
Intelligent and Adaptive Student Support in FLIP
Early Computer Programming

Sokratis Karkalas and Sergio Gutierrez-Santos
Department of Computer Science and Information Systems,

Birkbeck, University of London, Malet Street, London, WC1E 7HX, U.K.

1 STAGE OF THE RESEARCH

The general purpose of this work is to develop tech-
niques by which a significant proportion of teaching
of elementary computer programming can be shifted
from human tutors to intelligent agents. An exten-
sive literature review has been made and a concrete
research objective has been formulated. The tech-
niques that have and will be developed as part of this
work are being delivered and tested through a com-
puterised tutoring system. A framework has been de-
signed for this purpose and a first prototype of an Ex-
ploratory Learning Environment (ELE) has been de-
ployed. This ELE is called FLIP (FLexible, Intelli-
gent, Personalised) and it has already been used and
tested in the classroom. Currently FLIP integrates a
combination of off-the-shelf and own components to
provide intelligent support to students of Javascript
programming. This is task-independent support pro-
vided in the context of open-ended exploratory pro-
gramming sessions. FLIP’s natively supported AI
component is a rule-based reasoner (Karkalas and
Gutierrez-Santos, 2014a) that is based on a con-
cept inventory (CI) of student initial misconceptions
(Karkalas and Gutierrez-Santos, 2014b). The devel-
opment of this CI was based on previous research
projects (Goldman et al., 2008; Kaczmarczyk et al.,
2010) and original exploratory field reseach. The
data elicitation process took place in University com-
puter laboratories and involved collection of prim-
mary data through direct observations and face-to-
face interviews. The system is also adaptable and can
adjust the level of support depending on previous stu-
dent activity. This is based on a learner model that
takes into account the amount of support that has al-
ready been provided by the system.

An issue that is inherently problematic in all rule-
based systems is the method of conflict resolution be-
tween competing rules that get activated concurrently.
This is an important aspect of the system’s automated
support as it is directly related to the human-computer
interaction component and may significantly influ-
ence the applicability and effectiveness of the tech-

nique. This is therefore an emerging problem that
needs to be addressed and resolved in the remaining
part of this research.

In parallel the techniques employed in the system
should be assessed both with formative and summa-
tive evaluations. If these techniques prove to be ef-
fective and time permits, then the same system can be
tested for task-dependent support.

2 OUTLINE OF OBJECTIVES

The general aim of this work is to optimise the learn-
ing process during practical sessions in computer lab-
oratories. Students should be able to receive timely
support about issues that hinder their learning cycle.
The learning process should be continuous and unin-
terrupted so that the maximum possible outcome can
be achieved. The level of support must be adaptive
to the individual needs and circumstances of the stu-
dents.

The two basic constraints that have to be taken un-
der consideration are time and human resources. The
objectives given above have to be met under the fol-
lowing condition: The available time for laboratory
work and the human resources available for help dur-
ing that time are fixed. Provision of extra support
whenever needed should be a fully automated pro-
cess. Adaptability, which is highly related to learner
models and processing of students’ logs must be fully
supported by technology.

Another consideration is the ability of the intelli-
gent support component to be reflexive (Maes, 1988)
and evolve using its own learning analytics as feed-
back. This can be particularly useful for automatic
conflict resolution between competing rules in the
reasoner.

3 RESEARCH PROBLEM

Learning computer programming is particularly hard

23

Karkalas S. and Gutierrez-Santos S..
Intelligent and Adaptive Student Support in FLIP - Early Computer Programming.
Copyright c 2015 SCITEPRESS (Science and Technology Publications, Lda.)



especially during the early stages (Soloway, 1986;
Jenkins, 2002; Robins et al., 2003). Programming
is a craft and requires the development of practi-
cal skills that can only be learnt through practical
training (Vihavainen et al., 2011). Typically, learn-
ing takes place either in a workplace through ap-
prenticeships or in University computer laboratories
through training courses. In the latter case students
are given problem- and/or inquiry-based learning sce-
narios (Savery, 2006) and work individually or in
pairs under the supervision of tutors. Students are
not expected to follow instructions and repeat actions.
They are encouraged to explore their own strategies,
designs, patterns and techniques through experimen-
tation. They are expected to discover knowledge in
an exploratory manner (Huitt, 2003; Vygotskiı̆ et al.,
1978). Learning this way is painful. It involves in-
vestigation, planning, tactics and action. Tutors play
a crucial role in this process. They are not just peo-
ple that merely give instructions and expect answers.
They actively engage in the process as facilitators and
they contribute by identifying problems, giving direc-
tions and confirming acceptable solutions. It has been
established that considerable effort is required by tu-
tors to ensure effective learning in such open-ended
contexts (Kirschner et al., 2006; Kynigos, 1992;
Mayer, 2004).

Time and human resources in computer labora-
tories are limited. The effectiveness of this process
highly depends on whether utilisation of these re-
sources is optimal or not. Students and tutors have
their own individual characteristics, problems and id-
iosyncrasies. Students expect individualised support
that reflects their particular misconceptions and prac-
tices. Tutors are expected to make bias-free and in-
formed decisions about the type and level of support
needed in every case and respond accordingly. The
latter presuposses that tutors have a deep knowledge
of students’ profiles and the ability to analyse previ-
ous activity on the spot in order to provide suitable
and adequate support in every case. Support in this
context is a multi-faceted and complex task that re-
quires a lot of preparation, expertise, time and re-
sources. Decisions must be based on a multitude of
criteria and a considerable amount of data about stu-
dents. It is evident that human tutors cannot respond
effectively to these challenges without help.

Another important aspect of learning in a com-
puter laboratory is the sequence of actions that take
place during a learning cycle (Kolb et al., 1984;
Konak et al., 2014). There is a pattern that students
follow when they engage with a task. The sequence
of actions they execute follows a cyclical process. In
every round students attempt to code something that

brings them closer to the completion of the task at
hand. Sometimes this is interrupted by the inherent
inability of the student to move forward. That can be
lack of knowledge or a misconception. This is the
point where the student hits the inner circle of their
particular ZPD (Vygotskiı̆ et al., 1978). The only
way to overcome the problem in this case is to receive
enough and relevant help in a timely fashion. Typi-
cally the tutor intervenes and provides the help needed
so that the student can move on and complete the cy-
cle. The student conceptualises the issue and then
confirms the validity of new knowledge through ac-
tive experimentation. Computer laboratories are espe-
cially busy during the early stages of learning. These
interruptions are very frequent and support may not
be enough. Tutors have to prioritise and provide help
to many people in a very limited time and that ap-
parently can have a negative effect on the quality and
quantity of service provided. If these cycles get in-
terrupted, then learning gets interrupted. If support is
not adequate and cannot be provided timely, then in-
evitably the learning process becomes less effective.

Both of the above (limiting) factors influence to
a great extend the effectiveness of the learning pro-
cess. Inadequate support potentially means that stu-
dents may not be able to engage with the subject in
the most costructive way and as a concequence of that
they may not be able to exploit their full potential and
achieve the best possible learning outcome. If tech-
nology can be used to compensate for these limita-
tions then it is expected that the learning process will
be much more effective, fair and inclusive.

4 STATE OF THE ART

The first attempts to utilise technology in this context
started in the late 70s. The resulting systems (Brown
and Burton, 1978; Reiser et al., 1985; Johnson and
Soloway, 1985) were quite impressive since they were
intelligent, adaptive and able to provide personalised
support. These Intelligent Tutoring Systems (ITS)
were used to teach both computing and other subjects
in a fairly controllable manner. They were used in
problem-based scenarios to direct students’ activities
to the desired outcome. Support was provided in an
intrusive way in order to align the students’ behaviour
with what was thought to be acceptable. These im-
plementations, despite the sophistication of the tech-
niques used, failed to promote discovery of knowl-
edge through exploration and constructivism in gen-
eral.

A system with a somewhat different orientation
is ELM-ART (Brusilovsky et al., 1996). This

CSEDU�2015�-�Doctoral�Consortium

24



is a courseware delivery system equipped with
intelligence and adaptivity. Other more recent
systems are (Mitrovic, 2003; Sykes and Franek,
2003; Holland et al., 2009; Peylo et al., 2000). The
system in (Mitrovic, 2003) is intelligent but not
adaptive. It is a constraint-based approach that does
comparisons between student solutions and model
solutions defined by tutors. Another system based
on constraint-based modelling is J-LATTE (Holland
et al., 2009). J-LATTE teaches Java and provides
support for both design and implementation issues.
Another system that teaches Java is (Sykes and
Franek, 2003). This system is both intelligent and
adaptive and the underlying technology used in an
expert system supported by decision trees. The
system in (Peylo et al., 2000) teaches Prolog. In
this case domain knowledge is represented as an
ontology. All these systems, like their predesessors,
focus on task-dependent support for well-defined
problem-based scenarios. They provide guidance
in a controllable manner and they fail to support
discovery of knowledge through exploration.
A lot of work has also been done in the field of
teaching-oriented Integrated Development Environ-
ments like BlueJ (Kölling et al., 2003), Greenfoot
(Kölling, 2010), Alice (Dann et al., 2000), Karel
(Bergin et al., 1997; Bergin et al., 2005; Becker,
2001), ToonTalk (Morgado and Kahn, 2008),
LOGO-based Microworld (Jenkins, 2012) and
Scratch (Maloney et al., 2008). These systems
have been used extensively in the classroom and
with remarkable results but they are not intelligent
and/or adaptive. They cannot be used to make
intelligent decisions on how to teach the subject and
adapt to students’ particular circumstances. These
deficiencies innevitably limit their applicability and
thus their value.
Another category of systems is non-academic
on-line platforms like Khan Academy
(https://www.khanacademy.org) and Code School
(https://www.codeschool.com) that offer these ser-
vices in a distributed manner. These systems offer
well-structured tutorials accompanied by limited but
useful learning analytics. These tutorials are typically
sequential or hierarchical and the course of actions
during the interaction with the system is pretty
much deterministic. There is no intelligence and
adaptability and automated support is non-existent.
Web-based IDEs like JSFIDDLE (http://jsfiddle.net)
and CodeSkulptor (Ben-Ari, 2011) are not designed
to provide automated assistance and individualised
support either.

5 METHODOLOGY

The issues addressed in this project are multi-faceted
problems and as such they require the application of
different approaches in terms of research methodol-
ogy. The requirements elicitation for the construction
of the Concept Inventory that is used as part of the
rule-based reasoner was a field research. Although
there was material from previous research that could
have been used directly for that component, we de-
cided not to use it without further investigation. The
first part of this research was exploratory. We used
direct observation and interviews and we systemat-
ically recorded every issue that took place in lab-
oratory sessions of three introductory programming
courses. The process followed is similar to Grounded
Theory (Strauss and Corbin, 1994). We intentionally
did not use findings of previous research in this pro-
cess because we did not want to constrain our percep-
tion and therefore influence the resulting domain of
knowledge. Our results were then compared with the
existing classifications of already recognised miscon-
ceptions in the literature. That was the confirmatory
part of the research.

The ELE that has been developed can be evalu-
ated both as a software engineering project and as
educational software. Direct comparison with other
systems is not possible since there is no other sys-
tem that targets the same educational objectives. This
system is intended to be used for teaching introduc-
tory JavaScript programming in an exploratory man-
ner through inquiry-based scenarios and open-ended
ill-defined problems (Savery, 2006). A possible eval-
uation is to measure the extent to which the system’s
functionality corresponds to the requirements and ex-
pectations of stakeholders. The system so far has
been designed, developed and evolving using both
top-down and bottom-up approaches depending on
the case. In general there is a preference for Agile
Model (AM) methods. As the system evolves and
improves it undergoes continuous formative evalua-
tions by students and active practitioners in the field.
The project will complete with a full-scale summa-
tive evaluation that includes a pre and post-test in the
classroom.

6 EXPECTED OUTCOME

The contribution of this work is two-fold. The first
part is the design of a framework for an ELE and the
development of a prototype for it. The second part
is the design and implementation of AI techniques
that provide automatic task-independent feedback in

Intelligent�and�Adaptive�Student�Support�in�FLIP�-�Early�Computer�Programming

25



an adaptive manner. More specifically the expected
outcome is:

1. A framework for the deployment of ELEs spe-
cialising in teaching computer programming lan-
guages.

2. An implementation prototype that corresponds to
the above framework. This is expected to be a
web-based platform for easy distribution of the
services and dissemination of the results.

3. An intelligent support component able to provide
fully automated task-independent assistance on
coding tasks.

4. A rule editor that can be used by experts to insert
knowledge into the knowledge base component of
the reasoner.

5. An intelligent component able to provide fully au-
tomated adaptive rule prioritisation in the reasoner
(reflexivity).

6. A learner model that can be used to provide adapt-
ability to students’ individual circumstances.

REFERENCES

Becker, B. W. (2001). Teaching cs1 with karel the robot
in java. In ACM SIGCSE Bulletin, volume 33, pages
50–54. ACM.

Ben-Ari, M. M. (2011). Moocs on introductory program-
ming: a travelogue. ACM Inroads, 4(2):58–61.

Bergin, J., Stehlik, M., Roberts, J., and Pattis, R. (1997).
Karel+: A Gentle Introduction to the Art of Object-
oriented Programming. Wiley.

Bergin, J., Stehlik, M., Roberts, J., and Pattis, R. (2005).
Karel J Robot: A gentle introduction to the art of
object-oriented programming in Java. Dream Songs
Press.

Brown, J. S. and Burton, R. R. (1978). Diagnostic mod-
els for procedural bugs in basic mathematical skills*.
Cognitive science, 2(2):155–192.

Brusilovsky, P., Schwarz, E., and Weber, G. (1996). Elm-
art: An intelligent tutoring system on world wide
web. In Intelligent tutoring systems, pages 261–269.
Springer.

Dann, W., Cooper, S., and Pausch, R. (2000). Making the
connection: programming with animated small world.
In ACM SIGCSE Bulletin, volume 32, pages 41–44.
ACM.

Goldman, K., Gross, P., Heeren, C., Herman, G., Kaczmar-
czyk, L., Loui, M. C., and Zilles, C. (2008). Iden-
tifying important and difficult concepts in introduc-
tory computing courses using a delphi process. ACM
SIGCSE Bulletin, 40(1):256–260.

Holland, J., Mitrovic, A., and Martin, B. (2009). J-latte: a
constraint-based tutor for java.

Huitt, W. (2003). Constructivism. Educational psychology
interactive.

Jenkins, C. W. (2012). Microworlds: Building powerful
ideas in the secondary school. Online Submission.

Jenkins, T. (2002). On the difficulty of learning to program.
In Proceedings of the 3rd Annual Conference of the
LTSN Centre for Information and Computer Sciences,
volume 4, pages 53–58.

Johnson, W. L. and Soloway, E. (1985). Proust:
Knowledge-based program understanding. Software
Engineering, IEEE Transactions on, (3):267–275.

Kaczmarczyk, L. C., Petrick, E. R., East, J. P., and Herman,
G. L. (2010). Identifying student misconceptions of
programming. In Proceedings of the 41st ACM techni-
cal symposium on Computer science education, pages
107–111. ACM.

Karkalas, S. and Gutierrez-Santos, S. (2014a). Enhanced
javascript learning using code quality tools and a rule-
based system in the flip exploratory learning environ-
ment. In Advanced Learning Technologies (ICALT),
2014 IEEE 14th International Conference on, pages
84–88. IEEE.

Karkalas, S. and Gutierrez-Santos, S. (2014b). Intelligent
student support in the flip learning system based on
student initial misconceptions and student modelling.
In Knowledge Engineering and Ontology Develop-
ment (KEOD), 2014 6th International Conference on,
pages 353–360.

Kirschner, P. A., Sweller, J., and Clark, R. E. (2006). Why
minimal guidance during instruction does not work:
An analysis of the failure of constructivist, discovery,
problem-based, experiential, and inquiry-based teach-
ing. Educational psychologist, 41(2):75–86.

Kolb, D. A. et al. (1984). Experiential learning: Experience
as the source of learning and development, volume 1.
Prentice-Hall Englewood Cliffs, NJ.

Kölling, M. (2010). The greenfoot programming environ-
ment. ACM Transactions on Computing Education
(TOCE), 10(4):14.

Kölling, M., Quig, B., Patterson, A., and Rosenberg, J.
(2003). The bluej system and its pedagogy. Computer
Science Education, 13(4):249–268.

Konak, A., Clark, T. K., and Nasereddin, M. (2014). Using
kolb’s experiential learning cycle to improve student
learning in virtual computer laboratories. Computers
& Education, 72:11–22.

Kynigos, C. (1992). Insights into pupils and teachers activi-
ties in pupil-controlled problem-solving situations: A
longitudinally developing use for programming by all
in a primary school. In Mathematical Problem Solving
and New Information Technologies, pages 219–238.
Springer.

Maes, P. (1988). Computational reflection. The Knowledge
Engineering Review, 3(01):1–19.

Maloney, J. H., Peppler, K., Kafai, Y., Resnick, M., and
Rusk, N. (2008). Programming by choice: urban
youth learning programming with scratch. ACM
SIGCSE Bulletin, 40(1):367–371.

Mayer, R. E. (2004). Should there be a three-strikes rule

CSEDU�2015�-�Doctoral�Consortium

26



against pure discovery learning? American Psycholo-
gist, 59(1):14.

Mitrovic, A. (2003). An intelligent sql tutor on the web.
International Journal of Artificial Intelligence in Edu-
cation, 13(2):173–197.

Morgado, L. and Kahn, K. (2008). Towards a specification
of the toontalk language. Journal of Visual Languages
& Computing, 19(5):574–597.

Peylo, C., Teiken, W., Rollinger, C.-R., and Gust, H. (2000).
An ontology as domain model in a web-based edu-
cational system for prolog. In FLAIRS Conference,
pages 55–59.

Reiser, B. J., Anderson, J. R., and Farrell, R. G. (1985).
Dynamic student modelling in an intelligent tutor for
lisp programming. In IJCAI, pages 8–14.

Robins, A., Rountree, J., and Rountree, N. (2003). Learning
and teaching programming: A review and discussion.
Computer Science Education, 13(2):137–172.

Savery, J. R. (2006). Overview of problem-based learning:
Definitions and distinctions. Interdisciplinary Journal
of Problem-based Learning, 1(1):3.

Soloway, E. (1986). Learning to program= learning to con-
struct mechanisms and explanations. Communications
of the ACM, 29(9):850–858.

Strauss, A. and Corbin, J. (1994). Grounded theory method-
ology. Handbook of qualitative research, pages 273–
285.

Sykes, E. R. and Franek, F. (2003). A prototype for an intel-
ligent tutoring system for students learning to program
in java (tm). In Proceedings of the IASTED Interna-
tional Conference on Computers and Advanced Tech-
nology in Education, June 30-July 2, 2003, Rhodes,
Greece, pages 78–83.

Vihavainen, A., Paksula, M., and Luukkainen, M. (2011).
Extreme apprenticeship method in teaching program-
ming for beginners. In Proceedings of the 42nd ACM
technical symposium on Computer science education,
pages 93–98. ACM.

Vygotskiı̆, L. S., Cole, M., and John-Steiner, V. (1978).
Mind in society.

Intelligent�and�Adaptive�Student�Support�in�FLIP�-�Early�Computer�Programming

27


