
A Framework for Incident Response in Industrial Control Systems

Roman Schlegel, Ana Hristova and Sebastian Obermeier
ABB Switzerland Ltd., Corporate Research, Baden-Dättwil, Switzerland

Keywords: Industrial Control System Security, Forensics, Incident Response.

Abstract: Industrial control systems are used to control and supervise plants and critical infrastructures. They are crucial
for operation of many industries and even society at large. However, despite efforts to secure such systems,
there are frequent reports of incidents that lead to problems because of human error (e.g., installing unautho-
rized software on a mission-critical machine) or even cyber attacks. While such incidents should be prevented
in the first place, it is not feasible to achieve 100% security; therefore, operators should be prepared to deal
with incidents promptly and efficiently if they occur. In this paper, we present a general methodology and
framework for investigating incidents in industrial control systems. The methodology is supported by a tool
to automate an investigation, especially to efficiently determine the state of files on a device after an incident.
This enables faster recovery from incidents by being able to identify suspicious files and focus on the files that
have been modified compared to the initially installed files, or a previously taken baseline. An evaluation con-
firms the applicability of the methodology for an embedded industrial controller and for an industrial control
system.

1 INTRODUCTION

Industrial automation and control systems (IACS) are
used to monitor and control the behavior of physical
processes, for example in chemical plants, electric-
ity generation, and distribution or water management.
The first networked IACS were running within iso-
lated networks and did not include any specific cy-
ber security mechanisms. However, nowadays more
and more SCADA systems are communicating using
public IP networks (Rao Kalapatapu, 2004), which in-
troduces security threats that the systems are not pre-
pared for. As a result, vendors, regulators, and as-
set owners have started to address this problem by
means of security mechanisms, processes, standards,
and regulation (Brandle and Naedele, 2008).

In order to increase the overall cyber security
level, it is important to detect potential cyber se-
curity incidents at an early stage. Traditional digi-
tal forensics is aimed at an offline analysis to find
court-proof evidence of criminal activities. How-
ever, IACS follow a different prioritization regard-
ing the relevance of security objectives, cf. (Dzung
et al., 2005; Naedele, 2007). For instance, availabil-
ity, authenticity, and integrity are paramount for an
IACS, while confidentiality is usually less important.
There are also additional requirements for live foren-
sics (Ahmed et al., 2012).

1.1 Problem Statement

Cyber security incidents can often go unnoticed for
a significant period of time, and when they are dis-
covered it is difficult to evaluate the extent and the
severity of an incident. Even though a security tool
might generate an event or alarm, the information re-
garding the event is often not specific enough or is
unable to provide any concrete information on the
consequences of the event. As an example, an an-
tivirus product might generate an event indicating that
a virus has been detected on a machine. It will nor-
mally also give the name of the virus (e.g., “Ex-
ploit Exp/JAVA.Niabil.gen”), and in which file the
virus was found. However, it cannot typically tell the
operator whether there are any other consequences,
such as which files the virus modified on the sys-
tem. However, if this happens on a machine with
a SCADA application, the operator needs to know
whether any other files have been affected by the
virus, as this could have an impact on the control
system and the process. However, even if a virus
has been detected and was removed from the system,
there is some uncertainty whether all affected files
have been found and removed. As industrial control
systems are more deterministic than regular desktop
computers and undergo fewer changes in software,
this allows for new approaches to detecting incidents

178 Schlegel R., Hristova A. and Obermeier S..
A Framework for Incident Response in Industrial Control Systems.
DOI: 10.5220/0005510001780185
In Proceedings of the 12th International Conference on Security and Cryptography (SECRYPT-2015), pages 178-185
ISBN: 978-989-758-117-5
Copyright c 2015 SCITEPRESS (Science and Technology Publications, Lda.)



or anomalies (Hadeli et al., 2009).
We consider three different scenarios that a foren-

sic investigation tool for IACS should support to aid
in incident response. These are:
System Inventory: determine the list of software
packages installed on a device.
Baselining: compare a machine to a snapshot of itself
in an earlier state, highlighting the changes between
the snapshots.
Installation Verification: verify the installation of
a software package, identifying genuine files of the
software package.

All three scenarios can be used in an incident re-
sponse to rapidly get an overview of a machine or
device and this enables to quickly focus on the root
cause of an incident by removing files from the in-
vestigation that are verified to be genuine or part of a
baseline.

1.2 Contributions

In this paper, we present an approach that leverages
the deterministic character of industrial machines by
fingerprinting all files on a system and comparing
them to a reference set. The main challenge is iden-
tifying changes that occur during the normal opera-
tion of a system, i.e., minimizing false positives, for
example in log files, database files and configuration
files. Our approach aims at making the fingerprint-
ing as reliable as possible using different techniques
such as regular hash comparison and fuzzy hash com-
parison, in order to minimize the work remaining to
investigate a system after an incident or during rou-
tine checks. The contributions of the paper are the
following:
� it identifies the methodological differences be-

tween analyzing industrial control systems and
traditional office IT systems, and develops a spe-
cific forensic methodology targeted to industrial
control systems;

� it presents a framework architecture comprising
an analysis tool that facilitates the forensic anal-
ysis of industrial control systems in the different
scenarios;

� it evaluates the methodology and the framework
on a real embedded controller and on a real indus-
trial control system.
In Section 2, we present related work while in Sec-

tion 3 we introduce a methodology for a forensic anal-
ysis of industrial control system devices by highlight-
ing the differences to traditional forensic analysis of
typical machines used in IT systems. Section 4 intro-
duces the framework developed to support a forensic

analysis of industrial control systems, followed by the
evaluation of the concept in Section 5. We discuss fu-
ture work in Section 6 and conclude in Section 7.

2 RELATED WORK

Mechanisms and approaches for incident response
have been extensively studied, especially over the past
decade. As the security of IACS came into the spot-
light with the appearance of Stuxnet (Langner, 2011),
the interest in detecting and responding to incidents
in the IACS domain increased as well. However, the
scope of the literature that exists at present is very
specific to a certain category of embedded devices
and does not address a general incident response and
forensics methodology taking into account the oper-
ational challenges and considerations for IACS. Of
the few papers that address forensics for embedded
systems, the scope is typically limited to cell phones,
navigation and personal entertainment devices or per-
forming forensic analysis at a network level.

A unified forensics methodology is described
in (Shaw and Atkins, 2010), in the context of em-
bedded devices such as data recorders in cars, mo-
bile phones, navigation devices, etc. The authors di-
vide the methodology into three phases, a preparation
phase, hardware phase and software phase and they
also present a comparative analysis of several related
methodologies against the general forensic analysis
methodology as described in (US DoJ, 2007). How-
ever, they do not cover the particularities of embed-
ded devices in IACS nor give pointers of how they
could be analyzed. Furthermore, the use of Snort
IDS and use of honeypots for aiding the process of
network forensics in a SCADA system is described
in (Valli, 2009). An architecture that supports the
forensic analysis of SCADA systems and networks is
described in (Kilpatrick et al., 2008), where forensic
agents are deployed at strategic locations to forward
relevant portions of network packets to a central loca-
tion for storage and analysis.

An interesting approach for forensic analysis us-
ing whitelisting is described in (Chawathe, 2009).
The paper describes the suitability of signature-based
methods in forensic analysis using MD5, SHA1 etc.,
to classify and prioritize files. The paper also rec-
ognizes the need for detecting near matches for effec-
tive analysis and describes potential methods to detect
near or approximate matches. Moreover, an overview
of the use of hashing in digital forensics is presented
in (Roussev, 2009), introducing fingerprinting based
on random polynomials and similarity hashing based
on fuzzy hashes. The authors also describe optimiza-

A�Framework�for�Incident�Response�in�Industrial�Control�Systems

179



tions such as Bloom filters for hashing large amounts
of data and highlight how different forms of hashing
(traditional and fuzzy) can be a valuable tool when
doing forensic analysis, however, without considering
how to obtain data or manage it.

Our methodology and framework share a similar
purpose as some of the outlined works above. How-
ever, the goal of our framework is neither to address
incident response and forensics at a network level, nor
to perform optimizations in the hashing algorithms,
nor to cover only general purpose computers or a vast
range of general purpose embedded devices. Instead
we give insight into a unified solution for performing
incident response and in-house preliminary forensic
analysis at a system or product level for IACS, both,
in real time and/or offline. To the best of our knowl-
edge our framework is the first to directly address this
challenge for IACS.

3 METHODOLOGY

In this section, we will give an overview of tradi-
tional forensics methodology and introduce a general
methodology for forensic analysis of IACS.

3.1 Traditional Computer Forensics
Methodology

The traditional forensics methodology is typically di-
vided into three phases. These are first the acquisition
of evidence, followed by the analysis of the acquired
evidence and finally the synthesis of the findings into
a report. The acquisition phase consists of turning
a device off and copying data from the non-volatile
memory (e.g., hard disks) for analysis, as the analysis
is never done on the original media. Furthermore, the
copying has to be done without modifying the original
data, and it should be a verifiable, identical bit-by-bit
copy. If volatile data is also needed (e.g., the con-
tents of the RAM), the extraction of that data should
be done before powering off a device. The analysis
phase depends very much on the context of the in-
vestigation and can include listing of all files, recov-
ering log files or deleted files, looking for hidden or
encrypted files, eliminating files that are known to be
benign, etc. Finally, a report summarizing the find-
ings of the analysis and describing the steps taken to
analyze the data is prepared. The same process is
applicable to embedded devices with two additional
considerations:
1. Most embedded devices do not contain hard disks,

but use flash memory instead. In this case a hard-
ware device (a so-called write blocker) inserted

between the flash card and the host computer can
be used to prevent inadvertently modifying the
contents of the flash card.

2. Not all information retrievable from a computer
system can be mapped to adequate data artifacts
in an embedded device. The OS of an embedded
device has typically been stripped down and con-
tains less functionality than regular operating sys-
tems.

3.2 General Forensics Methodology for
IACS

In the IACS domain, powering down a server or an
embedded device might impact the control of a pro-
cess, as continuous operation is typically required.
Therefore, the traditional forensic approach should be
applied with care, and should only be used when it
does not jeopardize the process that is controlled or
monitored by the system.

The data that can be extracted from embedded
devices also directly depends on the device ecosys-
tem, i.e., the tools that are already available for
management, maintenance and configuration of a
device. There is no single universal approach that
can be used to extract relevant data artifacts from all
different types of embedded devices. To be able to
extract the most information from different embed-
ded devices, it is necessary to analyze each type and
create type-specific guidelines for the extraction of
relevant data artifacts that can be used for incident
response and forensic analysis.

Evidence Acquisition: There are different ap-
proaches for extracting data from an embedded de-
vice that can help in an incident response and/or live
forensic investigation. For offline data acquisition,
imaging tools can be used to obtain a disk image. If
the device cannot be shutdown to image disks, dif-
ferent approaches need to be considered, such as a
dedicated incident response and forensics agent run-
ning on an embedded device, where the agent can be
used to acquire data from the device when required
at runtime. The agent can be made to retrieve certain
files or hashes of all files, it can check files for exis-
tence of alternate data streams (ADS), etc. Another
approach would be to use the engineering and main-
tenance tools used by operators and technical experts
for configuring a device, debugging and troubleshoot-
ing an installation, as well as performing diagnostics.
It is also possible to run data collecting servers on
embedded devices. For example, an FTPS (secure
FTP) server can be installed on an embedded device
to facilitate copying files between the device and a

SECRYPT�2015�-�International�Conference�on�Security�and�Cryptography

180



PC connected through the network. If a web server is
running on the device, the device can be accessed via
HTTPS (secure HTTP) to download files and retrieve
event information. If access to the embedded device
is allowed over SSH, then this can be another method
to acquire data from the device, e.g., through shell
commands. In addition, Breeuwsma (Breeuwsma,
2006) describes a method that can be used to extract
data from an embedded device using a JTAG port, a
port that is normally used for testing integrated circuit
boards. Using this method the chance that data is al-
tered through the extraction process is minimized as
the memory chip can be addressed and read directly.
However, in production systems JTAG ports are typi-
cally neither enabled nor necessarily accessible.

Data Artefacts: During the acquisition phase the in-
vestigator should decide on the data artefacts that are
relevant for further forensics analysis and incident re-
sponse. However, when retrieving data from an em-
bedded device, the order of volatility should be taken
into account as some data has a very short lifespan.
More volatile data, i.e., with a shorter lifespan, should
be extracted first, to prevent data being lost before
the extraction can be completed. Non-volatile data
such as log files, configuration files, dump files, tem-
porary files, authentication information, alternate data
streams can be read after an incident, as they typically
persist when a device is shutdown or reset. Volatile
data like operating system time, logged-on users, net-
work status, network information, network connec-
tions, process information, process-to-port mappings,
process memory, service/daemon/driver information,
open files, mapped drivers and shares will be lost
immediately when power is interrupted and should
therefore be extracted first.

Analysis: The exact analysis done in the analysis
phase depends on the context and the goal of the in-
vestigation. If a forensic investigation is for example
trying to find evidence of an information leak, an in-
vestigator would analyze, e.g., local mail data, among
other things. In our methodology, where the goal is to
verify the system integrity after an incident, the analy-
sis is performed based on a comparison of file hashes
with a database of known files. This database contains
hash information of known files and other meta-data
such as matching product information, version num-
ber, manufacturer etc. Depending on the context of
the analysis, the comparison can be done against the
entire database or over a subset of files belonging to
specific products. The analysis is done in two steps:

Regular Hash Comparison. A regular hash of the
file such as SHA1, SHA-256, etc. is compared
to the list of hashes in the database. If the hash

is found, the file has been identified and the in-
formation associated in the database is listed. If
the hash of the file is not found in the database, a
second comparison step is performed using fuzzy
hashes.

Fuzzy Hash Comparison. If the comparison of a
regular hash does not yield any results for a field,
a fuzzy hash comparison can be made. Fuzzy
hashes (Kornblum, 2006) match inputs that have
homologies, i.e., it can give information about the
similarity of a file to another file. If a regular hash
(which requires a file to be exactly the same) does
not match, the fuzzy hash can reveal files that are
at least similar to the file in question.

This two-step approach ensures that as many files as
possible can be identified, or if a file cannot be iden-
tified, that it can at least be detected to be similar to a
known file. Using fuzzy hashes requires the investiga-
tor to define a threshold above which a file is classified
as similar. For text files (e.g., log files) a lower thresh-
old can be chosen, e.g., 75 (out of 0-100), as there
changes are expected, while other file types (e.g., ex-
ecutables) should require more similarity, e.g., 90.

Report: The last step of a forensic investigation is to
create a report with the findings.

4 FRAMEWORK

Figure 1 illustrates the general architecture of the in-
cident response framework we developed to analyze
incidents in an IACS infrastructure.

The framework is able to accept hashes from var-
ious sources, which are fed into the Industrial Foren-
sics Analysis Tool (IFAT):

Direct Hashing. The IFAT can hash all files in a
given directory, or from a mounted disk image of
a device.

Hash Export. The IFAT can be run from a USB stick
on a device to hash all files on the device and ex-
port the results into a data file. This data file can
then be imported and analyzed with a central in-
stallation of the IFAT.

Remote/Online Hashing. The framework can also
make use of an extended version of GRR Rapid
Response (Cohen et al., 2011; Moser and Co-
hen, 2013), a forensic framework developed by
Google, to hash files on a device remotely and on-
line. Through an agent, a device can be instructed
to hash certain directories and send back the list
of hashes.

A�Framework�for�Incident�Response�in�Industrial�Control�Systems

181



Figure 1: Architecture of the Incident Response Framework.

Once the list of hashes has been acquired, the
framework makes use of a comprehensive hash
database to identify and determine the provenance
of individual files and generates a report. This hash
database contains hash information of general all-
purpose software, as well as hashes from software
specific to the IACS domain and it can also contain
baseline versions of complete devices. During the
analysis the investigator can then determine whether
the comparison should be made against the complete
database, only against certain software products or
against a specific baseline.

4.1 Industrial Forensics Analysis Tool
(IFAT)

Besides regular hash functions like SHA1, MD5, etc.
the IFAT also uses fuzzy hashes (Kornblum, 2006), to
find similarity between files and to indicate whether
a particular file is similar to a known file, or even
to an earlier snapshot of the file itself (for example
in a baselining scenario). The IFAT can also de-
tect and hash the contents of Alternate Data Streams
(ADS) (Marlin, 2013) attached to regular files.

In order to identify a particular file, the IFAT con-
nects to a database that contains hashes of many dif-
ferent software products. The database is a combina-
tion of publicly available file hashes, such as the NIST
NSRL database (National Institute of Standards and

Technology (NIST), 2009), but also contains hashes
from proprietary IACS software. For each file, there
are the following three possible analysis outcomes:
Exact Match: The file exactly matches a file in the

database, indicated by an exact match of their re-
spective hashes.1

Partial Match: A file does not exactly match any file
in the database, but a fuzzy hash indicates similar-
ity to a file in the database (e.g., a similarity score
of 0.9 on a scale from 0 to 1). Whether a partial
match has been found also depends on the simi-
larity threshold chosen by the investigator.

No Match: The file did not exactly match any file in
the database, nor had a similarity score lower than
the threshold chosen by the investigator.
Once an analysis has been completed and all file

hashes from a target device have been compared to the
hashes in the database, the results can be examined
using a virtual file system view.

The IFAT also provides additional functionality
that can be used to manage the database of hashes,
such as updating the NIST NSRL database (which is
itself being updated regularly), adding hashes of new
software products or device baselines and generally
managing the hashes in the database.

1There is a negligible, if non-zero, probability that two
different files have the same hash. However, if hashes such
as SHA1 or SHA-256 or stronger are used, this probability
is so small as to be irrelevant for all practical purposes.

SECRYPT�2015�-�International�Conference�on�Security�and�Cryptography

182



5 EVALUATION

The use of the Industrial Forensics Analysis Tool
(IFAT) and the framework has been evaluated in the
following scenarios:
� Regular, fresh install of Windows XP (system in-

ventory scenario). Windows XP has been taken as
an example operating system as it is still widely
used on workstations in IACS.

� Regular, fresh install of Windows XP baselined
and then infected with a virus (baselining sce-
nario).

� Embedded industrial automation controller
(baselining scenario).

� Industrial control system software package (in-
stallation verification scenario).

Windows XP Installation. In this experiment we
created a fresh, regular install of Windows XP, hashed
all files on the drive and compared it with the hash
database. The comparison was able to identify a ma-
jority of files (approximately 78%), as shown in Ta-
ble 1, although fuzzy hashing only improved this by
identifying a further 23 files (1.6% of remaining un-
known files after SHA1 hashing).

Table 1: File match rate for regular Windows XP installa-
tion using NIST NSRL database.

Windows XP # Files
Total # of Files 6735
SHA1 5282 78.4% (of all files)
Fuzzy Hashing 23 1.6% (of files un-

known after SHA1
hashing)

SHA1 & Fuzzy 5305 78.8% (of all files)
Unknown Files 1430 21.2% (of all files)

This shows that the publicly available hashes as
part of the NIST NSRL database, if used without
adding additional hashes to the database, are not suf-
ficient for eliminating a multitude of files. Therefore,
in the next scenario, we baselined the new system to
achieve better accuracy.

Windows XP Installation with Virus. In this sce-
nario, we used a plain Windows XP installation and
baselined it, i.e., we hashed all files and inserted all
hashes as a baseline into the IFAT hash database. We
then infected the system with a virus that is hidden in
a script file for a popular IRC chat client. The virus it-
self consists of 14 files, including the chat client itself
(which is started through autorun in a ”quiet mode”
configuration).

Table 2 shows the results of examining the base-
lined Windows XP machine after the virus infection.

Compared to the baseline taken before the virus in-
stallation, the tool can identify 98.6% of all files
through their SHA1 hashes. Of the remaining 92 files,
fuzzy hashing can remove a further 28% (26 files).
The remaining 66 files cannot be determined and
would yield the files that would have to be checked
in more detail. However, of those 66 files, more
files could be removed by using additional classifi-
cation. For example, 17 of these 66 files are Win-
dows prefetch (PRF) files, which could be verified
to be genuine (through a semantic analysis, verifying
that the files conform to the PRF format), reducing
the number of unknown files to 49. The remaining
49 files could be reduced further, as there are for ex-
ample registry hives among these files, or Windows
desktop.ini files that could be verified to be genuine,
etc. In this case the virus actually consists of 14 files,
meaning that there are 52 files that changed with nor-
mal usage of Windows XP, but many of them can be
removed through further classification as explained
above.

This shows that baselining can very effectively re-
duce the number of files that need to be examined fur-
ther after an incident, reducing the total number of
files by 99% after the classification with SHA1 and
fuzzy hashing in this experiment.

Table 2: File match rate for baselined Windows XP instal-
lation infected by a virus.

WinXP (Virus) # of Files
Total # of Files 6785
SHA1 6693 98.6% (of all files)
Fuzzy Hashing 26 28% (of files un-

known after SHA1
hashing)

SHA1 & Fuzzy 6719 99.0% (of all files)
Unknown Files 66 1% (of all files)

Baselined Industrial Controller. One scenario of
our framework is to compare a controller of an indus-
trial control system with a baseline that was stored
earlier. This is similar to the use-case of baselining
regular machines, but for the industrial controllers,
this can be done regularly (e.g., once every week) and
automatically.

We performed some limited tests using cloned
drive contents of actual controllers. We manually
added two new, unrelated files and changed parts of
an existing file, and could verify that these changes to
the controller were detected correctly and accurately
by the IFAT.

Industrial Automation and Control System Soft-
ware. To test the scenario of efficiently verifying the
installation of a software package, we also tested the

A�Framework�for�Incident�Response�in�Industrial�Control�Systems

183



IFAT on a large Industrial Automation and Control
System (IACS) software product. We first imported
the hashes of the files on the installation media of
the software package into the database (extracting in-
staller data as far as feasible). We then used the IFAT
to hash a real, existing installation of the software, and
compared the installation directory of the software on
the machine with the data contained in the database
that was derived from the installation media.

The results (see Table 3) show that by adding the
installation media of a software package, the tool is
able to classify more than 90% of the files of the in-
stallation as belonging to that product. In this case,
adding the installation media to the database was done
manually, but if the process can be automated, includ-
ing recursive unpackaging of installer data, then the
match rate could be improved even further.

Table 3: File match rate for an Industrial Automation and
Control System software installed on a machine.

IACS Software # of Files
Total # of Files 8995
SHA1 8045 89.4% (of all files)
Fuzzy Hashing 99 10.4% (of files un-

known after SHA1
hashing)

SHA1 & Fuzzy 8144 90.5% (of all files)
Unknown Files 851 9.5% (of all files)

Other Performance Measures. We tested the IFAT
together with a database containing information about
approximately 110 million files. This includes both
the contents of the NIST NSRL database and cus-
tom hashes of software that we inserted. Also, the
NIST database only contains SHA1 hashes, while
for the files that we added we also included fuzzy
hashes. The database size was approximately 24GB
(including both data and indexes), and the (virtual-
ized) server had 5.5GB of RAM available and was as-
signed 3 Intel Xeon CPUs at 1.86GHz. With these
specifications the server was able to perform about
360 queries per second for SHA1 hashes (using only
one CPU). One direction for improving the perfor-
mance would be by adding more RAM to the server,
as in our tests the performance bottleneck was the
hard disk IO. Performing fuzzy hash queries was sig-
nificantly slower by two orders of magnitudes, be-
cause comparing fuzzy hashes requires computing an
edit distance between a queried fuzzy hash and all
fuzzy hashes stored in the database, and this operation
could not be improved through the use of indexes.

Conclusion. The evaluation of the IFAT prototype
has shown that it can handle the scenarios that we out-
lined earlier, such as system inventory of a machine to

baselining and verifying installations of specific soft-
ware packages.

Limitation. One limitation is that there exists kernel-
level malware that can falsify the analysis of files by
returning “clean” data or by hiding malicious files
when listing directories. This is a problem for ev-
ery live analysis tool (e.g., using the IFAT directly on
a machine, or hashing files through the GRR agent),
but can be solved for example through offline analy-
sis (i.e., analyzing an image extracted from the data
storage, e.g., hard disk, flash drive, etc.). Another so-
lution to this problem would be to run the machine in
question in a virtualized environment, and have the
hypervisor directly access the underlying data stor-
age, without going through the kernel of the virtual-
ized machine itself. Another limitation is that even
with a recognition rate of 90%, the number of files
still unknown after an analysis can still number in the
thousands, which would then still need to be further
analyzed. This further illustrates that the quality of
the hash database is crucial.

6 FUTURE WORK

Currently, the hash database used in our approach
contains hashes of legitimate IACS software and gen-
eral purpose software. One direction for future work
would be to study the effectiveness of a heuristic anal-
ysis of unmatched files for more accurate results. This
could potentially be of help when dealing with a large
number of unmatched files and could be used for pre-
liminary prioritization. Another direction is to extend
the Incident Response Framework to be able to per-
form online analysis of other operating systems, par-
ticularly those used in the IACS domain such as real-
time operating systems. Finally, with the increase
in discovered vulnerabilities and the growth of digi-
tal threats in the IACS domain, incident response will
become even more important in the future, requiring
ever more elaborate methods to produce precise re-
sults.

7 CONCLUSION

We have presented a comprehensive methodology for
forensic analysis of IACS that outlines the steps nec-
essary to be performed and gives an overview of pos-
sible ways for extracting file system data from embed-
ded devices. However, our analysis has shown that
because of the diverse nature of such devices, each
device type would need to be studied individually and

SECRYPT�2015�-�International�Conference�on�Security�and�Cryptography

184



the best methods available for data extraction deter-
mined for each device. This is because embedded de-
vices differ in their capabilities, their architecture, the
supported operating systems, available interfaces and
organization of the file system, which requires differ-
ent extraction methods for each particular type of de-
vice.

Furthermore, we have presented a framework that
allows for an initial analysis of the non-volatile stor-
age of IACS systems and devices as well as of
general-purpose computers. This analysis is foreseen
to be done in response to an incident, as an in-house
preliminary forensic analysis or as part of a periodic
routine analysis. The framework supports a variety of
operating systems and has been shown to be suitable
for examining entire file systems, specific directories
or single files. Altogether, the framework covers well
the use-cases outlined in the introduction of this pa-
per.

In addition, we have also performed an evalua-
tion, demonstrating the performance of the frame-
work in different scenarios. The recognition rate
of matched files, as expected, is directly correlated
with the comprehensiveness and completeness of the
hash database. A more complete database that in-
cludes hashes of as many software products possi-
ble will result in more accurate results. However, for
readily available databases such as the NIST NSRL
database, there are potentially still a large amount of
“unknown” files that need to be further investigated
after running our analysis tool. The evaluation also
showed that a fuzzy hash comparison can improve the
recognition rate, although not substantially for every
scenario. The performance of the hash comparison
also directly depends on the performance of the server
where the database is stored and the resources allo-
cated to the database, and we have shown that reason-
able performance can be achieved using moderately
powerful hardware.

REFERENCES

Ahmed, I., Obermeier, S., Naedele, M., and Richard, G. G.
(2012). Scada systems: Challenges for forensic inves-
tigators. Computer, 45(12):44–51.

Brandle, M. and Naedele, M. (2008). Security for process
control systems: An overview. IEEE Security & Pri-
vacy, 6(6):24–29.

Breeuwsma, I. M. (2006). Forensic imaging of embedded
systems using jtag (boundary-scan). Digital Investi-
gation, 3(1):32 – 42.

Chawathe, S. (2009). Effective whitelisting for filesys-
tem forensics. In Intelligence and Security Informat-
ics, 2009. ISI ’09. IEEE International Conference on,
pages 131–136.

Cohen, M., Bilby, D., and Caronni, G. (2011). Distributed
forensics and incident response in the enterprise. Dig-
ital Investigation, 8, Supplement(0):101 – 110. The
Proceedings of the 11th Annual Digital Forensic Re-
search Workshop (DRFWS ’11).

Dzung, D., Naedele, M., von Hoff, T., and Crevatin, M.
(2005). Security for industrial communication sys-
tems. Proceedings of the IEEE, 93(6):1152–1177.

Hadeli, H., Schierholz, R., Braendle, M., and Tuduce, C.
(2009). Leveraging determinism in industrial con-
trol systems for advanced anomaly detection and re-
liable security configuration. In Proceedings of the
14th IEEE International Conference on Emerging
Technologies & Factory Automation, ETFA’09, pages
1189–1196, Piscataway, NJ, USA. IEEE Press.

Kilpatrick, T., Gonzalez, J., Chandia, R., Papa, M., and
Shenoi, S. (2008). Forensic analysis of scada systems
and networks. Int. J. Secur. Netw., 3(2):95–102.

Kornblum, J. (2006). Identifying almost identical files using
context triggered piecewise hashing. Digital Investi-
gation, 3, Supplement(0):91 – 97. The Proceedings of
the 6th Annual Digital Forensic Research Workshop
(DFRWS ’06).

Langner, R. (2011). Stuxnet: Dissecting a cyberwarfare
weapon. IEEE Security & Privacy, 9(3):49–51.

Marlin, J. (2013). Alternate Data Streams in NTFS. Online:
http://blogs.technet.com/b/askcore/archive/2013/03/2
4/alternate-data-streams-in-ntfs.aspx.

Moser, A. and Cohen, M. I. (2013). Hunting in the enter-
prise: Forensic triage and incident response. Digital
Investigation, 10(2):89 – 98. Triage in Digital Foren-
sics.

Naedele, M. (2007). Addressing IT security for critical con-
trol systems. In HICSS, page 115.

National Institute of Standards and Technology (NIST)
(2009). National Software Reference Library.

Rao Kalapatapu (2004). SCADA Protocols and Communi-
cation Trends. ISA EXPO.

Roussev, V. (2009). Hashing and data fingerprinting in dig-
ital forensics. Security Privacy, IEEE, 7(2):49–55.

Shaw, R. and Atkins, A. (2010). Unified forensic method-
ology for the analysis of embedded systems. Pro-
ceedings of 4th International Conference on Advanced
Computing & Communication Technologies.

US DoJ (2007). Digital Forensic Analysis Methodol-
ogy. Online:http://www.justice.gov/criminal/ cyber-
crime/docs/forensics chart.pdf. Cybercrime Lab in
the Computer Crime and Intellectual Section.

Valli, C. (2009). SCADA Forensics with Snort IDS. In
Proceedings of WORLDCOMP, Security and Manage-
ment, pages 618–621, Las Vegas.

A�Framework�for�Incident�Response�in�Industrial�Control�Systems

185


