
Monitoring Software Vulnerabilities through Social Networks
Analysis

Slim Trabelsi1, Henrik Plate1, Amine Abida1, M. Marouane Ben Aoun1, Anis Zouaoui2,
Chedy Missaoui2, Sofien Gharbi2 and Alaeddine Ayari2

1SAP Labs France, Mougins, France
2ESPRIT, School of Engineering, Tunis, Tunisia

Keywords: Vulnerability, Social, Networks, Zero-day, Monitoring, Data Mining, CVE.

Abstract: Monitoring software vulnerability information requires an important financial and human effort in order to
track all the scattered sources publishing the last news about software vulnerabilities, patches and exploits.
We noticed that in some social networks like Twitter we can aggregate a lot of information related to soft-
ware vulnerabilities in a single channel. In this paper, we analyse the Twitter feed in order to monitor most of
the information related to software vulnerabilities including zero-day publications.

1 INTRODUCTION

In the software lifecycle management process, the
software maintenance step consists in the
modification of product after delivery to correct
faults, to improve security, performance, usability
etc. Security maintenance is a very sensitive and
crucial operation in the software maintenance process
due to the risk of exposure of the system when
security issues are not addressed. Usually, the
security maintenance life cycle consists of identifying
security breaches and vulnerabilities, fix the security
issue, provide a patch for the software and publish the
information about the patch and the vulnerability
addressed by this fix. Of course this lifecycle does not
reflect the reality, because the vulnerability is not
necessarily identified by the software
developer/vendor but sometimes by external people
(Hackers, developers, researchers, etc.). If the
vulnerability is discovered by a third party, we talk
about Zero-day vulnerability. In that case, the author
of the discovery has two solutions: Contact the
software vendor/developer and inform him about the
issue, or reveal it through another channel and
exposing then the software to a vulnerability exploit.

For a software user (a system IT administrator for
example) it is mandatory to be informed about
security information relevant for software she
installed. Security information is a general term
comprising, e.g., the disclosure of a new

vulnerability, the availability of an exploit, or the
provision of a patch from a software vendor. These
users can learn about security information mainly
through three different channels:

 Official channels: Used by software vendors
to report security information related to their
software, e.g., vulnerabilities and corresponding
patches or work-around. Some vendors inform
customers proactively, e.g., by direct email
communication.

 Free or commercial 3rd party channels: Used
by non-profit or commercial organizations to provide
centralized access to security information affecting
software from many different vendors (herewith
facilitating the work of administrators, who do not
need to consider each vendor’s official channel).
Some of these channels report vulnerabilities even
before the affected software vendor provided a patch
or work-around (e.g., Vupen Security). Others
provide central access to information they have
collected from official channels and other 3rd party
channels (Security Database). And again others serve
as public repositories of security information, e.g., the
National Vulnerability Database (a public repository
of verified vulnerabilities).

 Informal channels: Used by security
professionals, hackers or hacking communities in
order to share security information quickly (bug
trackers, developer forums, etc.) and informally and
by means of social media (blogs, Twitter or forums).

236 Trabelsi S., Plate H., Abida A., Ben Aoun M., Zouaoui A., Missaoui C., Gharbi S. and Ayari A..
Monitoring Software Vulnerabilities through Social Networks Analysis.
DOI: 10.5220/0005538602360242
In Proceedings of the 12th International Conference on Security and Cryptography (SECRYPT-2015), pages 236-242
ISBN: 978-989-758-117-5
Copyright c 2015 SCITEPRESS (Science and Technology Publications, Lda.)

Sometimes, information stemming from the above
sources is simply repeated, sometimes original
information about new vulnerabilities, exploits or
work-around is provided.

In this paper we describe an approach and
corresponding prototype to gather security
information from a fundamentally different kind of
information source: Social Media (Twitter), i.e.,
online tools supporting the creation and exchange of
informal, non-validated information in virtual
communities. As described by (Bougie, 2011) and
(Tian, 2012), Social Media communities such as
Stack Overflow, Twitter or developer blogs, became
one important instrument of the global software
development community, in particular regarding
open-source soft-ware, and one can observe that it is
many times used for the early discussion and
disclosure of software vulnerabilities, exploits and
patches.

As such, the automated search in Social Media
offers the unique opportunity to gather security
information earlier than using the classical
information sources. 0-day vulnerabilities, in
particular, will never be published through classical
information sources like the NVD. Knowing that this
immense body of knowledge is publicly accessible to
malicious adversaries, it is important to make it also
available to software users, in particular security-
sensitive ones. Moreover, some Social Medias like
Twitter, can be considered as an aggregator of both
validated and non-validated security information,
hence, avoid the burden to observe many information
sources in parallel for getting up-to-date information.

Having as goal to gather security information as
early as possible from as less sources as possible, the
contributions of this paper are as follows:
 In section 3, the description of a clustering

algorithm for social media content, grouping
all information regarding the same subject
matter, which is a pre-requisite for
distinguishing “known” from “new” security
information. Also in section 3, the description
of a generic architecture and proof-of-concept
implementation called SMASH (Social Media
Analysis for Security on HANA).

 In section 4, the presentation of results of an
empirical study that compares the availability
of information published through Social Media
tools (at the example of Twitter) and classical
sources (at the example of NVD).

2 VULNERABILITY
MANAGEMENT CONCEPTS
AND PROBLEMS

In this section we introduce some definitions and
vocabulary related to software vulnerability
management. There are several standards and
protocols that define specifications frames for the
software vulnerability management and the most
popular and adopted one is the Security Content
Automation Protocol (SCAP) defined by the National
Institute of Standards and Technology (NIST).

2.1 Security Content Automation
Protocol (SCAP)

The Security Content Automation Protocol (SCAP) is
a compilation of several open standards defined to
categorize and list software weakness and
configuration issues related to security. This standard
offers scales to score those findings in order to
evaluate the potential impact. These standards offer
the possibility to automate vulnerability management,
measurement, and policy compliance evaluation. In
this paper we focus on a subset of elements defined
by the SCAP that are related to our study:
 Common Vulnerabilities and Exposures

(CVE): allows the structured description of
software vulnerabilities.

 Common Platform Enumeration (CPE): is a
standardized method of identifying classes of
applications, operating systems, and hardware
devices affected by CVEs.

 Common Vulnerability Scoring System
(CVSS): is a vulnerability scoring system
designed to provide an open and standardized
method for rating IT vulnerabilities.

2.2 Software Vulnerability
Management Problem Statement

Software vulnerability management is a wide topic
covered by many standards and protocols especially
when vulnerabilities are identified, analysed and
confirmed by security organizations or software
vendors. This kind of management systems becomes
less efficient and organized when the vulnerability
information is not yet confirmed, alike the case of
zero-day vulnerabilities. The same disorganization is
observed for exploit classification and management.
Usually, profit-based security organization
companies that sell software vulnerability
information spend a lot of efforts to monitor public

Monitoring�Software�Vulnerabilities�through�Social�Networks�Analysis

237

and private bug-trackers (especially open source
software bug trackers, developers and hacker forums,
exploit databases and websites, etc.) to detect bugs
that potentially can lead to 0-day vulnerability. This
task requires a lot of efforts and human resources.
One interesting solution to aggregate such sources
can be found in the social media streams like Twitter.
Some studies like (Bougie, 2011) and (Tian, 2012)
validate our observation about the software developer
activity on social media. In fact, they also noticed that
the software development community extensively
leverages twitter capabilities for conversation and
information sharing related to their development
activities. We exploit this fact and use the content of
the information published by this community to
simplify the data collection and reduce the human and
financial cost of this task. To achieve this goal we
focus on the software vulnerability information that
we can extract from Twitter and that aggregates in a
certain way the information scattered over different
platforms (blogs, bug trackers, forums, etc.).

3 SOCIAL NETWORK ANALYSIS
FOR SECURITY

This section outlines the architecture and main
building blocks of SMASH (Social Media Analysis
for Security on HANA, cf. Figure 1), a prototype
aiming to proof the various concepts described in this
paper. With its current functionality, SMASH is a live
monitoring tool for vulnerabilities concerning a
defined set of software components.

3.1 Architecture

The system is divided into two principal subsystems,
related to data collection and processing respectively.

Data collection: This subsystem establishes a
common data basis for the later processing, making
all relevant raw data available in a local database. The
Social Media tool considered by the proof-of-concept
is Twitter, but the approach is equally applicable to
other Social Media tools. Twitter has been chosen due
to its wide-spread use by both individuals and
organizations. The Twitter content to be replicated in
the local database is obtained by performing a search
in the Twitter live stream. The search terms are
combinations of common security terminology
(“vulnerability”, “exploit”, etc.) and software
component names relevant for the user of SMASH. A
list of such component names can be obtained from,
for example, configuration management databases

that maintain comprehensive software inventories.
Other Social Media tools may offer different APIs,
however, the advantage of streaming APIs is the
immediate availability of new information compared
to pull APIs.

Figure 1: Generic architecture of the Software Vulnerability
Monitoring System.

Besides replicated data from Twitter, the proof-
of-concept maintains a local copy of a classical
information source with confirmed vulnerabilities,
namely the National Vulnerability Database (NVD),
built using its downloadable XML data feeds. This
information source is used to assess security
information collected from Twitter, in particular to
distinguish the publication of original (new)
information from the repetition of well-known
information (already accessible through the classical
sources). Moreover, the NVD database comes with a
comprehensive list of software names following the
CPE.

Data processing: This subsystem is responsible
for the identification, evaluation and classification of
various kinds of security information communicated
through Twitter. This is done using different data
mining algorithms, each implemented by a so-called
analyzer. Two such algorithms have been developed
until now (cf. Sections 3.2 and 3.3 for details):
 The search for the description of 0-day

vulnerabilities, i.e., vulnerabilities not yet
published in classical channels like the NVD,
and classification according to the existing
CPE notation and database.

SECRYPT�2015�-�International�Conference�on�Security�and�Cryptography

238

 The search for information about the future
creation of new CVEs or update of existing
ones.

Besides, the subsystem also computes the trust
level (value) of Twitter users, thereby relying on a
well-defined trust model and various quality criteria
for Social Media content (cf. Section 4 for details).

The third component part of the data processing
subsystem, executed prior to the above-mentioned
components, is responsible for the pre-processing of
Twitter content, e.g., the deletion of duplicates, the
deletion of content not meeting certain criteria (e.g.,
regarding the minimum length), or the enrichment
with additional information regarding the respective
author or obtained from referenced websites.

3.2 Algorithm for Detecting 0-Day
Vulnerabilities

In order to detect 0-day vulnerability information we
identify clusters of similar messages dealing about the
same issue related to the same software component,
containing specific vulnerability keywords and some
additional common terms. The approach used for the
clustering consists of three main steps performed for
each new tweet received:
1-Sanitizing and filtering tweet text by removing
irrelevant content and stemming relevant terms. 2-
Transforming the cleaned text into a vector. 3-
Clustering similar vectors; similarity is based on a
distance measure between vectors. The idea behind
this approach is to make analysis of the set of data
more manageable as human agents or automated
analysis processes can mine relevant information
from each cluster of messages; relevant information
may include: vulnerability description, availability of
patches and availability of exploits to name a few.

The first step is a simple removal of the terms
which are considered irrelevant regarding the
clustering process, tokens such as strings of non-
alpha-numeric characters and strings of numbers are
removed, the remaining terms which are considered
relevant are stemmed to their root form.

The second step consists of building a vector
representation of the text; for each term a new
dimension is created then the term is weighted using
TF (term frequency) weighting (Turney, 2010), this is
a classical bag of words representation.

The third step is based on a straightforward
clustering algorithm that is capable of clustering a
stream of continuously incoming tweets. The
algorithm is initialized with a threshold distance T,
when the first tweet is delivered it is placed in a first
cluster then for each subsequent tweet delivered the

closest cluster is fetched if the distance between the
tweet and the centroid of the closest cluster is lesser
than the specified threshold T then the tweet is
absorbed by the closest cluster if not the case a new
cluster is created containing the currently processed
tweet. The notion of similarity in this algorithm is
expressed through a distance measure essentially if
two vectors representing two documents have a
relatively small distance between them this implies
that the two tweets are similar.

The distance measure used in our algorithm is a
modified form of the Euclidean distance which is
expressed as follows:

The Distance D between two vectors A and B in
an n dimensional space is:

D= ඥ∑ ሺܰ݀݁݉ݎሺ݅ܣ, ሻܣ െ ,݅ܤሺ݀݁݉ݎܰ ሻሻଶܤ
ୀ

Where

Normed (v, V) =
௩

ெ௧௨ௗሺሻ
 ; where v is a

vector component and V is a vector

Magnitude (V) = ඥ∑ ܸ݅ଶ
ୀ ; where V is a vector

in an n dimensional space

The difference regarding the classical Euclidean
measure is that each vector component is normed i.e.
it is divided by the magnitude of the vector this allows
to have a distance value that is comprised in the
interval [0, 2]. The consequence of this propriety is
that the threshold as to be in the same [0, 2] interval
which is more convenient than having to choose a
distance threshold in an infinite interval.

As the streaming process is progressing clusters
of related tweets are forming thus similar content is
grouped in real time

3.3 Algorithm for Detecting CVE
Requests and Updates

The CVE based search algorithm is quite simple (see
Figure 2), we execute a search for all the collected
data looking for the regular expression “CVE-*-*” to
obtain all the messages dealing with CVEs. Then we
group messages by CVE numbers in order to obtain
cluster of messages dealing with the same CVE. From
this clusters we ex-tract the common keywords in
order to identify the purpose of the vulnerability.

The reason why we create such clusters is to
distinguish between a new CVE publication or
update, from old ones that can reappear Twitter for
some other reasons. Usually, when a new CVE is
published or updated, several sources relay this
information (not only one isolated source); this is the
reason why we rely on the cluster concept.

Monitoring�Software�Vulnerabilities�through�Social�Networks�Analysis

239

Figure 2: CVE based search algorithm.

3.4 Implementation

The implementation is done using SAP HANA, an in-
memory database, SAP UI5, a modern Html5
framework for developing browser-based application
frontends, and Java concerning the data collection
and processing. It offers users the possibility to
monitor software components of their choice, e.g., by
registering a certain component name.

Figure 3: Screenshot of the SMASH monitoring tool.

As shown in Figure 3, the list of monitored
software is displayed on the left side of the
application. Upon selection, several kinds of security
information identified by the tool are displayed on the
right side of the screen. The two views presenting
information from Twitter analysis are as follows0-
day: A list of vulnerabilities collected through the two
algorithms, including the identifier of the Twitter user
who published the respective content. Note that this
list also comprises CVE requests, i.e., vulnerabilities
having a provisionary CVE identifier until their actual
validation. Such requests are typically published on
Twitter, including details, prior to the actual
publication through the NVD.

The other two views, CVE and Patches, mainly
contain information read from the NVD.

4 ZERO-DAY STUDY AND
ANALYSIS

In this section, we describe two studies that we
conducted related to the freshness of the data
collected compared to the traditional sources. A first
study concerns the comparison between the
publication time/date of the new CVEs or the CVE
updates of the official NIST NVD with the
publications on SM. The second study concerns the
0-day early publication time/date on SM with regards
to the correspondent CVE published in NIST NVD.
We focus on the Linux-Kernel vulnerabilities
detected in 2014.

4.1 CVE Publication Date Study

The main objective of the vulnerability monitoring
study through the SM analysis is not to propose yet
another monitoring system, but to propose a system
that offers new information that was not yet exploited
by the traditional systems like for example the
freshness of the information. Being informed as early
as possible about a potential thread on your system
can give to the system administrator a serious ad-
vantage to protect his infrastructure. For this reason,
we decided to perform a study on the time that we can
gain by exploiting the SMASH results with regards to
the official publication date of the official NIST
NVD.

Figure 4: CVE Publication dates comparison between NIST
NVD and SMASH.

Methodology: To do the study we selected the
last 486 CVE published in NIST NVD before
December 5th 2014. The CVE concerns any kind of
software (we did not focus on a specific vendor). For
every CVE-Number in the list we performed a search
with SMASH in order to obtain the same CVE
numbers published in Twitter. For every mapping we
compared the publication dates.

‐50

0

50

100

150

200

1

3
4

6
7

1
0
0

1
3
3

1
6
6

1
9
9

2
3
2

2
6
5

2
9
8

3
3
1

3
6
4

3
9
7

4
3
0

4
6
3

D
ay
s

SECRYPT�2015�-�International�Conference�on�Security�and�Cryptography

240

Observations: The first interesting result is that
100% of the NIST CVEs were also published Twitter.

The most interesting result shown in Figure 4 is
that 41% of the CVEs were published on Twitter
before the official NIST NVD. The average advance
time of these 41% is approximately 20 days.

We can observe in this graph that to the largest
gap between the two publication dates is about
13879928 seconds ~ 160 days. If we look closer to
the vulnerability, published in Twitter on 5/14/2014,
we can see a link to a developer forum where the
author of the vulnerability discovery talks about the
details of the CVE request that he sent to the NIST
NVD. 160 days later the vulnerability was confirmed
and published on the NIST website on 10/21/2014.
One possible for this delay is the low severity of the
vulnerability (CVSS score = 2).

4.2 Zero-day Publication Date for
Linux-Kernel Vulnerabilities

A zero-day vulnerability disclosure is a rare
information in general. Most of the big software
vendors spend a lot of efforts (and money) to keep
such information secret. The exception concerns
some Open Source software like Linux series. It
seems that the phenomena described in (Tian, 2012)
can be confirmed by our study especially for the
disclosure of bugs and 0-day vulnerabilities. We
decided to focus our study on the Linux-Kernel
software component, for which the developer
community on SM is quite important and verbose.

Methodology: To do the study we took 62 Linux-
Kernel CVEs from January to July 2014 (Study made
end of July 2014). Starting from the vulnerabilities
descriptions we executed the SMASH search on
twitter in order to detect related 0-day publications on
twitter. Once we detect a matching with a publication
on twitter we verify the official Linux publications
with regards to the vulnerabilities and the patches in
order to verify the relevance of the 0-day. If nothing
appears before the twitter publications, we count it as
a new 0-day detected.

Observations: 75,8% of the CVE vulnerabilities
where disclosed before the official disclosure as 0-
day information. Most of the tweets refer to Linux-
Kernel bug trackers or Linux developer forums. The
average advance time is approximately 19 days. The
average CVSSS score is 5.88 and 34% of the 0-day
vulnerabilities rated between 6 and 10.

The 0-day disclosure is much more critical than
the early CVE disclosure, due to the fact that most of
the time the software vendor is not aware of the
vulnerability, and the exploitation can be easily done

by malicious persons. Having, the 0-day information
before the exploit publication is valuable information
supporting system administrators in the protection of
their systems against early vulnerability exploits.

Figure 5: Zero day advance publication dates.

5 STATE OF THE ART

To our knowledge the first reference to the idea of
software security monitoring through SM analysis
was initiated by Arafin et al. (Arafin, 2013) that
proposed the idea of searching exploits published on
Twitter that are related to known CVEs. Due to the
lack of experience of the study (student project
report) the results were not really quantitative, they
only detected the presence of exploits published on
twitter, but they did not verified if these exploits were
already published on Metasploit or Exploit-DB for
example. Another study led by Cui et al. (Cui, 2013)
focused on the tracking of users publishing
cybersecurity related information, for that they
proposed a trust model to verify the trustworthiness
of the sources. Compared to the trust model presented
in our paper, their model relies on the “influence
parameter” that is to our point of view misleading
dues to the uncertainty of the notion of influence
where the number of followers is not a good criteria
for computing the influence impact.

Most of the studies in the literature are mainly
focusing on the presence presence of software
engineering topics in SM. Bird et al (Bird, 2006)
analysed SM based mailing lists, where developer
communities exchange their work in public/private
social groups. They highlighted the relationship
between the level of email activity and the level of
activity in the source code, and a less strong
relationship with document change activity. A social
network connection topography of open source

‐20

0

20

40

60

80

100

1 6 11 16 21 26 31 36 41 46 51 56 61

D
ay
s

Monitoring�Software�Vulnerabilities�through�Social�Networks�Analysis

241

software developers in Source-Forge.net was realized
by Xu et al (Xu, 2006) then by Surian et al (Surian,
2010) in order to study the interaction and the
influence between software developer and code
source evolution. From this study appeared the notion
of experts in specific technologies. Other studies like
(Xu, 2006) and (Tian Y. 2012) focused on analysing
software engineering trends on Twitter. The notion of
software popularity appeared in these studies.

Bug tracking monitoring on social media was also
addressed in (Sureka, 2011) for open source public
trackers and in (Jiang, 2013) for mobile OS Android
bug reporting community. These studies focus on the
bug reporting lines and management. They identify
the strategies and the authority organization structure
for handling bugs during the software development
phase.

6 CONCLUSIONS

In this paper, we explore a new information source,
namely Social Media streams, to aggregate
information about new software vulnerabilities. This
channel offers the possibility to track announcements
coming from software vendors, NVD but also other
non-structured sources publishing 0-day
vulnerabilities, CVE requests, exploits etc. We
obtained some interesting results especially about the
impressive number of 0-day vulnerabilities related to
the Linux-Kernel software published before the
official NVD announcements. We claim that SM
analysis can offer a cheap and easy way to efficiently
monitor system security. It also offers many other
possibilities to handle and monitor patching and
security maintenance for complex systems that we are
currently under exploration as future work. The
current version of the tool relies on many manual
tasks, especially for the validation of the detected
information; the goal in the short term is to automate
these tasks. We are also working on the validation of
the trust model about the validity of the score
estimation.

REFERENCES

Jiang, Feng, Jiemin Wang, Abram Hindle, and Mario A.
Nascimento., 2013. "Mining the Temporal Evolution of
the Android Bug Reporting Community via Sliding
Windows." arXiv preprint arXiv:1310.7469.

Bougie, G., Starke, J., Storey, M. A., & German, D. M.,
2011. Towards understanding twitter use in software
engineering: preliminary findings, ongoing challenges

and future questions. In Proceedings of the 2nd
international workshop on Web 2.0 for software engi-
neering (pp. 31-36). ACM.

Tian, Y., Achananuparp, P., Lubis, I. N., Lo, D., & Lim, E.
P., 2012. What does software engineering community
microblog about? In Mining Software Repositories
(MSR), 9th IEEE Working Conference on (pp. 247-
250). IEEE.

J. B. MacQueen, 1967. “Some methods for classification
and analysis of multivariate observa-tions,” in Proc. of
the fifth Berkeley Symposium on Mathematical
Statistics and Probability (L. M. L. Cam and J. Neyman,
eds.), vol. 1, pp. 281–297, University of California
Press.

Rajput, D. S., Thakur, R. S., Thakur, G. S., & Sahu, N.
2012. “Analysis of Social net-working sites using K-
mean Clustering algorithm”. International Journal of
Computer & Communication Technology (IJCCT)
ISSN (ONLINE), 2231-0371.

C. Bird, A. Gourley, P. T. Devanbu, M. Gertz, and A.
Swaminathan, 2006 “Mining email social networks,”
in MSR, pp. 137–143.

D. Surian, D. Lo, and E.-P. Lim, 2010 “Mining
collaboration patterns from a large developer net-
work,” in WCRE, pp. 269–273.

Xu, Jin, Scott Christley, and Greg Madey. 2006
"Application of social network analysis to the study of
open source software." The economics of open source
software development: 205-224.

Bougie, Gargi, Jamie Starke, Margaret-Anne Storey, and
Daniel M. German. 2011 "Towards un-derstanding
twitter use in software engineering: preliminary
findings, ongoing challenges and future questions." In
Proceedings of the 2nd international workshop on Web
2.0 for software engineering, pp. 31-36. ACM.

Tian, Yuan, Palakorn Achananuparp, Ibrahim Nelman
Lubis, David Lo, and Ee-Peng Lim. 2012 "What does
software engineering community microblog about?" In
Mining Software Re-positories (MSR), 2012 9th IEEE
Working Conference on, pp. 247-250. IEEE.

Sureka, Ashish, Atul Goyal, and Ayushi Rastogi. 2011
"Using social network analysis for mining
collaboration data in a defect tracking system for risk
and vulnerability analysis." In Proceed-ings of the 4th
India Software Engineering Conference, pp. 195-204.
ACM.

Arafin, Md Tanvir, and Richard Royster. 2013
"Vulnerability Exploits Advertised on Twitter.".

Cui, B., Moskal, S., Du, H., & Yang, S. J. (2013). Who shall
we follow in twitter for cyber vulnerability?. In Social
Computing, Behavioral-Cultural Modeling and
Prediction (pp. 394-402). Springer Berlin Heidelberg.

Turney, Peter D., and Patrick Pantel. "From frequency to
meaning: Vector space models of semantics." Journal
of artificial intelligence research 37.1 (2010): 141-188.

SECRYPT�2015�-�International�Conference�on�Security�and�Cryptography

242

