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Abstract: This paper studies a finite horizon output-feedback game control problem where two players seek to opti-
mize their system performance by shaping the distribution of their cost function through cost cumulants. We
consider a two-player second cumulant nonzero-sum Nash game for a partially-observed linear system with
quadratic cost function. We derive the near-optimal players strategy for the second cost cumulant function by
solving the Hamilton-Jacobi-Bellman (HJB) equation. The results of the proposed approach are demonstrated
by solving a numerical example.

1 INTRODUCTION scenario. (Zheng, 1989) investigated both optimal
and suboptimal approach to output feedback control

Game theory is the Study of tactical interactions in- for a linear system with quadratic cost function while
Vo|ving conflicts and Cooperations among mu|tip|e the solvability of the necessary and sufficient condi-
decision makers called players with applications in tions for the existence of a stabilizing output feed-
diverse disciplines such as management, communi-Pack solution for a continuous-time linear systems
cation networks, electric power systems and con- Was studied in (Geromel et al., 1998). Aberkagte
trol (Zhu et al., 2012), (Charilas and Panagopoulos, &l (Aberkane et al., 2008) investigated the output
2010), (Cruz et al., 2002). Stochastic differential feedback solution for generalized stochastic hybrid
game results from strategic interactions among play- linear systems and provided a dynamic system prac-
ers in a random dynamic System (Basar, 1999) In tical example. The infinite-horizon output feedback
stochastic optimal control, there is a player and cost Nash game for a stochastic weakly-coupled system
function to be optimized while in stochastic differ- With state-dependent noise was studied in (Mukaidani
ential games, there are multiple players and separateet al., 2010). In addition, the necessary conditions
cost function to be Optimized by each p|aye|’_ for the existence of Nash equilibrium were given in
In most practical control engineering applications, (Mukaidani et al., 2010). Klompstra (Klompstra,
not a” the states are measurable' The System modeQOOO), extended risk-sensitive control to discrete time
may consists of unknown disturbances usually ex- 9ame theory and solved the Nash equilibrium for the
pressed as process noise while the inaccuracies inPartially observed state of a 2-player game.
measurement are usually expressed as measurement In this paper, we are motivated to extend the
noise. An approach to account for the unmeasurableabove-referenced studies by considering higher-order
states is to estimate those states using an estimatostatistics of cost function. In particular, we consider
before utilizing the states in a controller in a feedback a second cumulant nonzero-sum Nash game for a
control system. This approach is part of a general- partially-observed system of two players on a fixed
ized method to analyzing linear stochastic systems by time interval where the players shape the distribution
applying the concept of certainty equivalence prin- of their cost cumulant function to improve system per-
ciple (Van De Water and Willems, 1981) or related formance. This form of dynamic game finds applica-
separation principle (Wonham, 1968). Bensoussan tion in satellite and mobile robot systems. The second
al. (Bensoussan and Schuppen, 1985) investigatedcumulant of cost function is equivalent to the vari-
the stochastic optimal control problem for partially- ance of the cost function. However, the optimization
observed system with exponential cost criterion and of cost function distribution through cost cumulant
proved that separation theorem does not hold for suchwas initiated by Sain (Sain, 1966), (Sain and Liberty,
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1971) while Wonet al. (Won et al., 2010), extended where fH(x) denotes A(t)x(t) + S2_; Bi(t)uk(t).
the theory of cost cumulant to second, third and fourth There exist a bounded, borel measurable feedback
cumulants for a nonlinear system with non-quadratic strategypk(x) : R™ — Uy such thatu(x) satisfies a
cost and derived the corresponding HIB equations. global Lipschitz condition: i.e there exists a constant
The reminder of this paper is organized as fol- c; such that
lows. In Section 2, we state the mathematical pre-
liminaries and formulate the second cumulant game I (x0) = beOx) | < eallxa =]l (4)
problem. Section 3 states the necessary condition for|| || is the Euclidean norm and, x, € R". Also, i (X)
the existence of Nash equilibrium solution while Sec- satisfies linear growth condition
tion 4 derives the players strategy based on solving
the coupled Hamilton-Jacobi-Bellman (HJB) equa-
tions which is the main result of this paper. Section 5
describes the numerical approximate method for solv-
ing the coupled HJB equations while a numerical ex-
ample is solved in Section 6. Finally, the conclusions
are given in Section 7.

()| < ca(1+[Ix]]). ()

Then, if E||x(t)||? is finite, there is a unique solu-
tionto (1) which is a Markov diffusion process &
(Fleming and Rishel, 1975). In order to assess perfor-
mance of (1), consider the cost functigif) for the
k-th player given as:

3¥(to, X(to), M1, ) = X (tF ) QeX(te )+

2 PROBLEM FORMULATION tr 2 (6)
X(91Q(99)+ 3 K(SRa(SH (] ds

A

wherek = 1,2, x(te) = x¢, Q(s),Qs are symmetric
positive semi-definite anB;(.) is symmetric positive
definite, which can also be represented as

Consider a 2-player linear state dynamics and mea-
sured output described by the linear-#énse stochas-
tic differential equation.

dx(t) = At)x(t)dt+ i Bi(t) Uy (t)dt -+ G(t)dwa (t), N
k=1 Ko, X(to), i, H2) = [ LN(5,%, b, po)ds+ WH(x(tr ),
dy(t) = C(t)x(t)dt + D(t)dws(t), o0 7)

(1) ki ; ki
. wherek = 1,2, L* is the running costp® is the ter-
ghirgmeis[tt%;i]_; Tlélxgr)sfrﬁ; ';tielséa;ﬁak,étzt)e minal cost and.X, ¥ both satisfg polytrltllJomiaI growth
K biay g% =~ 1> condition. Let the state estimate ki)"and the state

Wz.(t.) are Gaussian random process defined on a prob estimate error be(f) wherex(t) is the state true value.
ability space(Qo, F,P) whereQq is a nonempty set, L o

. ; o Then, the state estimation eredt), is given as
F is ac-algebra ofQy andP is a probability mea-

sure on(Qo,F).x(to) = X is the initial state vec- X(t) = x(t) — K(t). (8)
tor with covariance matri¥’. The Gaussian ran- ] ) o

dom processvi(t) has zero mean and covariance of 1he filtered state estimatgt] is given as
E(dw(t)dwj(t)) = WA (t)dt and similarly the Gaus- 2

sian random proces%(t) has zero mean and covari- dx(t) =At)X(t)dt+ z (Bk(t)uk(t))dt

ance ofE(dwe(t)dw,(t)) = Wa(t)dt. The noise pro- k=1 9

cessesv (t) andwo(t) are assumed independent with
E(dw(t)dw,(t)) = E(dwe(t)dw,(t)) = 0 assuming
dwy,dwe have same dimension. L& = [to,tr) X
R", Qo denote the closure dp, i.e Qo =T x R".
Assume there exist constamtsc, > 0 € R such that

FK(t) (dy(t) - C(t))“((t)dt) .
whereK(t) is the Kalman Filter gain (Davis, 1977).

Lemma 2.1. The expected value of the cost func-
tion (6) conditioned on the-algebra generated by the
measured output (1) can be rewritten as

)

2
AN+ > 1Bl < ¢, [GH) < ¢z,
k=1

where A(.),Bk(.),C(.),D(.),G(.) are elements of
Cl([to,tr]) with appropriate dimensions. Let a feed-
back strategy law be definedagt) = p(t,x(t)),t €

T. Then, (1) can be written as

dx(t) = % (x(t))dt + G(t)dwa (1), X(to) = %o,
3)

54

{9 to Rt ) | = [ [E(R(9Q9%9)

+1r(QeIP(9)) | ds+ [_im@mki(sm(s)} ds

+E{X(tF)QsX(tr) } + tr(QfPf) ,
(10)
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wherek = 1,2, X(tg ) = X¢, Q(.),Qs,P(.),Ps are pos-
itive semi-definiteRi(s) is positive definite fok =i
and positive semi-definite fdt £ i, P(.),Ps are the
state error estimate covariances.

Proof. See (Davis, 1977) for single player case, a
two-player case follows similar derivation.

Furthermore, we utilize the backward evolution
operator,0(uy, k), as defined in (Sain et al., 2000):
O (e, M) = O¥ (e, be) + O% (., M2),

0 0
OI{(P—LP-Z) = a + f/(t,X, “lv“Z)&a

2
i 1) = 51 (BOWG 55 ).

with tr = trace in (11). To study the cumulant game of
cost function, then-th moments of cost functiond,
of thek-th player is defined as:

Mt % i, o) = E{ (397t %, b o) X(8) = X}

(12)
wherem = 1,2. The mth cost cumulant function
VK(t,R) of thek-th player is defined by (Smith, 1995),

m—-2 —_ 1\
Ve M-y —MIDE
m( ) ) m i; |!(m—1—|)! m—1—iVi+1»

(13)
wheret € T = [to,tr], X(to) = Xo, X(t) € R". Next, we
introduce some definitions.

Definition 2.1. A function M¥: Qo — R* is an ad-
missible first moment cost function if there exists a
strategy such that

ME(t,%) = M5 (t, % pa, ), (14)

for t € T, € R", MX € C12(Qp). Also, VK is the
admissible first cumulant cost function for tlketh
player related to the moment function through the
moment-cumulant relation (13). In additiopy €
Uk, VE(E,R) = VE(t, R, o).

Definition 2.2. A class of admissible stratedy« is
defined such that if € Uy C R™ thenyy satisfies
the equality of Definition 2.1 foM, MX. It should be
noted that first momerM¥ is the same as first cumu-
lantVE, M§ = 1 andv = 0.

(11)

Definition 2.3. Let Vlk be thek-th player admissible
cumulant cost functions. The player stratgys the
k-th player equilibrium solution if it is such that

V3 (%) = V3 (% K, M) < V3 (6% 13, H),
VE (%) = V3 (1, % 11, 15) < V(Kb 1)
for all L € Uy« where the sefy;, 155} is a Nash equi-

librium solution and the sefV}*,V2*} is the Nash
equilibrium value set.

(15)

Problem Definition. Consider an open seép C

Qo and let thek-th player cost cumulant functions
VE(t,R) € C%’Z(Q) NC(Q) be an admissible cumulant
function where the seﬁ%’z(Q) NC(Q) means that the
func:tionvlk satisfy polynomial growth condition and
is continuous in the first and second derivativeQpf
and continuous on the closure @f Assume the ex-
istence of a near-optimal strategy € U« and near-
optimal value functioV,*(t,X) € C%’Z(Q) NC(Q) for
thek-th player. Thus, a 2-player second cumulant out-
put feedback game problem is to find the Nash strat-
egy I (t,X) for the partially-observed linear state sys-
tem withk = 1, 2 which results in the near-optimdl®
value functionv;* (t,X) given as

V5 (t,%) = min {Vzl(t,i;ul,uz)},
MmeUyn (16)
2% (1 G\ ; 20 on
VE' (LR = min {VZ(tKnpe) }.

Remarks. To find the Nash equilibrium strategies

L (t,X), (1, X), we constrain the candidates of the
near-optimal players strategy td;1,Uy2, and the
near-optimal value functions,;*(t,%),V£*(t,X) are
found with the assumption th¥t! (t,R),V2(t, ), are
admissible.

3 ADHOC OUTPUT FEEDBACK
CUMULANT GAME

Theorem 3: From the full-state feedback statisti-
cal control in (Won et al., 2010), the minimal®
value functionV;*(t,x) for (1) with zero measure-
ment noise satisfies the following HIB equation for
thek-th player:

0= min {Ok(ui, ba) [ V& (£, )|
+ (M09 gy (20 1

(17)
with the terminal conditior\/jk(tp,xF) =0,k=1,2,
j = 1,2. Assuming separation principle (Wonham,
1968), the minimal 2 value functionV,*(t,%) for
(9) satisfies the following HIB equation for thketh
player:
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with terminal condition\/jk(tp,ip) =0,k=12j=

0= min {Ok(u’{,u}‘) {Vzk*(t,f()} 1,2, K(t) is the Kalman filter gain. Since the first
MUk cost cumulant functiovf is admissible (def. 2.1),
. (avlk(t’;() avlk(t’;()) } the following coupled equations are satisfied

x K K(t)’ 5
3% ) (LW (t)( o% 0= 0¥ (b1, o) [ VA8 0| + ME(E RILK (1% i ),

with terminal conditionVX(te %) =0,k=1,2,j = 0=0 (i, ) [Vzk(t, ‘)}
1,2, K(t) is the Kalman filter gain associated with ke ous Kie o
; ; ; oV (t,X) , (OV{(t,X)
(1) after transformation through innovative process + 1 K (t)WBK (1) 1 ’
(Kailath, 1968), (Davis, 1977). 0X 16)'4 22)

Remark. The HJIB equation (17) provides a neces- whereM'g =1, Ok(.) is the backward operator and
sary condition for the existence of equilibrium solu-  he first line of (22) follows from the classical HIB
tion of a 2-player, 2 cost cumulant game. A sim-  gquation while the second line relates the second cu-
ilar condition with proof is given for statistical con- iy jant function with the first cumulant function in the

trol in (Won et al., 2010). Our approach in (18) is HjB equation. Thus, converting (22) to unconstrained
termed ad hoc, since we assume that separation pringnsiimization problem gives

ciple holds for the stochastic linear system witi 2
cumulant functiovX(t, R).

0= min {OK(LLkJJk) [Vlk(tﬁ)]

M €Uk
4 "TWO-PLAYER CUMULANT +M'6(t7>?)Lk(t,>?7LLk,Uk)+Vzk(T)Ok(LLk,Uk)[Vzk*(t»?)]
k A I k ~

GAME NASH STRATEGY D) (avlag,m) KWK ) (avlag,x)) }
Theorem 4. Let the solution to thé-th player second (23)
cumulant output feedback game be given by whereyyy is the Lagrange multiplier. From backward

A 1 . VK(L,R OV (8, R operator (11) using (9), (10) and expanding (23) gives
() =~ Rt T v P2 )

Y k R
a9 mn { (P52 +roQus

whereyy is the Lagrange multiplier andf, VX are

the first, second cumulant cost functions and solutions 2 )
of the following coupled HJB equations: +tr(Q(t)P(t)) +;H(I)Rki(t)H(t)
0=0 VE(,R) | + ME(t, R)LK(, R K(t,% IV
0o ('J' ka“k)[ 1( ,X):| + 0( ,X) ( 7X7l-Lk7p‘k)7 + (avla(;vx)) ()‘{(t) A(t) + Zip'l(t) Bi (t))
0 = O (M_k, W) |V (t, X -
O (11 o) [VE (.9 L v (L3
ox ( ( ox ’ OVE(t, %)

2
o (T ) (x0ae + Suwe))
whereM§ = 1, OX(.) is the backward operator;k S
represents nd¢, if kis 1 then—kis 2 and vice-versa. Etr(K(t)WzK(t)’ (azvg;gt,x) ))
Proof. From the system equation (1), (18) and assum-

ing that separation principle holds, the minimaf 2 V(L %) /K(t)W Kty VIR ) | _
value functionVx*(t,%) satisfies the following HJB 2 o 2 o N
equation for thé-th player. (24)
’ ) Minimizing (24) with respect tei(t, X) gives
0= mi 5H) [V (1, %
W@dﬂk{o (“1’“2){ 2 (’X)} L1 (VELR aVE(LR)
M (t, %) = — 5 R By o +Yk—"55 :
L (R ey (AR ? * " es)
0x 0x ’

(21)
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Remark. The strategy for thé&-th playery(t,X) de-
rived from the coupled HJB equation (22) is subop-
timal. In (22), the certainty equivalent principle has

been extended to the second cumulant output feed-

back game where a Kalman filter is used for state es-
timation.

5 NUMERICAL
APPROXIMATION METHOD

The analytical solutions of HIB equation (18) is dif-
ficult to find except for simple linear systems. San-

B>

and the state variablt) is defined asx(t) = [x1(t)
x2(t) x3(t) xa(t)]. We assume thaG and D in
(26) are 4x 1 and 3x 1 constant vectors given as
G=[1111,D=[111 anddwi(t),dws(t) in
(26) as a Gaussian process with mé&sw(t)} =
E{dw,(t)} = 0 and covarianc&{dw (t)dw(t)'} =

0.1 andE{dw,(t)dwy(t)'} = 0.1. In this example, we
study a 2-player? cumulant ad hoc output feedback
Nash game. Here, we compute the suboptimal solu-

berg (Sandberg, 1998) showed that neural networkstion for the player strategy through solving the output

(NN) with time-varying weights can be utilized to ap-
proximate uniformly continuous time-varying func-
tions. We are motivated by the work in (Chen
et al., 2007), to extend NN approach to cost cumu-
lant.game. In this approach, NN is utilized to ap-
proximate the value function based on method of
least squares on a pre-defined region.
functions VX can be approximated agX(t,%)
W, (DAL(R) = SE,wi(t)yi(R) ont on a compact
set Q — R". Thus, we approximate the players
value functions/X asVX (t,%) = W/, () AmkL(R) =

SE 1 Winki(t)Ymki(R), Wherewm (t) and Ame(R) are
vectors, andWmki(t) = {Wmni(t),...,Wnk(t)}' and
AmkL(X) = {Ymie (X), - - ., YmkL(X)}’ are the vector neu-
ral network weights and vector of activation functions
andL is the number of the hidden-layer neurons. Us-
ing the approximated value functioﬂ#L(t,f() in the
HJB equations result in residual error equations. We
apply weighted residual method (Finlayson, 1972) to
minimize the residual error equations and then numer-
ically solve for the least square NN weights (Chen
et al., 2007).

6 SIMULATION

Consider a linear deterministic dynamic system in

(Zheng, 1989), where we introduce gaussian noise asA, = {X2,%5, X3, X3, X1 X2, X1Xa, X1X4, X2Xa, XX, X3Xa
process and measurement noise. The stochastic sys-

tem is represented as

dx(t) = Ax(t)dt + Byuy (t)dt + Boup(t)dt 4+ Gdwa (),
dy(t) = Cx(t)dt + Ddws(t),

(26)
2 0 3 2 1
4 -2 1 3 0
A=l o 3 _3 4 |'Bi=]| 1]
0 0 0 -2 0

The value

feedback 29 cumulant game problem constraint on
the ' cumulant cost function.
The first player cost functiod' is

JY(to,X(to), U (to), Uz(to)) = /ttF {4 (t) +x5()

+24(t) + X5(t) + (1)} dt +- WH(X(te ), te),
(27)
where!(x(tr),tr) = 0 is the terminal cost and the
second player cost functialf is

3(to Xt0) s (0). alt)) = [ () 440

+35(t) + X4(t) + u3(t) }dt -+ YA(X(te ), te ),

(28)
wherey??(x(tg),tr) = 0 is the terminal cost. The ac-
tivation functionAL (x) for the value functions of the
players are the same and based on (Chen and Jagan-
nathan, 2008) which are formulated as

2

5

where in (29) M is an even-order of the approxima-
tion, L is the number of hidden-layer neuronss the
system dimension.

The input functiom\ (x) (29) is

M
n

$u)

J:

= (29)

AL(X)

!
(~}30)
We transform this problem as an innovative process
(Kailath, 1968) in terms of state estimate using (8),
(9), (10) and solve for the Kalman filter gain. For
the NN series approximation, we choose a polynomial
function (30) of up to second-ordgiM = 2) in state
variable (i.exis 29 order) with lengti. = 10. Higher
order polynomial did not provide significant improve-
ment in the approximation accuracy. In the simula-
tion, the asymptotic stability region for states was ar-
bitrarily chosen as-5 < x; <5-5<x <5,-5<
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F|gure 1: Neural NetWOI‘k We|ghts and Va.lue Function. Figure 2: Contro| Strategy and State Trajectory_

X3 <5and-5<x4 <5. Thefinaltimdr was20sand it was observed that the value functiv} increases
Wiq () —Wpy (tr) = {0} andw}y (tr) —Why (tr) = with increase iny2; while from Fig. 1(c), it was ob-
{0}. The initial condition was(to) =xp=[111 1. served that the value functiong' decreases ag:
Figs. 1(a) to 1(c) show the first player neural net- increase. The Lagrange multipliers were selected
work weights and value functions which are similar as constants. The Nash suboptimal controjsand
to the second player, hence only the first player plots up are shown in Fig. 2(a). It should be noted from
are shown. Fig. 1(a), the neural network weights con- Fig. 2(a), that the Nash suboptimal controls for the
verge to constants. Plots 1(b) to 1(c) show the first two players were solved for th@2cumulant game by
and second value cumulant functions. From Fig. 1(b), selectingy»1, y22 where the value functions are mini-
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mum which in our case wegg; = 0.001,y,2 = 0.001.
In addition, we have the design freedomyi val-

ues selection to enhance system performance. From

Figs. 2(b) to 2(c), the states converge to values close
to zero.

7 CONCLUSIONS

In this paper, we analyzed an output feedback cumu-
lant differential game control problem using cost cu-
mulant optimization approach. We investigated a lin-
ear stochastic system with two players and derived
a 2-player near-optimal strategies for the tractable
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