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Abstract: This paper studies a finite horizon output-feedback game control problem where two players seek to opti-
mize their system performance by shaping the distribution of their cost function through cost cumulants. We
consider a two-player second cumulant nonzero-sum Nash game for a partially-observed linear system with
quadratic cost function. We derive the near-optimal players strategy for the second cost cumulant function by
solving the Hamilton-Jacobi-Bellman (HJB) equation. The results of the proposed approach are demonstrated
by solving a numerical example.

1 INTRODUCTION

Game theory is the study of tactical interactions in-
volving conflicts and cooperations among multiple
decision makers called players with applications in
diverse disciplines such as management, communi-
cation networks, electric power systems and con-
trol (Zhu et al., 2012), (Charilas and Panagopoulos,
2010), (Cruz et al., 2002). Stochastic differential
game results from strategic interactions among play-
ers in a random dynamic system (Basar, 1999). In
stochastic optimal control, there is a player and cost
function to be optimized while in stochastic differ-
ential games, there are multiple players and separate
cost function to be optimized by each player.

In most practical control engineering applications,
not all the states are measurable. The system model
may consists of unknown disturbances usually ex-
pressed as process noise while the inaccuracies in
measurement are usually expressed as measurement
noise. An approach to account for the unmeasurable
states is to estimate those states using an estimator
before utilizing the states in a controller in a feedback
control system. This approach is part of a general-
ized method to analyzing linear stochastic systems by
applying the concept of certainty equivalence prin-
ciple (Van De Water and Willems, 1981) or related
separation principle (Wonham, 1968). Bensoussanet
al. (Bensoussan and Schuppen, 1985) investigated
the stochastic optimal control problem for partially-
observed system with exponential cost criterion and
proved that separation theorem does not hold for such

scenario. (Zheng, 1989) investigated both optimal
and suboptimal approach to output feedback control
for a linear system with quadratic cost function while
the solvability of the necessary and sufficient condi-
tions for the existence of a stabilizing output feed-
back solution for a continuous-time linear systems
was studied in (Geromel et al., 1998). Aberkaneet
al. (Aberkane et al., 2008) investigated the output
feedback solution for generalized stochastic hybrid
linear systems and provided a dynamic system prac-
tical example. The infinite-horizon output feedback
Nash game for a stochastic weakly-coupled system
with state-dependent noise was studied in (Mukaidani
et al., 2010). In addition, the necessary conditions
for the existence of Nash equilibrium were given in
(Mukaidani et al., 2010). Klompstra (Klompstra,
2000), extended risk-sensitive control to discrete time
game theory and solved the Nash equilibrium for the
partially observed state of a 2-player game.

In this paper, we are motivated to extend the
above-referenced studies by considering higher-order
statistics of cost function. In particular, we consider
a second cumulant nonzero-sum Nash game for a
partially-observed system of two players on a fixed
time interval where the players shape the distribution
of their cost cumulant function to improve system per-
formance. This form of dynamic game finds applica-
tion in satellite and mobile robot systems. The second
cumulant of cost function is equivalent to the vari-
ance of the cost function. However, the optimization
of cost function distribution through cost cumulant
was initiated by Sain (Sain, 1966), (Sain and Liberty,
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1971) while Wonet al. (Won et al., 2010), extended
the theory of cost cumulant to second, third and fourth
cumulants for a nonlinear system with non-quadratic
cost and derived the corresponding HJB equations.

The reminder of this paper is organized as fol-
lows. In Section 2, we state the mathematical pre-
liminaries and formulate the second cumulant game
problem. Section 3 states the necessary condition for
the existence of Nash equilibrium solution while Sec-
tion 4 derives the players strategy based on solving
the coupled Hamilton-Jacobi-Bellman (HJB) equa-
tions which is the main result of this paper. Section 5
describes the numerical approximate method for solv-
ing the coupled HJB equations while a numerical ex-
ample is solved in Section 6. Finally, the conclusions
are given in Section 7.

2 PROBLEM FORMULATION

Consider a 2-player linear state dynamics and mea-
sured output described by the linear It ˆo-sense stochas-
tic differential equation.

dx(t) = A(t)x(t)dt+
2

∑
k=1

Bk(t)uk(t)dt+G(t)dw1(t),

dy(t) =C(t)x(t)dt+D(t)dw2(t),
(1)

wheret ∈ [t0, tF ] = T, x(t) ∈ R
n is the state,uk(t) ∈

Uk ⊂R
m is thek-th player strategy,k= 1,2 andw1(t),

w2(t) are Gaussian random process defined on a prob-
ability space(Ω0,F,P) whereΩ0 is a nonempty set,
F is a σ-algebra ofΩ0 andP is a probability mea-
sure on(Ω0,F).x(t0) = x0 is the initial state vec-
tor with covariance matrixP0. The Gaussian ran-
dom processw1(t) has zero mean and covariance of
E(dw1(t)dw′

1(t)) = W1(t)dt and similarly the Gaus-
sian random processw2(t) has zero mean and covari-
ance ofE(dw2(t)dw′

2(t)) = W2(t)dt. The noise pro-
cessesw1(t) andw2(t) are assumed independent with
E(dw1(t)dw′

2(t)) = E(dw2(t)dw′
1(t)) = 0 assuming

dw1,dw2 have same dimension. LetQ0 = [t0, tF )×
R

n, Q̄0 denote the closure ofQ0, i.e Q̄0 = T ×R
n.

Assume there exist constantsc1,c2 > 0∈ R such that

‖A(t)‖+
2

∑
k=1

‖Bk‖ ≤ c1,‖G(t)‖ ≤ c2, (2)

where A(.),Bk(.),C(.),D(.),G(.) are elements of
C1([t0, tF ]) with appropriate dimensions. Let a feed-
back strategy law be defined asuk(t) = µk(t,x(t)), t ∈
T. Then, (1) can be written as

dx(t) = f µk(x(t))dt+G(t)dw1(t),x(t0) = x0,

(3)

where f µk(x) denotes A(t)x(t) + ∑2
k=1Bk(t)uk(t).

There exist a bounded, borel measurable feedback
strategyµk(x) : Rm → Uk such thatµk(x) satisfies a
global Lipschitz condition: i.e there exists a constant
c1 such that

‖µk(x1)−µk(x2)‖ ≤ c1‖x1− x2‖, (4)

‖.‖ is the Euclidean norm andx1,x2 ∈R
n. Also,µk(x)

satisfies linear growth condition

‖µk(x)‖ ≤ c2(1+ ‖x‖). (5)

Then, if E‖x(t)‖2 is finite, there is a unique solu-
tion to (1) which is a Markov diffusion process onRn

(Fleming and Rishel, 1975). In order to assess perfor-
mance of (1), consider the cost function(Jk) for the
k-th player given as:

Jk(t0,x(t0),µ1,µ2) = x′(tF)Qf x(tF)+
∫ tF

t0

[

x′(s)Q(s)x(s)+
2

∑
i=1

µ′i(s)Rki(s)µi(s)
]

ds,
(6)

wherek = 1,2, x(tF ) = xf , Q(s),Qf are symmetric
positive semi-definite andRki(.) is symmetric positive
definite, which can also be represented as

Jk(t0,x(t0),µ1,µ2) =

∫ tF

t0
Lk(s,x,µ1,µ2)ds+ψk(x(tF)),

(7)
wherek = 1,2, Lk is the running cost,ψk is the ter-
minal cost andLk,ψk both satisfy polynomial growth
condition. Let the state estimate be ˆx(t) and the state
estimate error be ¯x(t)wherex(t) is the state true value.
Then, the state estimation error ¯x(t), is given as

x̄(t) = x(t)− x̂(t). (8)

The filtered state estimate ˆx(t) is given as

dx̂(t) =A(t)x̂(t)dt+
2

∑
k=1

(

Bk(t)uk(t)
)

dt

+K(t)
(

dy(t)−C(t)x̂(t)dt
)

.

(9)

whereK(t) is the Kalman Filter gain (Davis, 1977).

Lemma 2.1. The expected value of the cost func-
tion (6) conditioned on theσ-algebra generated by the
measured output (1) can be rewritten as

E
{

Jk(t0, x̂(t0),µ1,µ2)
}

=

∫ tF

t0

[

E
(

x̂′(s)Q(s)x̂(s)
)

+ tr
(

Q(s)P(s)
)]

ds+
∫ tF

t0

[ 2

∑
i=1

µ′i(s)Rki(s)µi(s)
]

ds

+E
{

x̂′(tF)Qf x̂(tF)
}

+ tr
(

Qf Pf

)

,

(10)
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wherek= 1,2, x̂(tF) = x̂f , Q(.),Qf ,P(.),Pf are pos-
itive semi-definite,Rki(s) is positive definite fork= i
and positive semi-definite fork 6= i, P(.),Pf are the
state error estimate covariances.

Proof. See (Davis, 1977) for single player case, a
two-player case follows similar derivation.

Furthermore, we utilize the backward evolution
operator,Ok(µ1,µ2), as defined in (Sain et al., 2000):
O

k(µ1,µ2) = O
k
1(µ1,µ2)+O

k
2(µ1,µ2),

O
k
1(µ1,µ2) =

∂
∂t

+ f ′(t,x,µ1,µ2)
∂
∂x

,

O
k
2(µ1,µ2) =

1
2

tr

(

G(t)W1(t)G(t)′
∂2

∂x2

)

,

(11)

with tr = trace in (11). To study the cumulant game of
cost function, them-th moments of cost functionsMk

m
of thek-th player is defined as:

Mk
m(t, x̂,µ1,µ2) = E

{

(Jk)m(t,x,µ1,µ2)|x(t) = x
}

,

(12)
where m = 1,2. The m-th cost cumulant function
Vk

m(t, x̂) of thek-th player is defined by (Smith, 1995),

Vk
m(t, x̂) = Mk

m−
m−2

∑
i=0

(m−1)!
i!(m−1− i)!

Mk
m−1−iV

k
i+1,

(13)
wheret ∈ T = [t0, tF ], x(t0) = x0, x̂(t) ∈ R

n. Next, we
introduce some definitions.

Definition 2.1. A function Mk
1 : Q̄0 → R

+ is an ad-
missible first moment cost function if there exists a
strategyµk such that

Mk
1(t, x̂) = Mk

1(t, x̂;µ1,µ2), (14)

for t ∈ T, x̂ ∈ R
n, Mk

1 ∈ C1,2(Q̄0). Also, Vk
1 is the

admissible first cumulant cost function for thek-th
player related to the moment function through the
moment-cumulant relation (13). In addition,µk ∈
UMk , Vk

1 (t, x̂) =Vk
1 (t, x̂;µ1,µ2).

Definition 2.2. A class of admissible strategyUMk is
defined such that ifµk ∈ UMk ⊂ R

m thenµk satisfies
the equality of Definition 2.1 forMk

0,M
k
1. It should be

noted that first momentMk
1 is the same as first cumu-

lantVk
1 , Mk

0 = 1 andVk
0 = 0.

Definition 2.3. Let Vk
1 be thek-th player admissible

cumulant cost functions. The player strategyµ∗k is the
k-th player equilibrium solution if it is such that

V1∗
2 (t, x̂) =V1

2 (t, x̂;µ∗1,µ
∗
2)≤V1

2 (t, x̂;µ∗1,µ2),

V2∗
2 (t, x̂) =V2

2 (t, x̂;µ∗1,µ
∗
2)≤V2

2 (t, x̂;µ1,µ
∗
2).

(15)

for all µk ∈UMk where the set{µ∗1,µ
∗
2} is a Nash equi-

librium solution and the set{V1∗
2 ,V2∗

2 } is the Nash
equilibrium value set.

Problem Definition. Consider an open setQ ⊂
Q0 and let thek-th player cost cumulant functions
Vk

1 (t, x̂) ∈C1,2
p (Q)∩C(Q̄) be an admissible cumulant

function where the setC1,2
p (Q)∩C(Q̄) means that the

functionVk
1 satisfy polynomial growth condition and

is continuous in the first and second derivatives ofQ,
and continuous on the closure ofQ. Assume the ex-
istence of a near-optimal strategyµ∗k ∈UMk and near-

optimal value functionVk∗
2 (t, x̂) ∈C1,2

p (Q)∩C(Q̄) for
thek-th player. Thus, a 2-player second cumulant out-
put feedback game problem is to find the Nash strat-
egyµ∗k(t, x̂) for the partially-observed linear state sys-
tem withk= 1,2 which results in the near-optimal 2nd

value functionVk∗
2 (t, x̂) given as

V1∗
2 (t, x̂) = min

µ1∈UM1

{

V1
2 (t, x̂;µ1,µ2)

}

,

V2∗
2 (t, x̂) = min

µ2∈UM2

{

V2
2 (t, x̂;µ1,µ2)

}

.

(16)

Remarks. To find the Nash equilibrium strategies

µ∗1(t, x̂),µ
∗
2(t, x̂), we constrain the candidates of the

near-optimal players strategy toUM1,UM2, and the
near-optimal value functionsV1∗

2 (t, x̂),V2∗
2 (t, x̂) are

found with the assumption thatV1
1 (t, x̂),V

2
1 (t, x̂), are

admissible.

3 AD HOC OUTPUT FEEDBACK
CUMULANT GAME

Theorem 3: From the full-state feedback statisti-
cal control in (Won et al., 2010), the minimal 2nd

value functionVk∗
2 (t,x) for (1) with zero measure-

ment noise satisfies the following HJB equation for
thek-th player:

0= min
µk∈U

Mk

{

O
k(µ∗1,µ

∗
2)
[

Vk∗
2 (t,x)

]

+

(

∂Vk
1 (t,x)
∂x

)′

G(t)W1G(t)′
(

∂Vk
1 (t,x)
∂x

)

}

,

(17)
with the terminal conditionVk

j (tF ,xF) = 0, k = 1,2,
j = 1,2. Assuming separation principle (Wonham,
1968), the minimal 2nd value functionVk∗

2 (t, x̂) for
(9) satisfies the following HJB equation for thek-th
player:
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0= min
µk∈UMk

{

O
k(µ∗1,µ

∗
2)
[

Vk∗
2 (t, x̂)

]

+

(

∂Vk
1 (t, x̂)
∂x̂

)′

K(t)W2K(t)′
(

∂Vk
1 (t, x̂)
∂x̂

)

}

,

(18)
with terminal conditionVk

j (tF , x̂F) = 0, k = 1,2, j =
1,2, K(t) is the Kalman filter gain associated with
(1) after transformation through innovative process
(Kailath, 1968), (Davis, 1977).

Remark. The HJB equation (17) provides a neces-
sary condition for the existence of equilibrium solu-
tion of a 2-player, 2nd cost cumulant game. A sim-
ilar condition with proof is given for statistical con-
trol in (Won et al., 2010). Our approach in (18) is
termed ad hoc, since we assume that separation prin-
ciple holds for the stochastic linear system with 2nd

cumulant functionVk
2 (t, x̂).

4 TWO-PLAYER CUMULANT
GAME NASH STRATEGY

Theorem 4.Let the solution to thek-th player second
cumulant output feedback game be given by

µ∗k(t, x̂) =−
1
2

R−1
kk B

′

k

(

∂Vk
1 (t, x̂)
∂x̂

+ γ2k
∂Vk∗

2 (t, x̂)
∂x̂

)

,

(19)
whereγ2k is the Lagrange multiplier andVk

1 ,V
k
2 are

the first, second cumulant cost functions and solutions
of the following coupled HJB equations:

0=O
k(µ−k,µk)

[

Vk
1 (t, x̂)

]

+Mk
0(t, x̂)L

k(t, x̂,µ−k,µk),

0=O
k(µ−k,µk)

[

Vk
2 (t, x̂)

]

+

(

∂Vk
1 (t, x̂)
∂x̂

)′

K(t)W2K(t)′
(

∂Vk
1 (t, x̂)
∂x̂

)

,

(20)
whereMk

0 = 1, O
k(.) is the backward operator,−k

represents notk; if k is 1 then−k is 2 and vice-versa.

Proof. From the system equation (1), (18) and assum-
ing that separation principle holds, the minimal 2nd

value functionVk∗
2 (t, x̂) satisfies the following HJB

equation for thek-th player.

0= min
µk∈UMk

{

O
k(µ∗1,µ

∗
2)
[

Vk∗
2 (t, x̂)

]

+

(

∂Vk
1 (t, x̂)

∂x̂

)′

K(t)W2K(t)′
(

∂Vk
1 (t, x̂)

∂x̂

)

}

,

(21)

with terminal conditionVk
j (tF , x̂F) = 0, k = 1,2, j =

1,2, K(t) is the Kalman filter gain. Since the first
cost cumulant functionVk

1 is admissible (def. 2.1),
the following coupled equations are satisfied

0=O
k(µ−k,µk)

[

Vk
1 (t, x̂)

]

+Mk
0(t, x̂)L

k(t, x̂,µ−k,µk),

0=O
k(µ−k,µk)

[

Vk
2 (t, x̂)

]

+

(

∂Vk
1 (t, x̂)
∂x̂

)′

K(t)W2K(t)′
(

∂Vk
1 (t, x̂)
∂x̂

)

,

(22)
whereMk

0 = 1, O
k(.) is the backward operator and

the first line of (22) follows from the classical HJB
equation while the second line relates the second cu-
mulant function with the first cumulant function in the
HJB equation. Thus, converting (22) to unconstrained
optimization problem gives

0= min
µk∈UMk

{

O
k(µ−k,µk)

[

Vk
1 (t, x̂)

]

+Mk
0(t, x̂)L

k(t, x̂,µ−k,µk)+ γ2k(t)O
k(µ−k,µk)

[

Vk∗
2 (t, x̂)

]

+ γ2k(t)

(

∂Vk
1 (t, x̂)
∂x̂

)′

K(t)W2K(t)′
(

∂Vk
1 (t, x̂)
∂x̂

)

}

,

(23)

whereγ2k is the Lagrange multiplier. From backward
operator (11) using (9), (10) and expanding (23) gives

min
µk∈UMk

{

(

∂Vk
1 (t, x̂)
∂t

)

+ x̂′(t)Q(t)x̂(t)

+ tr
(

Q(t)P(t)
)

+
2

∑
i=1

µi(t)Rki(t)µ
′
i(t)

+

(

∂Vk
1 (t, x̂)
∂x̂

)(

x̂(t)
′

A(t)
′

+
2

∑
i=1

µi(t)
′

Bi(t)
′

)

+
1
2

tr

(

K(t)W2K(t)′
(

∂2Vk
1 (t, x̂)
∂x̂2

))

+ γ2k

(

∂Vk∗
2 (t, x̂)

∂t

)

+ γ2k

(

∂Vk∗
2 (t, x̂)
∂x̂

)(

x̂(t)
′

A(t)
′

+
2

∑
i=1

µi(t)
′

Bi(t)
′

)

+
γ2k

2
tr

(

K(t)W2K(t)′
(

∂2Vk∗
2 (t, x̂)
∂x̂2

))

+ γ2k

(

∂Vk
1 (t, x̂)
∂x̂

)′

K(t)W2K(t)′
(

∂Vk
1 (t, x̂)
∂x̂

)

}

= 0.

(24)

Minimizing (24) with respect toµk(t, x̂) gives

µ∗k(t, x̂) =−
1
2

R−1
kk B

′

k

(

∂Vk
1 (t, x̂)

∂x̂
+ γ2k

∂Vk∗
2 (t, x̂)

∂x̂

)

.

(25)
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Remark. The strategy for thek-th playerµ∗k(t, x̂) de-
rived from the coupled HJB equation (22) is subop-
timal. In (22), the certainty equivalent principle has
been extended to the second cumulant output feed-
back game where a Kalman filter is used for state es-
timation.

5 NUMERICAL
APPROXIMATION METHOD

The analytical solutions of HJB equation (18) is dif-
ficult to find except for simple linear systems. San-
berg (Sandberg, 1998) showed that neural networks
(NN) with time-varying weights can be utilized to ap-
proximate uniformly continuous time-varying func-
tions. We are motivated by the work in (Chen
et al., 2007), to extend NN approach to cost cumu-
lant game. In this approach, NN is utilized to ap-
proximate the value function based on method of
least squares on a pre-defined region. The value
functions Vk

i can be approximated asVk
i (t, x̂) =

w′
L(t)ΛL(x̂) = ∑L

i=1wi(t)γi(x̂) on t on a compact
set Ω → R

n. Thus, we approximate the players
value functionsVk

m asVk
mL(t, x̂) = w′

mkL(t)ΛmkL(x̂) =
∑L

i=1wmki(t)γmki(x̂), wherewmkL(t) and ΛmkL(x̂) are
vectors, andwmkL(t) = {wmk1(t), . . . ,wmkL(t)}′ and
ΛmkL(x̂) = {γmk1(x̂), . . . ,γmkL(x̂)}′ are the vector neu-
ral network weights and vector of activation functions
andL is the number of the hidden-layer neurons. Us-
ing the approximated value functionsVk

mL(t, x̂) in the
HJB equations result in residual error equations. We
apply weighted residual method (Finlayson, 1972) to
minimize the residual error equations and then numer-
ically solve for the least square NN weights (Chen
et al., 2007).

6 SIMULATION

Consider a linear deterministic dynamic system in
(Zheng, 1989), where we introduce gaussian noise as
process and measurement noise. The stochastic sys-
tem is represented as

dx(t) = Ax(t)dt+B1u1(t)dt+B2u2(t)dt+Gdw1(t),

dy(t) =Cx(t)dt+Ddw2(t),
(26)

A=







−2 0 3 2
4 −2 1 3
2 3 −3 4
0 0 0 −2






,B1 =







1
0
1
0






,

B2 =







0
1
0
1






,C=





1 0 0 0.1
0 1 0 0.1
0 0 1 1



 ,

and the state variablex(t) is defined as:x(t) = [x1(t)
x2(t) x3(t) x4(t)]

′
. We assume thatG and D in

(26) are 4× 1 and 3× 1 constant vectors given as
G = [1 1 1 1]

′
, D = [1 1 1]

′
and dw1(t),dw2(t) in

(26) as a Gaussian process with meanE{dw1(t)} =
E{dw2(t)} = 0 and covarianceE{dw1(t)dw1(t)′} =
0.1 andE{dw2(t)dw2(t)′}= 0.1. In this example, we
study a 2-player 2nd cumulant ad hoc output feedback
Nash game. Here, we compute the suboptimal solu-
tion for the player strategy through solving the output
feedback 2nd cumulant game problem constraint on
the 1st cumulant cost function.

The first player cost functionJ1 is

J1(t0,x(t0),u1(t0),u2(t0)) =
∫ tF

t0

{

x2
1(t)+ x2

2(t)

+ x2
3(t)+ x2

4(t)+u2
1(t)
}

dt+ψ1(x(tF ), tF),
(27)

whereψ1(x(tF), tF) = 0 is the terminal cost and the
second player cost functionJ2 is

J2(t0,x(t0),u1(t0),u2(t0)) =
∫ tF

t0

{

x2
1(t)+ x2

2(t)

+ x2
3(t)+ x2

4(t)+u2
2(t)
}

dt+ψ2(x(tF ), tF),
(28)

whereψ2(x(tF ), tF) = 0 is the terminal cost. The ac-
tivation functionΛL(x) for the value functions of the
players are the same and based on (Chen and Jagan-
nathan, 2008) which are formulated as

ΛL(x) =

M
2

∑
i=1

(

n

∑
j=1

x j

)2i

, (29)

where in (29),M is an even-order of the approxima-
tion, L is the number of hidden-layer neurons,n is the
system dimension.

The input functionΛL(x) (29) is

ΛL =
{

x2
1,x

2
2,x

2
3,x

2
4,x1x2,x1x3,x1x4,x2x3,x2x4,x3x4

}′
.

(30)
We transform this problem as an innovative process
(Kailath, 1968) in terms of state estimate using (8),
(9), (10) and solve for the Kalman filter gain. For
the NN series approximation, we choose a polynomial
function(30) of up to second-order(M = 2) in state
variable (i.ex is 2nd order) with lengthL= 10. Higher
order polynomial did not provide significant improve-
ment in the approximation accuracy. In the simula-
tion, the asymptotic stability region for states was ar-
bitrarily chosen as−5 ≤ x1 ≤ 5,−5 ≤ x2 ≤ 5,−5 ≤
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(a) NN Weights versus time

(b) V1
1 versusγ21

(c) V1
2 versusγ21

Figure 1: Neural Network Weights and Value Function.

x3 ≤5 and−5≤ x4 ≤5. The final timetF was 20 s and
w′

11L(tF)−w′
21L(tF)= {0} andw′

12L(tF)−w′
22L(tF)=

{0}. The initial condition wasx(t0) = x0 =[1 1 1 1]
′
.

Figs. 1(a) to 1(c) show the first player neural net-
work weights and value functions which are similar
to the second player, hence only the first player plots
are shown. Fig. 1(a), the neural network weights con-
verge to constants. Plots 1(b) to 1(c) show the first
and second value cumulant functions. From Fig. 1(b),

(a) Control trajectory

(b) State trajectory

(c) State trajectory

Figure 2: Control Strategy and State Trajectory.

it was observed that the value functionV1
1 increases

with increase inγ21 while from Fig. 1(c), it was ob-
served that the value functionsV1

2 decreases asγ21
increase. The Lagrange multipliersγ2k were selected
as constants. The Nash suboptimal controls,u1 and
u2 are shown in Fig. 2(a). It should be noted from
Fig. 2(a), that the Nash suboptimal controls for the
two players were solved for the 2nd cumulant game by
selectingγ21, γ22 where the value functions are mini-
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mum which in our case wereγ21= 0.001,γ22= 0.001.
In addition, we have the design freedom inγ2k val-
ues selection to enhance system performance. From
Figs. 2(b) to 2(c), the states converge to values close
to zero.

7 CONCLUSIONS

In this paper, we analyzed an output feedback cumu-
lant differential game control problem using cost cu-
mulant optimization approach. We investigated a lin-
ear stochastic system with two players and derived
a 2-player near-optimal strategies for the tractable
auxiliary problem. The efficiency of our proposed
method has been demonstrated using a numerical ex-
ample where a neural network series method was ap-
plied to solve the HJB equations.
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