting-point
heuristics. Their employment drastically bring down
analysis time considerably. Yet when comparing
to the time taken by the web server to process the
web requests (second column) the difference is still
significant. In phpBB’s case analysis time is x24.25
while in the case of Joomla it is x31.24 the time taken
by web server request processing. These measure-
ments show that analysis time is application-specific.
The number and size of attack vectors are in fact
expected to vary between applications and as a

E xe c u ta b le C on te n t Found in : mode= A /4<91>=J

,<93><90> F 7 ˆCP ˆL ˆV1 ˆ ˆ ˆ A <85>

u 2 <99><80>;ˆ v ˆ ˆ 5 / ˆ C

<88>< 5 − ł)<95> K ˆ x <91>‘ $ N ˆ

U J <8f>; > <82> $ ˆL= <89>Y& |

v ˜ L Q ˆV<94> ˆ H a ˆ? @ ˆM. ” ˆ XˆU<89>Ŵ] ˆ ? (

<93>@̂∗ ˆA ˆ@

System C a l l : s e t r e u i d

System C a l l : open , F i l e Opened : / e t c / / passwd

. . . SNIP . . .

System C a l l : w r i t e , F i l e D e s c r i p t o r a t t e m p t : 5

used : 7

System C a l l : e x i t

Type : She l l c ode I n j e c t i o n , Found in F i l e :

127 . 000 . 000 . 001 . 55747−127 . 000 . 000 . 001 . 01575 NO

MATCH

Listing 13: Isolation of the information leakage payload.

Table 3: Analysis time and false positives for benign traffic.

Application Web server
processing (s)

Analysis for
heuristics/
brute-force (s)

FP

phpBB 2.16 52.6/≈3,600 0
Joomla 4.29 56.8/≈32,700 0

consequence they affect analysis time. The conse-
quence here is that detection alerts are delayed, or
conversely, alerts are not raised in real-time.

While performance results beg for improvement
before real-time detection can be provided, WeX-
pose’s implementation could be trivially parallelized
since each HTTP request could be analyzed by differ-
ent processing cores. An analysis/server processing
time difference of say x31, as in phpBB’s case, could
be brought down to a minimum if 31 cores had to used
for every web request-serving core. Furthermore, de-
tection response times that are inferior to real-time
could still be practical in deployments where web ap-
plication usage is not uniform, giving space for WeX-
pose to catch-up during phases of low usage. Overall,
given the substantial impact of the heuristics on analy-
sis times we can conclude that these provide sufficient
confidence that further work in this direction could
bring down the costs for real-time detection. Oppor-
tunities for smarter heuristics lie for example in terms
of filtering out duplicate attack vectors. Beyond this
low-hanging fruit, mining for payload starting posi-
tions within exploit databases could potentially pro-
vide valuable feedback in this regard.

4.3 Limitations

The current version of WeXpose only considers self-
contained attack payloads, however there is a class
of attacks, typically referred to as code reuse attacks,
whose payloads do not contain the code to be injected
but rather pointers to existing code. This class of at-
tacks includes Return-Oriented-Programming (ROP)
exploits that reuse already mapped application ma-
chine code, and Remote-File-Inclusion (RFI) attacks
that force the target application to retrieve server-side
scripts from external attacker-controlled sites. The
JIT binary modification approach sets the basis for
extending the current design with analysis host pro-
cesses that completely replicate the web application
server processes. The toughest overall limitation for
WeXpose constitutes split code-injection attacks (Ab-
basi et al., 2014).

WeXpose:�Towards�on-Line�Dynamic�Analysis�of�Web�Attack�Payloads�using�Just-In-Time�Binary�Modification

13

5 RELATED WORK

Malware and attack payload analysis options are
available at multiple levels. The use of instruction
set emulation is suitable for shellcode emulation due
to their typical self-contained nature (Polychronakis
et al., 2006). However, this same assumption presents
this approach with its weakest point (Shimamura and
Kono, 2009). Standalone malware requires the use
of full system emulators to examine given that this
type of malware typically manipulates kernel-level
data structures in order to attain stealth and persis-
tence (e.g. rootkits) (Yin et al., 2010). An interesting
alternative to full system emulation was proposed in
terms of extending hypervisors that make use of hard-
ware virtualization extensions. Its benefit lies in the
speed-up over the notoriously slow full system emu-
lation method (Snow et al., 2011). The advent of web-
based and mobile applications brought with it a breed
of malware that executes at the level of web brow-
ers, file format parsers, interpreters and process vir-
tual machines. This type of malware is best analyzed
by instrumenting/emulating their corresponding run-
time environments (Cova et al., 2010; Schreck et al.,
2013; Weichselbaum et al., 2014).

Web IDS efforts mainly focus on detecting SQLi
and XSS attacks due to the frequent occurrences of
the software flaws they exploit as well as the ease with
which they can be created. Dynamic taint tracking is a
program information flow technique that has attracted
the most attention in this regard (Xu et al., 2006; Vogt
et al., 2007; Sekar, 2009; Tripp et al., 2009). In the-
ory this technique could also be suitable to detect web
code injections at the shell and script levels due to
the similar exploitation techniques shared with SQLi
and XSS attacks. Yet, these host-level methods in-
evitably impose runtime overheads. Furthermore, re-
cent findings exposed a number of severe limitations
(Afooshteh, 2014).

6 CONCLUSIONS AND FUTURE
WORK

This work set out tackling the problem of providing a
complementary dynamic analysis mechanism to static
analysis-based web IDS for the effective detection of
code injection attacks. The mainstream approach of
using processor emulators could not be used given
that the payloads in question may contain scripts or
shell commands other than machine instructions. Be-
sides, such emulators are not suitable for on-line set-
tings. The proposed solution was implemented in
WeXpose, that uses JIT binary modification in order

to avoid the limitations associated with processor em-
ulation. The use of heuristics that identify the possi-
ble start positions of payloads further bring down the
computational cost of dynamic analysis that results
in delaying of alerts. Case studies show that WeX-
pose can detect obfuscated attacks, however real-time
alerting can only be attained at considerable addi-
tional costs in terms of the required computational
power.

Future work has to focus primarily on this prob-
lem, potentially by using smarter heuristics. As for at-
tack obfuscation resistance WeXpose can be extended
to also cover code reuse attacks, such as ROP and
RFI attacks. The JIT binary modification approach
provides the ideal basis for further extension in this
direction given that it can provide WeXpose with ac-
cess to the replicated program image of the target web
server. With these enhancements in place WeXpose
will be subjected to a quantitative study.

REFERENCES

Abbasi, A., Wetzels, J., Bokslag, W., Zambon, E., and
Etalle, S. (2014). On emulation-based network intru-
sion detection systems. InResearch in Attacks, Intru-
sions and Defenses, pages 384–404. Springer.

Afooshteh, A. N. (2014). Taintless. InBlackhat Arsenal.
Blackhat.

Bruening, D., Zhao, Q., and Amarasinghe, S. (2012). Trans-
parent dynamic instrumentation. InACM SIGPLAN
Notices, volume 47, pages 133–144. ACM.

Cova, M., Kruegel, C., and Vigna, G. (2010). Detection and
analysis of drive-by-download attacks and malicious
javascript code. InProceedings of the 19th interna-
tional conference on World wide web, pages 281–290.
ACM.

Egele, M., Scholte, T., Kirda, E., and Kruegel, C. (2012). A
survey on automated dynamic malware-analysis tech-
niques and tools. volume 44, page 6. ACM.

Erickson, J. (2008).Hacking: The art of exploitation. No
Starch Press.

Kruegel, C. (2014). Full system emulation: Achieving suc-
cessful automated dynamic analysis of evasive mal-
ware. InProc. BlackHat USA Security Conference.

Maggi, F., Matteucci, M., and Zanero, S. (2010). Detecting
intrusions through system call sequence and argument
analysis. volume 7, pages 381–395. IEEE.

Polychronakis, M., Anagnostakis, K. G., and Markatos,
E. P. (2006). Network–level polymorphic shellcode
detection using emulation. InDetection of Intrusions
and Malware & Vulnerability Assessment, pages 54–
73. Springer.

Portokalidis, G. and Keromytis, A. D. (2010). Fast and
practical instruction-set randomization for commod-
ity systems. InProceedings of the 26th Annual Com-

SECRYPT�2015�-�International�Conference�on�Security�and�Cryptography

14

puter Security Applications Conference, pages 41–48.
ACM.

Schreck, T., Berger, S., and Göbel, J. (2013). Bissam: Auto-
matic vulnerability identification of office documents.
In Detection of Intrusions and Malware, and Vulnera-
bility Assessment, pages 204–213. Springer.

Sekar, R. (2009). An efficient black-box technique for de-
feating web application attacks. InNDSS.

Shimamura, M. and Kono, K. (2009). Yataglass: Network-
level code emulation for analyzing memory-scanning
attacks. InDetection of Intrusions and Malware, and
Vulnerability Assessment, pages 68–87. Springer.

Sikorski, M. and Honig, A. (2012). Practical Malware
Analysis: The Hands-on Guide to Dissecting Mali-
cious Software. No Starch Press.

Snow, K. Z., Krishnan, S., Monrose, F., and Provos, N.
(2011). Shellos: Enabling fast detection and forensic
analysis of code injection attacks. InUSENIX Security
Symposium.

Srivastava, A. and Giffin, J. (2010). Automatic discovery
of parasitic malware. InRecent Advances in Intrusion
Detection, pages 97–117. Springer.

Tripp, O., Pistoia, M., Fink, S. J., Sridharan, M., and Weis-
man, O. (2009). Taj: effective taint analysis of web
applications. volume 44, pages 87–97. ACM.

Van der Veen, V., Cavallaro, L., Bos, H., et al. (2012). Mem-
ory errors: the past, the present, and the future. In
Research in Attacks, Intrusions, and Defenses, pages
86–106. Springer.

Vogt, P., Nentwich, F., Jovanovic, N., Kirda, E., Kruegel,
C., and Vigna, G. (2007). Cross site scripting preven-
tion with dynamic data tainting and static analysis. In
NDSS.

Wang, Z. and Jiang, X. (2010). Hypersafe: A lightweight
approach to provide lifetime hypervisor control-flow
integrity. In Security and Privacy (SP), 2010 IEEE
Symposium on, pages 380–395. IEEE.

Weichselbaum, L., Neugschwandtner, M., Lindorfer, M.,
Fratantonio, Y., van der Veen, V., and Platzer, C.
(2014). Andrubis: Android malware under the mag-
nifying glass. Vienna University of Technology.

Xu, W., Bhatkar, S., and Sekar, R. (2006). Taint-enhanced
policy enforcement: A practical approach to defeat a
wide range of attacks. InUsenix Security, pages 121–
136. USENIX.

Yin, H., Poosankam, P., Hanna, S., and Song, D. (2010).
Hookscout: Proactive binary-centric hook detection.
In Detection of Intrusions and Malware, and Vulnera-
bility Assessment, pages 1–20. Springer.

WeXpose:�Towards�on-Line�Dynamic�Analysis�of�Web�Attack�Payloads�using�Just-In-Time�Binary�Modification

15

