
Semantic Version Management based on Formal Certification

Jean-Yves Vion-Dury and Nikolaos Lagos
Xerox Research Centre Europe, 6 chemin de Maupertuis, 38330 Meylan, France

Keywords: Semantic Versioning, Version Management, Software Versioning.

Abstract: This paper describes a Semantic Version Management method that enables managing consistently digital re-
sources throughout their life cycle. The core notion is that resources are described be means of logical speci-
fications formally expressed using an extensible logical language. A new version is considered certified only
if the resource owner is able to formally prove that it satisfies its logical specification. The method includes
formal proofs for qualifying changes (occurring either on the resource content or on the corresponding spec-
ifications) and accordingly characterizing them via the definition of appropriate version labels. Based on the
above method, a service-oriented solution is also described that enables managing changes consistently, in a
sound manner, for both resource owners and users.

1 INTRODUCTION

Versioning is particularly challenging in dynamic,
non-centralized architectures, as propagating changes
in a consistent manner requires strict coordination of
tiers. Such a case is for example service-oriented ar-
chitectures, where the separation of the service in-
terface from its implementation, often referred to as
opacity, is an additional complexity (changes in the
interface or the implementation may impact the con-
tract that the service provider has with a consumer
from a functional or quality-of-service (QoS) point)
(Novakouski12).

This work presents a method towards Version
Management that enables consistent management of
digital resources throughout their life cycle for the
benefit of both resource owners/providers (the entities
offering the resource) and resource users (the entities
using the resources), and exemplifies it in a service-
oriented setting. As part of the method we define how
resources can be associated with logical specifications
written in an extensible logical formalism understood
and agreed by tiers. We also describe how a service
can verify the well-formedness of proofs and prop-
erties when required, so that the version labels stay
consistent1.

1For the sake of space only a small number of evolu-
tions are described in this paper. However, all possible evo-
lutions are defined and available online (Vion-Dury15) for
interested readers.

2 RELATED WORK

Version management includes defining strategies
for: version naming (which should aid in record-
ing the evolution of a resource); and for identify-
ing/responding to different updates (which should be
related to controlling the consistency of different ver-
sions). In this work we deal with both of the above
issues and integrate them into a single framework.

Version naming is most typically designed to re-
flect consumer

¯
compatible and non-compatible (or

breaking and non-breaking) changes. The former
constitute major releases and the latter minor ones.
The corresponding naming usually follows the ”Ma-
jor#.Minor#” scheme where the sequential major re-
lease version number precedes the minor one (Jer-
ijrvi08). Alternatively naming schemes may incor-
porate a time-stamp instead of the above identifier.
However, the above naming schemes provide very
limited semantic information about the relationships
between versions (Conradi98).

Recent work, especially in the area of web ser-
vices, recognises the importance of having seman-
tic information relevant to versioning and try to in-
ject such information. For instance, (Juric09) ex-
tends WSDL and UDDI with corresponding meta-
data. In (Wetherly13) and (Cacenco06) a three-label
version scheme is proposed, where each label is in-
cremented in response to changes in the versioned re-
source (in their case each label corresponds to one of
data components, message components and features).

19Vion-Dury J. and Lagos N..
Semantic Version Management based on Formal Certification.
DOI: 10.5220/0005511300190030
In Proceedings of the 10th International Conference on Software Paradigm Trends (ICSOFT-PT-2015), pages 19-30
ISBN: 978-989-758-115-1
Copyright c 2015 SCITEPRESS (Science and Technology Publications, Lda.)

(Vaivaran09) goes one step further by not only assign-
ing semantics to version labels but also using them
to determine the compatibility between entities (e.g.
UML processes) and source code modules. However,
the naming scheme is defined by the provider and it
is the job of the consumers to use this consistently.
Our method allows separate identifiers for the service
owner/provider and each of the users(s)/consumer(s).
Based on this idea we propose the use of a dedicated
versioning service implementing our method, which
would ensure the consistency of the mapping between
the different identifiers.

Similar work can be found, in terms of formal-
ising the evolution of artifacts in dynamic environ-
ments, as proposed by (Papazoglou12), where a the-
oretical type-safe framework is proposed to ensure
correct versioning transitions in service-oriented en-
vironments. Although their method sketches the rela-
tion between the notion of compatibility and specifi-
cations, they do not provide any formal grounding on
how the modelling of consistent change is reflected by
the naming scheme of different variants. In addition,
they do not refer at all to the notion of a dedicated
versioning service functioning as broker, a direct ver-
sioning approach being implied to the best of our un-
derstanding. In direct approaches the consumer and
provider are directly connected and each one has to
manage changes to their requirements and offer re-
spectively. In our case, we propose an intermediary-
based approach, where the consumer does not have
to communicate with the provider directly but only
through a third service (i.e. a broker). The broker
is responsible for managing the changes happening to
any of the connected services (a preferred approach in
the context of service-oriented environments is (Leit-
ner08)).

Another close work is done by (Brada03). The
author formalises the notion of component versioning
to support consistent substitutability of components
and falls under the umbrella of software configura-
tion management for component-based systems. Al-
though very interesting, the work is mainly focused
on a specific architecture (widely used for software
components) called CORBA (CORBA).

3 THE VERSIONING MODEL

3.1 Invariants, Specifications, Theories

We represent the logical characterisation of a resource
via two logical formulae: the first one is the invari-
ant, i.e. the logical properties that the resource must
always satisfy during its life cycle; the second one,

specification, is a logical formula that may change
over time, but that the resource must satisfy in or-
der to be certified. The certification of a resource
is therefore a formally established proof that the new
version is consistent with the resource logical spec-
ification. Consequently, a version increment can be
generated (the choice of the increment type is left to
the owner, but must satisfy specific logical properties,
as explained later in the paper).

Associating an invariant with a versioned resource
captures the fundamental fact that if a resource owner
intends to derive versions, then something commons
to all versions should be preserved. Otherwise, ver-
sions are not needed, one just need to derive a new
resource with a different name and different logical
characteristics, and start a novel life cycle.

What is the role of the specification ? We assume
that versioning systems should have an abstract de-
scription that explains what is the resource and how
it can be used. For instance, this can be a document
describing an API (Software Enginering and Service
Oriented Architectures), it can be an SQL schema for
a data set, a formal context free grammar for a source
code written in a specific programming language, an
XSD schema for an XML document, and so on. A
specification can also be used to describe tests that a
resource should pass in order to be considered valid.

We also distinguish between:
� external specification, describing the behaviour

that is expected by users of the resource, e.g. an
API exposing methods to a service’s clients.

� internal specification, describing the behaviour
that is expected by the owner of the resource, e.g.
support for changes in the code and documenta-
tion.
Such a specification is formally expressed in this

work using an underlying core logic L (see section
4.2.1 and a specific, owner designed, theory T , which
extends the core logic with axioms and theorems suit-
able to handle the owner’s applicative domain.

The key idea is that the versioning method, pre-
sented in this paper, is based on formal proofs to cer-
tify a versioning step. Such a proof will take the form
of a proof term, i.e a particular data structure that re-
flects exactly how the proof was constructed from the
axioms and the theorem. Although it can be hard to
build such a proof, it is easy to verify that it is well-
formed and that it is indeed a proof of the claimed
property.

3.2 Structure of Version Labels

In our model, a resource r represents a digital con-
tent (its digital extension as a bitstream) and is related

ICSOFT-PT�2015�-�10th�International�Conference�on�Software�Paradigm�Trends

20

to a unique identifier and a version label defined as
[M:m:µ : n]=s, where M;m;µ;n;s are natural numbers
greater or equal to 0. The number M stands for ma-
jor revision, m for minor, µ for micro, n for variant
and s for stamp. Minor versions preserve the back-
ward compatibility (while possibly offering new func-
tionalities); micro versions have no visible impacts
from the external specification point of view (im-
provements, bug fixes, simplifications...); while major
versions may require revising the processes depend-
ing on the changing resource (this scheme is coined as
Semantic Versioning (OSGi)). The advantage of this
scheme is that it is a straightforward way to commu-
nicate to the users of a resource whether its evolutions
are backward compatible or incompatible.

The stamp is incremented at each modification op-
eration, independently of versioning mechanisms. As
a consequence, a resource can be updated and never
versioned, meaning that the changes can be tracked
and memorized, but without any assumptions regard-
ing its semantic properties. A resource r is certi-
fied when a versioning operation was able to logically
establish its compliance with its semantic specifica-
tion(s). The version label is designed in order to re-
flect this, as the variant component must be null.

3.3 Version based Ordering

Version labels are built in such a way that they can be
totally ordered for a given resource, i.e. it is always
possible to assess if one version is anterior to another
one. This is important since, thanks to this property,
one can always find the antecedent of a given version
based on the label structure. We define first an order
� on version labels through:

8M;M0;m;m0;µ;µ0;n;n0;s;s0non negative integers

M < M0) [M:m:µ : n]=s� [M0:m0:µ0 : n0]=s0

m < m0) [M:m:µ : n]=s� [M:m0:µ0 : n0]=s0

µ < µ0) [M:m:µ : n]=s� [M:m:µ0 : n0]=s0

n < n0) [M:m:µ : n]=s� [M:m:µ : n0]=s0

s < s0) [M:m:µ : n]=s� [M:m:µ : n]=s0

Version labels evolve in such a way that the following
property always holds.
Proposition 1. Monotonicity of stamps
8M0;m0;µ0;n0;s0non negative integers
[M:m:µ : n]=s� [M0:m0:µ0 : n0]=s0) s < s0

Intuitively, this property says that for a given re-
source r, the stamp stamp(r) = s tracks all change
history regardless of the evolution of the version la-
bel (which is ruled by the preservation of significant
semantic properties, as detailed later). In order to ab-
stractly handle resources, we define three so called
destructors to access those attributes:

identifier(r) = ‘

content(r) = c
version(r) = [M:m:µ : n]=s

Similarly, versioning labels can be de-constructed ac-
cording to the following functions:

major([M:m:µ : n]=s) = M
minor([M:m:µ : n]=s) = m
micro([M:m:µ : n]=s) = µ
update([M:m:µ : n]=s) = n
stamp([M:m:µ : n]=s) = s

Given the above, we can build a partial order over
versioned resources as follows.
Definition 1. partial ordering of resources

8r;r0 r � r0 iff identifier(r) = identifier(r0) ^ version(r)� version(r0)

3.4 Designation and Selection of
Resources

To be able to select and retrieve resources, we define
herein the designation mechanism. Resources can be
designated through a term built from the following
syntax:

D ::= ‘ j ‘[V1] j ‘=s j ‘=? j ‘=?
V1 ::= ? j ? j M j M:V2

V2 ::= ? j ? j m j m:V3

V3 ::= ? j ? j µ

? denotes all available components that match some
versioning constraints, whereas ? denotes the highest
available component, and therefore, is always a sin-
gleton (or the empty set if the condition is not satis-
fied). The notation ‘[?] designates the set containing
all versions of the resource ‘, ‘[?] the last qualified
version, ‘[3:?] designates the last minor and micro
version derived from the major revision 3 of ‘. For
some value M;m;µ the designation ‘[M:m:µ] always
maps to a singleton (provided this derivation belongs
to the history of the resource), as well as ‘=s, under
the same condition. The notation ‘=? designates the
set of all variants of ‘ regardless of any versioning in-
formation, and ‘=? the most recent element of this set,
if any.

All resources E can be retrieved through a resolu-
tion function that takes as input the designation term,
and returns a set of resources accordingly. The reso-
lution function, noted ! is defined in Table 1.

4 THE CERTIFICATION MODEL

4.1 The Dynamics of Resources and
Specifications

We consider three different parameters related to a re-
source that can be changed, according to the model
of resources described in previous sections. The re-
source r, its internal specification Ir, and its external

Semantic�Version�Management�based�on�Formal�Certification

21

Table 1: Resolution of references.

reference result comment certified
!(‘) !(‘=?) shorthand

!(‘=?) fr 2 E j identifier(r) = ‘g all variants yes/no
!(‘=?) sup�[!(‘=?)] last variant yes/no
!(‘=s) fr 2!(‘=?) j stamp(r) = sg a particular variant yes/no

!(‘[M]) !(‘[M:?]) shorthand
!(‘[?]) sup�[!(‘[?])] last version yes
!(‘[?]) fr 2!(‘=?) j major(version(r))> 0g all variants yes

!(‘[M:m]) !(‘[M:m:?]) shorthand
!(‘[M:?]) sup�[!(‘[M:?])] last M version yes
!(‘[M:?]) fr 2!(‘=?) j major(version(r)) = Mg all M versions yes

!(‘[M:m:µ]) fr 2!(‘[M:m:?]) j micro(version(r)) = µg this version yes
!(‘[M:m:?]) sup�[!(‘[M:m:?])] last M:m version yes
!(‘[M:m:?]) fr 2!(‘[M:?]) j minor(version(r)) = mg all M:m versions yes

Ir r ‘[1:1:3 : 0]=13

Ir r0 ‘[1:1:3 : 1]=14

Ir r00 ‘[1:1:3 : 2]=15

I0r r00 ‘[1:1:3 : 3]=16

I0r r00 ‘[1:2:0 : 0]=16

j=
version

d1

version

d2

d3

version

version

@

j=
version

Figure 1: Example updates for a resource r with identifier ‘
and specification Ir.

specification Er;c. The triple hr; Ir;Er;ci may evolve
in many different ways, but to be certified, the fun-
damental property described in section 4.3.1 must al-
ways be verified. Still, uncertified resources have a
versioning label and therefore can be designated and
retrieved. By construction, a version label having a
non zero variant is uncertified. For instance, Fig-
ure 1 illustrates two evolution steps of a resource r,
and then an evolution step of its internal specifica-
tion Ir (e.g. to take in account added features). These
three update operations are applied on a certified re-
source (with version label ‘[1:1:3 : 0]=13). The first
two steps track modifications of the resource content,
whereas the third one tracks the modification of the
internal specification. The last step corresponds to a
minor qualification, to establish that the fundamental
invariant is satisfied: the resource satisfies the modi-
fied specification and this one is a logical extension of
the original specification (and is thus backward com-
patible). From this last property, we can deduce that
the modified specification is also a logical extension
of the invariant, since the original specification was.

4.2 The Underlying Logic and Its
Implementations

The intent of this section is not to define a particular
logic suitable to handle the logical mechanisms de-
scribed in this paper, but, to make clear which qual-
ities are expected from such a logic. The expres-
siveness of the logic theoretically depends on the re-
quirements of the application; however, the higher
order logic is commonly used today, implemented
with powerful proof assistants, embedding interac-
tive/automated tactic based theorem provers (Coc-
quand86; Nipkow02), and is generic enough to cover
practical cases.

4.2.1 Logic L

This logic, called L , should be equipped with a partic-
ular relation that checks well-formedness of terms, in
order to be sure that a logical specification is indeed
a term that can be managed by axioms and theorems.
We note this relation wf(P), or equivalently, using a
generic typing relation, as type(P; prop). This logic L
must also be equipped with a proof system able to ex-
plicitly handle proof terms. We note L ‘ proof(p;P)
the logical relation establishing that p is is a proof
of P in L . Consequently, proving a property P is a
process that will construct a proof term p. In gen-
eral, it is much more difficult to build the proof term
than to check for its correctness, the latter being usu-
ally implemented through simple and efficient algo-
rithms (see for instance how proof terms are han-
dled through lambda term in the COC higher order
type theory (Cocquand86), how proofs become first
order entities in (Kirchner10), and also in OpenThe-
ory (Hurd11) and Dedukti (Boespflug12; Saillard13)
which proposes a universal and pivotal proof handling
mechanism; more generally, see how proof terms are
built and computed in any logic based on the Curry-

ICSOFT-PT�2015�-�10th�International�Conference�on�Software�Paradigm�Trends

22

Howard correspondence (De Bruijn95)).
We expect also that extensions suited to domain

specific applications will be expressed as additional
theories T0;T1; � � � that will be designed to work
on top of L . In those cases, the L ;T0;T1; � � � ‘
proof(p;P) will be the natural extension of the nota-
tion presented above, to express a proof in the afore-
mentioned set of theories.

To illustrate, let us consider the higher order in-
tuitionistic logic L (whose associated proof system is
based on natural deduction (Laboreo05), where elimi-
nation and introduction rules are associated with each
construct). If we consider a formula like

8A:8B:((A^B)) B)

A proof using sequents and natural deduction could
be for instance

>
A^B 2 A^B; /0

2L

>
B 2 B;A^B; /0

2L

B 2 A;B;A^B; /0
2R

A;B;A^B; /0 ‘ B
I‘

A^B; /0 ‘ B
E^

/0 ‘ (A^B)) B
I)

/0 ‘ 8B:(A^B)) B
I8

/0 ‘ 8A:8B:(A^B)) B
I8

This proof can be mapped into a structurally equiva-
lent proof term using all applied rule names

I8(I8(I)(E^(2L; I‘(2R (2L)))))))

which can be checked for correctness using a dedi-
cated predicate proof(p;P) :

>
2L) A^B 2 A^B; /0

2L

>
2L) B 2 B;A^B; /0

2L

2R (2L)) B 2 A;B;A^B; /0
2R

I‘(2R (2L))) A;B;A^B; /0 ‘ B
I‘

E^(2L ; I‘(2R (2L))) A^B; /0 ‘ B
E^

I)(E^(2L ; I‘(2R (2L)))) /0 ‘ (A^B)) B
I)

I8(I)(E^(2L ; I‘(2R (2L)))); I‘(2L)))))) /0 ‘ 8B:(A^B)) B
I8

I8(I8(I)(E^(2L ; I‘(2R (2L)))))) /0 ‘ 8A:8B:(A^B)) B
I8

4.2.2 Fundamental Logical Relations and
Properties

When a resource r satisfies a logical formula F , this is
noted as r j=F . The @ relation expresses strict logical
implication, i.e

F1 @ F2 iff F2) F1^:(F1) F2)

whereas v expresses the logical implication (there-
fore, is reflexive):

F1 v F2 iff F2) F1

The uF relation expresses ”partial disjunction”, i.e,
that a logical intersection F exists between two for-
mulas:

F1uF F2 iff F @ F1^F @ F2^:(F1 v F2)

Defined this way, this relation produces two subcases:
one where F2 @ F1 (F2 is strictly more specific than

F1) and one where :(F2 @ F1) (F1 and F2 are strictly
conjunctive). Both situations make sense when in-
terpreting major version evolution (which potentially
can raise incompatibility issues). The first one ex-
presses cases where a specification is restricted (pro-
ducing some regression in the expectation), the other
one expresses situations where a specification evolves
by extending some points, but regressing on others.

The � relation just expresses logical equivalence
(but is typically used when F1 and F2 are syntactically
distinct):

(F1 � F2) iff F2, F1

It is easy to show that the @;v;� relations are
transitive, and since the logic is expected to be sound,
we also assume the following property holds:

(F1 v F2^ r j= F2)) r j= F1

We denote the change of the resource r into r0 by
a particular d relation, such that d(r) = r0.

4.3 Certification of Resources and
Specifications

When a client asks that a resource r is certified (cre-
ation of a new major, minor or micro version), he/she
must provide one or several proofs, depending on
the past operations and the current context (some
cases are detailed in section 4.3.2). The proofs are
checked for correctness, i.e, the system verifies that
they indeed establish the expected properties Pi or
L ;T0;T1; � � � ‘ proof(p;Pi). Moreover, depending on
the kind of change, some ”structural” properties may
be verified: well-formedness of changed specifica-
tions and that the resource satisfies the specifications.

Checking a proof is easy, while building the proof
term (formally proving a property) can be of un-
bounded difficulty, depending on the application do-
main (and consequently on the power of theories op-
erated by the resource owners). However, many use-
ful scenarios can be captured by simple theories, and
proofs can be established either by a proof assistant or
even by specialized programs, such as type checkers,
or specialized algorithms. Note that run-time execu-
tion performance of such programs would not be as
crucial as during development cycles, since they are
involved only during the certification phase. Prop-
erties such as schema membership (XML validation,
database relational schema) can be processed auto-
matically by dedicated algorithms, as long as those
schemes are translated into L inside an appropriate
theory. Similarly, API signatures for a software li-
brary, making use of decidable type systems, can be
similarly processed through an equivalent approach.

Semantic�Version�Management�based�on�Formal�Certification

23

Section 4.3.2 details some change cases with re-
spect to the versioning certification. The changes in-
volve three entities: the resource r, its internal speci-
fication Ir, and its external specification Er;c for a par-
ticular client c.

4.3.1 Version Consistency

The certification process aims at controlling the evo-
lution of the tuple hr;Ir; Ir;Er;ci for all resources r, for
all clients c of r and associated specifications Ir and
Er;c, and the invariant Ir. This is achieved in a way
that the resource satisfies all specifications, and the
external specification visible by the client is a spe-
cialization of the internal specification (controlled by
the owner). Both external and internal specifications
must always specialize the initial invariant Ir. This
fundamental scheme is illustrated in the following di-
agram.

Ir

Er;c r Ir

v v

v

j= j=

j=

4.3.2 Version Co-evolution

We examine changes potentially affecting any of the
three dynamic parameters (therefore, excluding the
invariant I), focusing on the consequences both from
the clients’ and owner’s perspectives, in terms of how
their respective version labels will evolve. The ele-
ments with red color correspond to the logical rela-
tions that must be established, whereas the green ones
express what can be deduced both from the previously
established relations and from the proved statements
(and therefore, do not need require formal treatment).

As many combinations exist, we explicit here only
two cases: the first one deals with unchanged re-
sources but evolving specifications (no change regard-
ing the resource itself, but changes to the correspond-
ing specifications), while in the second case the re-
source changes as well. See (Vion-Dury15) for the
exhaustive list of cases.

Update describing Changing Specifications and
unchanged Resources: The figure 2 shows a cer-
tification scheme where the client considers a change
as having a major effect.

Update with Changing Resources: We distinguish
three cases, from the point of view of a client c, work-
ing with an external specification Er;c over a resource

client Certification owner required deducible
version scheme version proofs properties

Er,c Ir

r

E ′
r,c Ir

⊓I

⊑

|= |=

|= |=

⊑

wf(E ′
r,c)

Er,c ⊓I E ′
r,c

E ′
r,c ⊑ Ir

r |= Er,c
r |= E ′

r,c

M

Er,c Ir

r

E ′
r,c I′r

⊓I

⊑

≈
|= |=

|= |=

⊑

µ

wf(E ′
r,c)

Er,c ⊓I E ′
r,c

E ′
r,c ⊑ I′r

wf(I′r)
Ir ≈ I′r

r |= Er,c
r |= I′r
r |= E ′

r,c

Er,c Ir

r

E ′
r,c I′r

⊓I

⊑

⊏
|= |=

|= |=

⊑

m

wf(E ′
r,c)

Er,c ⊓I E ′
r,c

E ′
r,c ⊑ I′r

wf(I′r)
Ir ⊏ I′r
r |= I′r

r |= Er,c
r |= E ′

r,c

Er,c Ir

r

E ′
r,c I′r

⊓I

⊑

⊓I

|= |=

|= |=

⊑

M

wf(E ′
r,c)

Er,c ⊓I E ′
r,c

wf(I′r)
Ir ⊓I I′r
r |= I′r
Er,c ⊑ I′r

r |= Er,c
r |= E ′

r,c

Figure 2: Update with changing specifications and un-
changed resource: client sees a major evolution (M, m and
µ stands for major, minor, micro).

r. Figure 3 covers major changes with an evolving
external specification.

5 VERSION BROKER SERVICE

This section presents a service-oriented application
setting for the method described in the previous sec-
tions. We consider that a specialised broker can offer
services related to versioning (and generally resource
lifecycle management) by implementing our method
as described herein. We call that service the Version
Broker Service (VBS).

We distinguish between two roles for the service’s
clients: the resource owner and the resource user. The
resource owner publishes one or several logical de-
scriptions, at various levels of precision, which char-
acterize the resource and will serve as a basis for the
formal agreement about its intended use. Users may
subscribe to a ”contract” (e.g. Quality of Service
agreement) and get access to the resource through a
dedicated version management scheme. Each time
the owner certifies a new version, the VBS will make
sure that this change is propagated to the ”contracts”,
i.e that each version label associated with the con-
tracted interface is derived in a semantically consis-
tent way. In the remaining part of the section we de-
scribe in more detail what the service offers but also
requires from the owners and users of the resources.

ICSOFT-PT�2015�-�10th�International�Conference�on�Software�Paradigm�Trends

24

client Certification owner required deducible
version scheme version proofs properties

Ec,r Ir

r

r′

E ′
c,r Ir

⊓I

⊑

|= |=

δ

|= |=

⊑

µ

wf(E ′
c,r)

Ec,r ⊓I E ′
c,r

r′ |= Ir
E ′
c,r ⊑ I′r

r |= Er,c
r′ |= E ′

r,c

M

Ec,r Ir

r

r′

E ′
c,r I′r

⊓I

⊑

≈

|= |=

δ

|= |=

⊑

µ

wf(E ′
c,r)

Ec,r ⊓I E ′
c,r

r′ |= I′r
E ′
c,r ⊑ I′r

wf(I′r)
Ir ≈ I′r

r |= Er,c
r′ |= E ′

r,c

Ec,r Ir

r

r′

E ′
c,r I′r

⊓I

⊑

⊏

|= |=

δ

|= |=

⊑

m

wf(E ′
c,r)

Ec,r ⊓I E ′
c,r

E ′
c,r ⊑ I′r

wf(I′r)
Ir ⊏ I′r
r′ |= I′r

r |= Er,c
r′ |= E ′

r,c

Ec,r Ir

r

r′

E ′
c,r I′r

⊓I

⊑

⊓I

|= |=

δ

|= |=

⊑

M

wf(E ′
c,r)

Ec,r ⊓I E ′
c,r

E ′
c,r ⊑ I′r

wf(I′r)
Ir ⊓I I′r
E ′
c,r ⊑ I′r

r′ |= I′r

r |= Er,c
r′ |= E ′

r,c

Figure 3: Major changes with an evolving external specifi-
cation (M, m and µ stands for major, minor, micro; d denotes
a modification of the resource).

5.1 The Resource Owner

The resource owner creates the resource and defines
how it evolves. This includes deciding when and
how to publish the resource and also what type of ac-
cess and use should be allowed for different users.
The owner also defines the domain specific theo-
ries needed (or use/extend those that might be pro-
posed by the VBS), and design the properties needed
to characterize the provided resource. The resource
extension (its bitstream) might be directly uploaded
into the VBS inner storage space, or just localized
through a pointer that allows the VBS to access the
content when needed. The actions that the VBS al-
lows/expects from the resource owner are:
Theory creation. Upload a source file compatible with
the underlying logic (see section 4.2) supported by
the VBS, and an associated name that must be unique
for this owner. This means that the VBS has a dedi-
cated parser and computational means to verify/type
the provided definitions (check for well-formedness).
Once loaded and verified by the VBS the definitions
can be used in other operations.
Resource creation. Allows to specify a name uniquely
associated with the target resource. This name will be

used to designate the revisions thanks to the version
labels, as in cobra:socket:api, which could be subse-
quently referenced as in e.g. cobra:socket:api[1:2:0].
Internal specification creation. VBS expects the re-
source name to which the specification will be at-
tached, and a logical formula, which will be checked
for well-formedness. The VBS returns a unique iden-
tifier, so that the specification can be designated with-
out ambiguity for future operations. External specifi-
cation creation. idem (see above).
Resource update. Upload a novel extension for the re-
source, or equivalently, apply a patch; a new internal
version label is computed accordingly (see update in
Table 2).
Specification update. Upload a novel extension for
the resource (or equivalently, apply a patch); a new in-
ternal version label is computed accordingly (see up-
date in Table 2).
Qualification. This corresponds to the first stage in-
volving a logical characterization. Once certified, the
resource can be derived and made visible to exter-
nal users. As parameters, the VBS expects the re-
source label ‘ = identifier(r), a reference to the in-
variant property I‘ and to the internal specification
S‘, and the following proofs (see 4.3.1): (i) the in-
variant is implied by the internal specification in the
defined context L ;Ti ‘ I‘ v S‘ and (ii) the resource
satisfies the internal specification in the defined con-
text L ;Ti ‘ ‘ j= S‘ The VBS then verifies the proofs
and if correct, qualifies the resource, generating the
first certified version label (see Table 2).
Derivation. Compute a new version for a resource,
whose name is given as a parameter, as well as the
type of version: micro, minor, or major. Depending
on the version type, different proofs will be required
by the VBS, so as to minimize the proving cost (see
figure 4).
Publication. Requires the resource’s name as pa-
rameter and synchronizes the last certified version
to generate the external version labels for all users.
Proofs will be asked by the VBS according to the co-
evolution schemes (see section 4.3.2).

In the following, we use x+ to denote x+1. Table
2 defines the transformations of the version label ac-
cording to the operation done on a resource r, where
version(r) = [M:m:µ : n]=s:

5.2 The Resource User

The resource user accesses the bitstream extension
(the resource content) corresponding to particular
versions, thanks to the designation mechanism
described in section 3.4. The corresponding external
specification may also be accessed.

Semantic�Version�Management�based�on�Formal�Certification

25

Table 2: Operations supported by the Version Broker Service and corresponding impact on version labels.

operation on resource version label (before) version label (after) certified
creation n:a: [0:0:0 : 1]=0 no

qualification [0:0:0 : n]=s [1:0:0 : 0]=s yes
major derivation [M:m:µ : n]=s [M+:0:0 : 0]=s yes
minor derivation [M:m:µ : n]=s [M:m+:0 : 0]=s yes
micro derivation [M:m:µ : n]=s [M:m:µ+ : 0]=s yes

update [M:m:µ : n]=s [M:m:µ : n+]=s+ no

Certification version required deducible
scheme kind proofs properties

ℓ S

ℓ S′

|=

≈
|=

L ,Ti ⊢ S ≈ S′ L ,Ti ⊢ ℓ |= S′

ℓ S

ℓ′ S

|=

δ
|=

micro L ,Ti ⊢ ℓ′ |= S none

ℓ S

ℓ′ S′

|=

δ ≈
|=

L ,Ti ⊢ ℓ′ |= S′

L ,Ti ⊢ S ≈ S′ none

ℓ S

ℓ S′

|=

⊏
|=

minor L ,Ti ⊢ S ⊏ S′ L ,Ti ⊢ ℓ |= S′

ℓ S

ℓ′ S′

|=

δ ⊏
|=

L ,Ti ⊢ ℓ′ |= S′

L ,Ti ⊢ S ⊏ S′ none

ℓ S

ℓ S′

|=

⊓Iℓ
|=

major
L ,Ti ⊢ ℓ |= S′

L ,Ti ⊢ S ⊓Iℓ S′ none

ℓ S

ℓ′ S′

|=

δ ⊓Iℓ
|=

L ,Ti ⊢ ℓ′ |= S′

L ,Ti ⊢ S ⊓Iℓ S′ none

Figure 4: Certified evolution of a resource ‘ according to a
specification S (d denotes a modification of the resource).

The operations that the VBS supports for users of the
resource include:

Resource download. VBS expects a full version
label (e.g. d p:api[2:1:3]), and returns a set of
resource contents, associated with its exact version
label. Such a label will resolve into this particular
content if a subsequent access is required. As an

example, a first request with db:api[1:2:?] may return
f(c1;db:api[1:2:1]);(c2;db:api[1:2:2])g (where ci
denotes the respective bitstream contents) whereas a
db:api[1:2] request will be interpreted by the VBS
as db:api[1:2:?] and would return the last content
available for this major and minor version in the
given context, i.e. the singleton fhc1;db:api[1:2:2])g .

Specification download. Using the same communica-
tion scheme, the resource user may access each ex-
ternal specification associated with each version re-
solved by the VBS.

6 ILLUSTRATIVE EXAMPLE

In this section we present an example that illustrates
the concepts introduced in the previous sections. We
assume that a provider manages a software library of-
fering persistent storage operations. We call the li-
brary STO and assume that it is made available as a
compiled module. The owner of STO chooses to ex-
pose two different views of this library: a basic one
including creating/opening a persistent store, storing,
deleting, and retrieving data, and a more complex one
that can additionally handle transactions. We assume
that the owner of STO uses an object-oriented dedi-
cated theory to describe the resource, focusing on the
naming and typing of classes and methods.

6.1 Fundamental Invariant

The fundamental invariant of STO is defined in terms
of a class, three methods to deal with data, and three
basic functions to create,open and delete a database.

ISTO � class(STOHandler)
^ language(Python2)
^ method(STOHandler;store)
^ method(STOHandler; retrieve)
^ method(STOHandler;close)
^ function(create)
^ function(open)
^ function(delete)

Note that according to the vision of the resource

ICSOFT-PT�2015�-�10th�International�Conference�on�Software�Paradigm�Trends

26

owner, signatures of methods/functions are not con-
sidered as fundamental, and therefore, could change
along the lifetime of the resource, however, the pro-
gramming language and version must stay stable.

6.2 The External Specification

It describes a minimal view on the functionality of-
fered by the API, namely, the signatures of methods
and functions, including potential exceptions as fol-
lows.

ESTO � ISTO

^ signature(STOHandler.store; [string;string];void)
^ signature(STOHandler.retrieve; [string]; [string])
^ signature(STOHandler.close; [];void)

^ signature(create; [string];STOHandler)
^ signature(delete; [string];void)
^ signature(open; [string];STOHandler)

^ throw(create;Exception)
^ throw(delete;Exception)
^ throw(open;Exception)

6.3 The Internal Specification

This one is typically more complex, as expected to
help the designer maintaining his source code in a co-
herent way while hiding (potentially irrelevant) com-
plexity to users. To illustrate this, we decided to con-
sider three additional methods: check (verify the pres-
ence of a data in the store), replace (change a value
using a known key) and put (store one or many val-
ues using the same key). Those methods may be
used internally to build higher level operations such
as the store method which perform storage with re-
placement, as in standard dictionary data structures
based on a hashing algorithm.

ISTO � ISTO

^ signature(STOHandler.store; [string;string];void)
^ signature(STOHandler.retrieve; [string]; [string])
^ signature(STOHandler.close; [];void)

^ signature(create; [string];STOHandler)
^ signature(delete; [string];void)
^ signature(open; [string];STOHandler)

^ method(STOHandler;check)
^ method(STOHandler; replace)
^ method(STOHandler;put)
^ signature(STOHandler.check; [string]; integer)
^ signature(STOHandler.replace; [string;string];void)
^ signature(STOHandler.put; [string;string];void)

^ class(PathException)
^ subtype(PathException;Exception)
^ throw(create;PathException)
^ throw(delete;Exception)
^ throw(open;PathException)

Note also that exception management is more
detailed thanks to a class specialization.

6.4 Verification of Specifications

The well-formedness of the logical specification is es-
tablished by proofs using both a generic (for the ba-
sic logic operators) and a dedicated theory. In Figure
5 we just give an idea of what the dedicated theory
could be for the illustrative example presented above
(x : y is the infix notation of the predicate type(x;y),
and label;integer; � � � are built-in predicates to as-
sess lexical properties of items).

The formal proofs required by the VBS for the
three specifications will be ‘ ISTO, ‘ESTO and ‘ ISTO,
which can be reduced into ‘ ISTO, ‘ P1 and ‘ P2 since
ISTO � ISTO ^P2 and ESTO � ISTO ^P1 (Pi being the
additional properties illustrated by sections 6.2, 6.3).

6.5 First Certification

After submitting the internal and external specifica-
tions, the owner wants to produce a first certifica-
tion of STO (that is, asks the VBS to generate a cer-
tified version label STO[1:0:0 : 0]=0). To that end,
the owner must provide a proof that STO satisfies the
specification (STO j= ISTO). The computational char-
acterisation of the proof will depend on the power
of the underlying theory, on the properties of the
programming language, and on the difficulty of the
task (and also on the performance level of the algo-
rithm/human operator).

In the weakest case, the proof is not pro-
vided by the owner (in that case the owner as-
sumes responsibility for the consistent use of the re-
source). Yet, proofs of well-formedness (‘ P), as
well as implication and partial disjunction of prop-
erties are required to control the quality of spec-
ifications and the consistency of the claimed evo-
lution of versions. The absence of strong compli-
ance proofs can be compensated by offering test-
ing infrastructure at the VBS level, and including
runtime tests in the specifications, e.g. through
dedicated predicates like test(context;code;value) or
raises(context;code;exception), where code, value
and exception are particular expressions of some suit-
able abstract language.

In the strictest case, the programming language
is associated with a formal specification system (e.g
based on predicate transformers) able to conduct
semi-automatic proofs of correctness and to export
proof terms in the VBS compliant form.

For intermediate cases, the programming lan-
guage can be associated with static analysis tools

Semantic�Version�Management�based�on�Formal�Certification

27

8P: P :prop) ‘ P
8x; t: t : type) (x : t) :prop

void : type
any : type
type : type
prop : type
integer : type
string : type

8t: t : type) list(t) : type
8c: class(c)) c : type

class(Exception)

8x: integer(x)) x : integer
8x: string(x)) x :string
8t: t : type) [] : list(t)
8e;L; t: t : type) e : t) L : list(t)) [ejL] : list(t)

8t1; t2: subtype(t1; t2)) subtype(list(t1); list(t2))
8t: t : type) subtype(t;any) �any
8x; t1; t2: subtype(t1; t2)) x : t1) x : t2
8c1;c2;m: subtype(c1;c2))method(c2;m)) method(c1;m)
8t1; t2; t3: subtype(t1; t2)) subtype(t2; t3)) subtype(t1; t3)
8t: subtype(t; t)

8x: label(x)) class(x) :prop
8x;y: x : type) y : type) subtype(x;y) :prop
8x: label(x)) function(x) :prop
8c;m: class(c)) label(m)) method(c;m) :prop
8c;m; i;o: method(c;m)) i : list(type)) o : type

) signature(c:m; i;o) :prop
8 f ; i;o: function(f)) i : list(type)) o : type) signature(f ; i;o) :prop
8c;m;e: method(c;m)) e :Exception) throw(c:m;e) :prop
8 f ;e: function(f)) e :Exception) throw(f ;e) :prop

8 f ;c1;c2: subtype(c1;c2)) throw(f ;c1)) throw(f ;c2) �throw
8 f ;c1;c2: (i1) i2)^ subtype(o2;o1)) signature(f ; i1;o1)

) signature(f ; i2;o2) �sig
8t1; t2;T1;T2: subtype(t1; t2)^ subtype(T1;T2)) subtype([t1jT1]; [t2jT2])

subtype([]; [])

Figure 5: Example dedicated theory.

(such as type or property checkers using partial eval-
uation or model checking).

To perform the first certification, the VBS
will require STO j= ISTO, ISTO v ESTO (easy),
ISTO v ISTO (easy, but longer), and ESTO v
ISTO (a bit more difficult). The only diffi-
culty in the last one, is about proving proper-
ties like e.g. throw(create;PathException))
throw(create;Exception), which requires using ap-
propriate subtyping oriented axioms as follows (proof
scheme in abbreviated form).

>
...

2‘L

...

2‘R

subclass(PathException;Exception) 2 g
2‘R

g ‘ subclass(PathException;Exception)
I‘L

g ‘ throw(create;PathException)) throw(create;Exception)
�throw

6.6 A Change and Its Co-evolution

To illustrate the notion of co-evolution, we propose
to examine a change that occurs in both the resource
(modification of source code and, accordingly, of the
library resource STO) and in the internal specification.
Now, the store;retrieve; put and replace methods of
the STOHandler class could accept any kind of value,
and not only strings. This would constitute a major
evolution from the internal side (the new specification
is more specific, that is, d(ISTO) v ISTO, whereas the
ESTO need not to be upgraded. As an example, the
proof for the store method would be as follows.

� � �
subtype([string;string]; [string;any])

>
subtype(void;void)

g ‘ signature(STOHandler:store; [string;string];void))
signature(STOHandler:store; [string;any];void)

ICSOFT-PT�2015�-�10th�International�Conference�on�Software�Paradigm�Trends

28

7 CONCLUSION

In this paper we presented a method for versioning
that enables managing consistently digital resources
throughout their life cycle. The method assigns ex-
plicit semantics to version labels and describes re-
sources in terms of properties that can be checked for
validity based upon formal logical theories. Only if
these properties are valid the resource is marked as
certified. We also sketched how this method could be
implemented in a service-oriented setting. We have
shown that following our versioning approach entails
benefits to both resource users and owners. The re-
source users have a strong guarantee with respect to
the versioning of certified resources. More specifi-
cally, that the versioning scheme always reflects in
a consistent way the evolution of the resources they
contracted for. On the other hand, the resource own-
ers receive valuable support for coherently managing
changes between versions while minimizing the re-
quested proofs at each step.

We plan of extending the above work by introduc-
ing, within the same setting, the formal underpinnings
for version branching and merging, and to start exper-
imenting with the main concepts presented in this pa-
per. The challenge of scaling such a system to a real
environment should be understood more concretely,
as well as the level of precision we can expect and
manage regarding the various logical specifications
involved in a system based on our model.

ACKNOWLEDGEMENTS

We would like to thanks Jean-Pierre Chanod for his
continuous support, and all our partners for the cre-
ative exchanges we had together. This research is con-
ducted under the PERICLES project (PERICLES13),
a four-year Integrated Project funded by the European
Union under its Seventh Framework Programme.

REFERENCES
M. Novakouski, G. Lewis, W. Anderson and J.

Davenport. ”Best Practices for Artifact Ver-
sioning in Service-Oriented Systems,” Soft-
ware Engineering Institute, Carnegie Mellon
University, Pittsburgh, Pennsylvania, Tech-
nical Note CMU/SEI-2011-TN-009, 2012. re-
sources.sei.cmu.edu/asset files/TechnicalNote/2012
004 001 15356.pdf

K. Jerijærvi and J.-J. Dubray, Contract Versioning, Com-
patibility and Composability,” InfoQ Magazine, Dec.
2008; www.infoq.com/articlescontract-versioning-
comp2

R. Conradi and B. Westfechtel. ”Version mod-
els for software configuration management”.
ACM Comput. Surv. 30, 2 (June 1998), 232-
282. DOI=10.1145/280277.280280 doi.acm.org/
10.1145/280277.280280

M. B. Juric, A. Sasa, B. Brumen and I. Rozman,
”WSDL and UDDI extensions for version
support in web services”. Journal of Sys-
tems and Software, Volume 82, Issue 8, Au-
gust 2009, pp 1326-1343. ISSN 0164-1212,
dx.doi.org/10.1016/j.jss.2009.03.001. www.science
direct.com/science/article/pii/S0164121209000478

Curtis Wetherly, Bryan R. Goring, Michael Shenfield,
Michael Cacenco. System and method for imple-
menting data-compatibility-based version scheme, US
Patent 8,555,272. 2013.

Cacenco, M. and Goring, B. and Shenfield, M. and
Wetherly, C. Implementing data-compatibility-
based version scheme, WO Patent App.
PCT/CA2005/001,345, 2006.

Vairavan, V. and Bellur, U. Method and system for version-
ing a software system. US Patent App. 12/324,950,
2009.

M. P. Papazoglou, S. Benbernou, V. Andrikopou-
los ”On the Evolution of Services,” IEEE
Transactions on Software Engineering, vol.
38, no. 3, pp. 609-628, May-June, 2012 -
preprint, infolab.uvt.nl/ mikep/publications/IEEE-
TSE%20%5Bpreprint%5D.pdf

Leitner, P.; Michlmayr, A.; Rosenberg, F.; Dustdar, S.
”End-to-End Versioning Support for Web Services,”
Services Computing, 2008. SCC ’08. IEEE Interna-
tional Conference on , vol.1, no., pp 59-66, July 2008
- Technical report version doi: 10.1109/SCC.2008.21
www.infosys.tuwien.ac.at/staff/leitner/papers/TUV-
1841-2008-1.pdf

P. Brada. ”Specification-Based Component Substi-
tutability and Revision Identification”. PhD the-
sis, Charles University, Prague, August 2003,
d3s.mff.cuni.cz/publications/download/brada phd.pdf

CORBA 3.3. Accessed June 26, 2014.
www.omg.org/spec/CORBA/3.3/.

Semantic Versioning, Technical Whitepaper, OSGi Al-
liance, Revision 1.0, May 2010 www.osgi.org

T. Cocquand and G. Huet. ”The Calculus of Constructions”.
INRIA Research Report RR-0530, May 1986.

T. Nipkow, L. C. Paulson and M. Wenzel (ed.). ”Is-
abelle/HOL: a proof assistant for higher-order logic”.
Springer, 2002.

F. Kirchner and C. Muñoz. ”The Proof Monad.” The Jour-
nal of Logic and Algebraic Programming 79.3 (2010):
264-277.

J. Hurd. The OpenTheory Standard Theory Library. In
NASA Formal Methods, 17791. Springer, 2011.

M. Boespflug, Q. Carbonneaux and O. Hermant, ”The
lambda-Pi-calculus Modulo as a Universal Proof Lan-
guage”. In PxTP 2012.

R. Saillard. ”Dedukti: a universal proof checker”. In: Foun-
dation of Mathematics for Computer-Aided Formal-
ization Workshop. 2013.

N. G. De Bruijn. ”On the roles of types in mathematics”.

Semantic�Version�Management�based�on�Formal�Certification

29

The Curry-Howard isomorphism, 1995, vol. 8, p. 27-
54.

D. Laboreo. Introduction to Natural Deduction. Tu-
torial, May 2005. www.danielclemente.com/ log-
ica/dn.en.pdf.

PERICLES a FP7 European project. 2013-2017.
www.pericles-project.eu.

J.-Y. Vion-Dury and N. Lagos, Technical Annex
www.xrce.xerox.com/content/download/34443/3724
76/file/SV-ANNEX.pdf.

ICSOFT-PT�2015�-�10th�International�Conference�on�Software�Paradigm�Trends

30

