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Abstract: Modern nuclear power plants are equipped with a vast variety of sensors and measurement devices. 
Vibrations, temperatures, pressures, flow rates are just the tip of the iceberg representing the huge database 
composed of the recorded measurements. However, only storing the data is of no value to the information-
centric society and the real value lies in the ability to properly utilize the gathered data. In this paper, we 
propose a knowledge discovery process designed to identify non-typical or anomalous patterns in time 
series data. The foundations of all the data mining tasks employed in this discovery process are based on the 
construction of a proper definition of non-typical pattern. Building on this definition, the proposed approach 
develops and implements techniques for identifying, labelling and comparing the sub-sections of the time 
series data that are of interest for the study. Extensive evaluations on artificial data show the effectiveness 
and intuitiveness of the proposed knowledge discovery process.  

1 INTRODUCTION 

The beginning of the “Information Age” (Goebel, 
1999), which can be symbolically identified as the 
creation of the World Wide Web on Christmas Day 
1990 (McPherson, 2009), sparked an explosion of 
interest towards knowledge discovery in databases 
(Esling, 2012; Gama, 2010; Fayyad, 1996). The 
rapid technological progress of data management 
solutions has led to the possibility to store and 
access vast amounts of data at practically no cost. 
Gigantic databases containing hundreds of petabytes 
are something common nowadays. 

Informally, the goal of knowledge discovery 
applied to databases is to identify a sequence of data 
mining tasks designed to analyze and discover 
interesting behaviour within the data. Unfortunately, 
the progress of data mining was hindered due to a 
concern that by employing data mining in an 
uninformed way, the findings can be 
counterproductive (Fayyad, 1996). Thus, the 
development and implementation of knowledge 
discovery processes was introduced to ensure that 
the final results will be useful for the researcher. 

In the past, the mainstream approaches for 
turning data into knowledge involved slow, 

expensive, and highly subjective manual procedures 
for analyzing and understanding the data (Fayyad, 
1996). Fortunately, this is not the case anymore 
(Goebel, 1999; Kurgan, 2006; Maimon, 2010). Thus, 
the knowledge discovery in databases can be seen as 
an automatic approach for data analysis that 
combines the experience from a variety of scientific 
fields, e.g. machine learning, pattern recognition, 
statistics, and exploratory data analysis to name a 
few. Data mining, on the other hand, is often 
misinterpreted and mistaken for knowledge 
discovery (Kurgan, 2006). As a result, this work 
adopts the definition that is most renown within the 
research community which defines knowledge 
discovery from datasets as “the nontrivial process of 
identifying valid, novel, potentially useful, and 
ultimately understandable patterns in data” (Fayyad, 
1996). In addition, data mining is understood to be 
the central building block of knowledge discovery – 
it is the utilization of algorithms and techniques that 
aim to provide insight, create models and draw 
conclusion for the data.  

The proposed knowledge discovery process for 
identifying, labelling and comparing non-typical 
patterns in time series datasets encompasses some of 
the most common data mining tasks such as 
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anomaly detection, segmentation, clustering, and 
classification.  

The rest of the paper is organized as follows. 
Chapter 2 introduces the necessary terminology 
while chapter 3 briefly overviews the current state in 
literature and identifies a reference approach. The 
newly proposed knowledge discovery work flow is 
described in chapter 4 followed by evaluation and 
comparison to the reference method. The paper is 
closed with conclusions and ideas for further 
research. 

2 FOUNDATIONS 

This section introduces the necessary terminology 
and definitions needed to describe the problem at 
hand.  

2.1 Definitions and Notation 

The aim here is to familiarize the reader with the 
definitions and notation that is used throughout this 
paper. 

Definition 1: Time Series 
Let ܺ = ሺܺ௧ሻ௧∈் be a stochastic process of a simple 
random variable defined on a probability 
space	ሺΩ,ℋ,ℙሻ and ܶ arbitrary set, countable or 
uncountable. Then, for a fixed	߱ ∈ Ω, the realization ܠ = ൫ܺ௧ሺ߱ሻ൯௧∈் is called a time series or sequence. 

Since in this work we are not so much interested 
in the time series data as a whole but on sub-sections 
of it, the following definition will come to hand 
later. 

Definition 2: Sub-sequence 
For a given time series	ܠ = ሺݔ௧ሻ௧∈், a sequence ܡ =ሺݕ௧ሻ௧∈்ᇲ is a sub-sequence of ܠ if	ܶ′ ⊆ ܶ. 

For notational convenience, the following will hold 
throughout this paper for time series ܠ = ሺݔ௧ሻ௧∈் 
and	ܡ = ሺݕ௧ሻ௧∈்: 

|ܠ| − ≔ |ܶ|; 
 ;ܠ ሾ݅ሿ denotes the ݅௧௛ element of the sequenceܠ −
 ;ܠ denotes the time domain of sequence ܠܶ −
− maxሺܠሻ = maxሺܠሾ݅ሿሻ for 1 ≤ ݅ ≤  ;|࢞|
− minሺܠሻ = minሺܠሾ݅ሿሻ for 1 ≤ ݅ ≤  .|࢞|
A special type of a sub-sequence consists of 
contiguous time instance from a time series. This 
idea is formalized with the next definition. 

 

Definition 3: Window 
Let	ܠ = ሺݔ௧ሻ௧∈் be a sequence of length ݊ and ܡ =ሺݕ௧ሻ௧∈்ᇲ a sub-sequence of ܠ of length		݉. Then, ܡ is 
called a window in ܠ if the following holds: ܡሾ݆ሿ = ሾ݅ܠ + ݆ − 1ሿ, 
where 1 ≤ ݆ ≤ ݉ and ݅ is a fixed index satisfying 1 ≤ ݅ ≤ ݊ −݉ + 1. 

In addition to the notations so far, the following will 
be used: 
 ܠ ௠ denotes the set containing all windows inܠܹ −

of length ݉. 
The fact that time series data is characterized by its 
continuous nature, high dimensionality and large 
size together with the difficulty to define a form of 
similarity measure based on human perception 
(Goebel, 1999), it is only logical to compare 
sequences in an approximate manner. 

Definition 4: Distance 
Let  ܠ = ሺݔ௧ሻ௧∈் and ܡ = ሺݕ௧ሻ௧∈் be two time series 
of length	݊. The distance between them is given by: ݀:ℝ௡ × ℝ௡ ⟶ ℝ଴ା. 

Often, it is more convenient to work on a 
transformed time series than on the original one. The 
following transformation of the raw data is 
important for the proposed approach. 

Definition 5: Normalization 
Let ܠ = ሺݔ௧ሻ௧∈் be a sequence. The function: Normܠሺݔ௧ሻ:ℝ ⟶ ℝ																							ݔ௧ ⟼ ௧ݔ − minሺܠሻmaxሺܠሻ − minሺܠሻ 
is called normalization function. 

Similarly to the above conventions, the 
following notations are to be considered in this 
work: 

തܠ − = Normሺܠሻ = ൫Normܠሺݔ௧ሻ൯௧∈் ; 

௧ݔ̅ − = Normሺݔ௧ሻ = Normܠሺݔ௧ሻ. 
2.2 Data Mining Tasks 

Having introduced the necessary definitions in the 
previous section, now we can give a brief overview 
of the data mining tasks involved in the proposed 
discovery process. 

2.2.1 Anomaly Detection 

In the context of time series data mining, the goal of 
anomaly detection is to discover sub-sequences of a 
time series which are considered abnormal. 
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Definition 6: Anomaly Detection 
Given a time series ܠ = ሺݔ௧ሻ௧∈  together with some ܠ்
model of its normal behaviour, the goal of anomaly 
detection is to discover all sub-sequences of ܠ which 
deviate from this normal behaviour. 

2.2.2 Representation 

One of the fundamental problems in data mining is 
how to represent the time series data in such a way 
that allows efficient computation on the data. 
Typically, one is not so much interested in the global 
properties of the time series, but in subsections of it 
(Lin, 2002). As a result, segmentation (also known 
as time series representation, transformation, or 
summarization) is one of the main ingredients in 
time series data mining viewed as an intermediate 
step of various tasks, such as indexing, clustering, 
classification, segmentation and anomaly detection. 
This stems from the fact that often time series are 
too big to be analyzed and the utilization of time 
series representations allows more efficient 
computation by reducing the size of the data while 
preserving its fundamental shape and characteristic. 
This transformation process can be defined as 
follows: 

Definition 7: Representation 
Given a sequence ܠ = ሺݔ௧ሻ௧∈் of length	݊, the goal 
of representation is to find a transformation function 
of ܠ given by: ܴ:ℝ௡ ⟶ ℝௗ									ܠ ⟼  ෤ܠ
which reduces and closely approximates ܠ: ݀ ≪ ݊, |ܴሺܠሻ − |ܠ ≤ ߳ 
with ߳ ∈ ℝ଴ା some preselected threshold value. 

2.2.3 Clustering 

Clustering is perhaps the most common task in the 
unsupervised learning problem (Gama, 2010) which 
aims at grouping the elements from a dataset into 
clusters by maximizing the inter-cluster variance 
while minimizing intra-cluster variance: 

Definition 8: Clustering 
Let ܤܦ be a time series database and ݀ - a distance 
measure. The goal of clustering is to construct a set ܥ = ሼܿ௜ሽ of clusters such that: ܿ௜ = ሼܠ௞: ௞ܠ ∈  ሽܤܦ
and for ever ݅ଵ, ݅ଶ, ݆: ,௜భܠ ௜మܠ ∈ ܿ௜ ∧ ௝ܠ ∈ ௝ܿ holds: ݀൫ܠ௜భ, ௝൯ܠ ≫ ݀൫ܠ௜భ,  .௜మ൯ܠ

2.2.4 Classification 

Classification is the natural counterpart of clustering 
in the supervised learning scenario. Contrary to 
clustering where no information is present in the 
data regarding class belongings, the main objective 
here is to learn what separates one group from 
another: 

Definition 9: Classification 
Let ܤܦ be a time series database and ܥ = ሼܿ௜ሽ a set 
of classes. The goal of classification is for every ܠ  .ܿ௜	to assign it to one ܤܦ∋
3 BACKGROUND 

Starting from datasets containing historic recordings 
of a technical system such as a steam turbine, a non-
typical pattern discovery process should review all 
interesting events contained in this dataset. These 
events include machine failures, changes in 
operating mode and all other patterns that 
significantly deviate from normal operation.  

The problem of determining parts in time series 
data that somehow defy our expectations of normal 
structure and form is known by many names in the 
literature – from “surprises” through “faults” to 
“discords”. Independent of the term used, most 
existing knowledge discovery algorithms and 
procedures approach this problem by using a brute 
force algorithm, known as sliding window 
technique, for building the set ܹܠ௠ for a given time 
series and some preselected value ݉ (Lin, 2002; Fu, 
2005; Keogh, 2002; Lin, 2005). The next step taken 
normally involves dimensionality reduction and 
discretization. Arguably, one of the most referenced 
and widely used techniques for accomplishing this 
task is the symbolic aggregate approximation (SAX) 
(Lin, 2005; Lin, 2003) which relies on piecewise 
aggregate approximation as an intermediate 
dimensionality reduction step (Yi, 2000; Keogh, 
2001). Thus, we give a brief overview of these 
procedures. 

3.1 Piecewise Aggregate 
Approximation (PAA) 

A member of the category of approximations that 
represent the time series directly in the time domain, 
PAA is one of the most popular choices for 
representation and is defined as follows. 
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Definition 10: PAA 
Given a sequence ܠ = ሺݔ௧ሻ௧∈் of length	݊, the ݅௧௛ 
element of the PAA representation ܠ෤ = ሺݔ෤௧ሻ௧∈்ᇱ in ݉  
dimensional space is given by: 

෤ሾ݅ሿܠ = ݉݊෍ܠሾ݆ሿ௕
௝ୀ௔  

with ܽ = ௡௠ ሺ݅ − 1ሻ + 1 and ܾ = ௡௠ ݅. 
Despite its simplistic character (figure 1), it was 
shown in (Keogh and Kasetty, 2002) that this 
method is competitive with the more sophisticated 
approximation techniques such as Fourier transforms 
and wavelets. 

 
Figure 1: Piecewise aggregate approximation (PAA). 

3.2 Symbolic Aggregate 
Approximation (SAX) 

After employing the PAA transformation, each 
segment of the compressed time series is mapped to 
a symbol string. The construction of the “alphabet” 
is performed in such a way that every “letter” is 
equiprobable. To accomplish this task, the y-axis is 
divided into equiprobable regions defining a set of 
breakpoints (Lin, 2003): 

Definition 11: Breakpoint 
The real-valued numbers in an order set ܤ =ሺߚ଴, … ,  ௔ሻ are said to be breakpoints if the areaߚ
under a ܰሺ0,1ሻ Gaussian curve from ߚ௜ to ߚ௜ାଵ is 
equal to 1 ܽൗ  with ߚ଴ = −∞ and	ߚ௔ = +∞. 

Once the breakpoints for the desired alphabet length 
are found, all PAA segments that are below ߚଵ are 
mapped to letter “a”, between ߚଵ and ߚଶ to letter “b” 
and so on. Formally (Lin, 2003): 

Definition 12: Word 
Let ߙ௜ denote the ݅௧௛ letter of the selected alphabet 
(i.e. ߙଵ = ܽ, ଶߙ = ܾ, etc.) and ܠ = ሺݔ௧ሻ௧∈் be a 
sequence of length	݊. Furthermore, assume ܠ෤ =ሺݔ෤௧ሻ௧∈்ᇱ is the PAA approximation of length	ݓ. 
Then, ܠ is mapped into word ܠො as follows: ܠොሾ݅ሿ = ௜ߙ ⟺ ௝ିଵߚ ≤ ෤ሾ݅ሿܠ ൏  .௝ߚ
This idea is visualized next. 

 
Figure 2: Symbolic aggregate approximation (SAX). 

Subsequently, the discovery of the abnormal 
patterns is accomplished by examining their 
expected frequency. More formally (Lin, 2005): 

Definition 13: Frequency 
Let ܠ be a time series and	ܘ - a pattern. Then, the 
frequency of occurrence of ܘ in	ܠ, denoted	  ሻ, isܘሺܠ݂
the number of occurrences of ܘ in ܠ divided by the 
total number of patterns found in ܠ denoted by max௙ܠ. 
Definition 14: Support 
Let ܠ and ܡ be two time series. Then, the measure 
indicating how a pattern ܘ differs from one time 
series to another is called support and is given as: Supܘ = 	 ሻܘሺܡ݂ − 	 ሻmaxܘሺܠ݂ ቀ	 ,ሻܘሺܠ݂ 	  .ሻቁܘሺܡ݂
Then, a pattern is considered to be overrepresented 
in  ܡ if	Supܘ ൐ 0. On the other hand, if		Supܘ ൏ 0, 
then the pattern is believed to be underrepresented 
in	ܡ. 

The obvious limitation in the aforementioned 
work flow is the inability of PAA to precisely 
enough mimic the dynamics of highly volatile 
regions of the time series as will be demonstrated 
later. In addition, modifying this work flow to take 
into account patterns of different resolutions is 
everything but a trivial task. Furthermore, 
determining the abnormality of a pattern using the 
support can be difficult for new abnormal patterns 
since the frequency in this case will not be 
representative. 

4 NOVEL NON-TYPICAL 
PATTERN DISCOVERY 
APPROACH 

Supplementary to the description of the problem at 
hand in the previous section, we require that the 
patterns should successfully be exploited from 
univariate and multivariate process data and the 
discovery process should run in the form of an 
unsupervised learning method. This means that the 
user does not have to supply any additional 
information besides the historical data. To establish 
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a correct identification of cause and reactive 
causality, user prompts should be limited to general 
questions only, such as selection of relevant 
parameters and specification of input and output 
signals. The problem is further obscured by the fact 
that a key goal is the identification of unknown 
patterns from different resolutions and distortions 
(see figure 3). The idea behind the proposed non-
typical pattern discovery process is visualized in 
figure 4.  

 

Figure 3: Distortions. 

4.1 Selection 

Coming from a time series database	ܤܦ, the goal 
here is to select which time series should be 
considered for the unsupervised discovery of 
abnormal patterns. Depending on this selection, the 
subsequent steps in the process will either be 
concerned with univariate or multivariate patterns. 
However, it should be noted that even techniques 
designed for finding univariate patterns can easily be 
extended to multivariate patterns as shown in 
(Minnen, 2007). 

4.2 Data Manipulation 

Time series data occurs frequently in business 
applications and in science. Some well-known 
examples include temperatures, pressures, 
vibrations, emission, average fuel consumption, and 
many other quantities that are part of our everyday 
life. Be that as it may, as pointed out in (Keogh, 
1998), classic machine learning and clustering 
algorithms utilized on time series data do not 
provide the expected results due to the nature of the 
time series data. 

Besides the standard techniques for pre-
processing the raw data (e.g., cleaning the data, 
outlier removal, testing for missing values, etc.), the 
time series here are further processed to be suitable 
for extracting abnormal sub-sections from them. 

4.2.1 Compression 

Often the industrial data encompasses several 
decades where the measurements are taken as often 
as once per second. Thus, removing redundant 
information and reducing the length of the data is of 
upmost importance. 

Although any compression algorithm can be 
applied here (e.g., PAA), we employ the 
multidimensional compression technique introduced 
in (Feller, 2011) which is based on the perceptually 
important points algorithm pioneered in (Chung, 
2001) and exemplified in figure 5. 

 

Figure 4: Work flow of the proposed non-typical pattern discovery process. 
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Figure 5: Perceptually important points (PIPs). 

This choice was made due to the efficiency shown 
by the algorithm on datasets exhibiting strong 
stochastic dependencies (Feller, 2011). 

4.2.2 Generating Residua 

Since our goal is discovering the abnormal patterns, 
contrary to the traditional work flow, our approach 
searches for non-typical segments on the residual 
signal instead of the original raw data. This idea is 
motivated first and foremost by the desire to detect 
patterns of different lengths. In addition, given a 
well-fitted anomaly detection model, it is reasonable 
to expect that the residuals for the different signals 
will be uncorrelated as long as no anomaly is present 
(Feller, 2013). Thus, the discovery can be executed 
in a univariate manner – signal by signal. Once the 
univariate non-typical patterns are found, they can 
be merged into multidimensional patterns using a 
collision matrix (Minnen, 2007). Thus, the next step 
in our approach is to generate the multidimensional 
residual signal by using a data-driven condition 
monitoring method. A possible outcome is depicted 
in figure 6. (Feller, 2013) provides a complete and 
detailed analysis on this subject together with 
numerous modifications on the state-of-the-art 
algorithms leading to improved detection accuracy.  

 
Figure 6: Residual signal. 

4.3 Extracting Non-typical  
Sub-sequences 

Assuming the anomaly detection model is well-
suited, the residua are centered around zero and any 
significant deviations indicate some abnormality. In 
order to identify normal and abnormal intervals on 
the residual signal, a structural break detection 
algorithm can be employed. Continuing the example 
from last section, a possible outcome of structural 
breaks detection is shown next. 

 
Figure 7: Structural breaks detection – vertical lines 
indicate breaks. 

Once these structural breaks are identified, the 
pattern candidates can be defined. A pattern 
candidate is defined to be a segment of the residual 
curve between two consecutive structural breaks. 

The cornerstone of this procedure is the 
structural breaks detection. Although any reasonable 
algorithm will be sufficient, the algorithm of choice 
for this work is based on Chernoff’s bounds since it 
was shown in (Pauli, 2013) that it outperforms with 
respect to performance and diagnostic capabilities 
some well-known algorithms like sequential 
probability ratio test (SPRT) (Takeda, 2010; Kihara, 
2011), Chow test (Chow, 1960) and exact bounds. 
The interested reader is welcomed to review this 
technique in details in (Pauli, 2013).  

However, we are interested only in the non-
typical patterns. Thus, a separation between healthy 
and abnormal pattern candidates is needed. The 
classification, or distinction, between trivial and 
non-trivial pattern candidates is accomplished using 
a technique called sequential probability ratio test 
(Wald, 1945) that was developed by Wald in the 
early 1940’s and is primarily used for sequential 
hypothesis testing of stationary time series data. This 
technique is used to generate degradation alarms on 
the residual data. After this, a simple rule for 
abnormality is if an alarm is present in a pattern 
candidate, then it is identified as non-typical (similar 
to figure 8). 

 
Figure 8: Typical (no alarms) and non-typical (alarms as 
crosses) pattern candidates. 

In the consequent sections, it is assumed that a 
set of non-typical pattern candidates was found in 
this step denoted by: ܲ = ሼܘ௜ሽ௜∈ூು 
where I୔ is the index set of P and p୧ = ൫p୲୧൯୲∈୘౦౟ . 

ICINCO�2015�-�12th�International�Conference�on�Informatics�in�Control,�Automation�and�Robotics

574



4.4 Sub-sequence Transformation 

As noted previously, the pattern candidates may 
suffer from different distortions which may or may 
not be relevant for the study (see figure 3). Since 
noise distortion is always relevant and to some 
extent present, and also computational efficiency is 
needed, segmentation is used as pre-processing on 
the pattern candidates. 

4.4.1 Representation 

Time series representation is often seen as a trade-
off between accuracy and efficiency. With this in 
mind, some of the commonly used time series 
approximation techniques, such as moving averages, 
best-fitting polylines and sampling, have the 
drawback of missing important peaks and troughs 
(Man, 2001) and distorting the time series. Thus, a 
great number of high-level time series 
representations have been introduced in the literature 
in an attempt to find equilibrium between accuracy 
and efficiency (Fu, 2011) including PAA, adaptive 
piecewise constant approximation (APCA) 
(Chakrabarti, 2002), piecewise linear segmentation 
(PLA/PLR) (Pavlidis, 1974), SAX, discrete Fourier 
transform (DFT) (Agrawal, 1993), discrete wavelet 
transform (DWT) (Bronshtein, 2004), singular value 
decomposition (SVD) (Press, 2007), and 
perceptually important points (PIP) (Chung, 2001). 
The latter is a considerable factor within the data 
mining community. More specifically, PIP 
identification process has been used in the recent 
years for representation (Fu, 2001), clustering (Fu 
and Chung, 2001), pattern discovery, prediction, 
classification (Zhang, 2010), compression (Feller, 
2011), and segmentation. This combined with PIP’s 
ability to successfully capture the shape of a time 
series motivates our decision to utilize this algorithm 
in our work. As a result, the non-typical pattern 
candidates are compressed using PIP procedure: ෨ܲ = ሼܘ෥௜ሽ௜∈ூು෩  

where ܘ෥௜ = PIPሺܘ௜ሻ represents the PIP compression 
of ܘ௜. 
4.4.2 Transformation 

The next stage of the transformation process needs 
to differentiate between different cases of distortion 
relevance. For the sake of brevity, in the following 
we consider the most challenging case where only 
the general form of the pattern is relevant – i.e. all 

the distortions are irrelevant and two patterns are 
considered similar if their overall shape is identical. 

Definition 15: Transformation – General Form 
For ݓ = ,෥ܘ ෥ܘ ∈ ෨ܲ, the transformation of the pattern 
candidate is achieved using the following function: Transሺܘ෥ሻ:ℝ௪ ⟶ ℝ௪																			ሺ݌෤௧ሻ ⟼ ሺ̅݌௧̅ሻ 
where ̅݌௧̅ indicates that the value and the time are 
normalized. 

In other words, the transformation consists in 
normalizing the values of ܘ෥ as well as the values 
of	  ෥. As a result, the pattern candidates will haveܘܶ
points between 0 and 1 on both axes as shown next.  

4.5 Sub-sequence Comparison and 
Topological Grouping 

This step of the proposed knowledge discovery 
process aims at grouping the non-typical pattern 
candidates together. However, two questions arise. 
First, what distance measure should be used for 
comparison. Second, how to create the grouping 
without a priori knowledge of class belonging. 

4.5.1 Comparison 

The majority of the data mining tasks entail some 
kind concept of similarity between time series 
objects. Hence, the similarity of the compressed and 
transformed non-trivial pattern candidates is defined 
next. 

Definition 16: Sequences Maximum 
Let ܠ = ሺݔ௧ሻ௧∈் and ܡ = ሺݕ௧ሻ௧∈் be two sequences 
of length	݊. Then, the maximum of ܠ and ܡ is 
defined as: Maxሺܠ, :ሻܡ ℝ௡ × ℝ௡ ⟶ ℝ௡																								ሺݔ௧, ௧ሻݕ ⟼ maxሺݔ௧,  ௧ሻݕ
The idea is illustrated with the next figures. Figure 9 
depicts two compressed and transformed sub-
sequences and figure 10 shows their Max depicted in 
bold. 

 
Figure 9: Two compressed and transformed sub-
sequences. 
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Figure 10: Max(bold line) of two compressed and 
transformed sub-sequences. 

Contrary to the previous definition, the 
overlapping between two sequences is given as 
follows. 

Definition 17: Sequences Overlapping 
Let ܠ = ሺݔ௧ሻ௧∈் and ܡ = ሺݕ௧ሻ௧∈் be two sequences 
of length	݊. Then, the overlap of ܠ and ܡ is defined 
as: Overlapሺܠ, :ሻܡ ℝ௡ × ℝ௡ ⟶ ℝ௡																																ሺݔ௧, ௧ሻݕ ⟼ minሺݔ௧,  ௧ሻݕ
The shaded area in figure 11 represents the overlap 
between the two compressed and transformed sub-
sequences from figure 9. 

 

Figure 11: Overlap(bold line) of two compressed and 
transformed sub-sequences. 

It should be noted that the last two definitions 
present results for the simplified case when the 
sequences are of the same size and the same time 
domain	ܶ. For the compressed and transformed non-
typical pattern candidates this is not the case. 
However, using linear interpolation the union and 
overlapping is found easily in linear time.  

Now we can define the similarity between two 
sub-sequences. 

Definition 18: Similarity 
Let ܘ෥ and ܙ෥ be two compressed and transformed 
non-typical pattern candidates. Then, the similarity 
between them is given by: Simሺܘ෥, ෥ሻܙ = Area൫Overlapሺܘ෥, ,෥ܘ෥ሻ൯Area൫Maxሺܙ ෥ሻ൯ܙ , 
where Areaሺܠሻ represents the area under ܠ. 

In other words, the similarity between the two 
pattern candidates is the percentage of their overlap. 

Also, note that Simሺ∙,∙ሻ ∈ ሾ0,1ሿ and the closer the 
value to 1, the more similar the sub-sequences. In 
addition, the last definition can be used to formulate 
the notion of distance. 

Definition 19: Distance 
Let ܘ෥ and ܙ෥ be two compressed and transformed 
non-typical pattern candidates. Then, the distance 
between them is defined as: Distሺܘ෥, ෥ሻܙ = 1 − Simሺܘ෥,  .෥ሻܙ

Note that the distance measure given by definition 
19 is a metric. 

4.5.2 Grouping 

The previous section showed how the pattern 
candidates can be compared regardless of their 
length and the distortions they are suffering from. 
For the construction of the grouping from the pattern 
candidates, a modified version of the Kohonen Self-
Organizing Map (SOM) (Kohonen, 2001) is used 
where the distance metric for determining the best 
matching unit for a given sub-sequence is given by 
definition 19. The lattice of the training network is 
visualized in figure 12 using unified distance matrix 
(Vesanto, 2000). 

4.6 Clustering 

Once the training of the self-organizing map is 
completed, by either achieving some preselected 
number of iterations or the overall error is below a 
user-defined threshold value, the non-typical 
patterns can be generated by clustering the lattice of 
the network. Initially, the optimal number of clusters 
on the lattice is determined using the Davies-
Bouldin cluster validation index described in 
(Arbelaitz, 2013) and then a clustering algorithm is 
employed to create the clusters (e.g., k-means). A 
possible clustering is depicted in figure 13.  

 

Figure 12: U-Matrix – white color signifies small distance, 
while black color indicates large distance between 
prototypes.  
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Figure 13: Lattice clustering. 

The construction of the pattern centers, or motifs, 
can be accomplished by averaging all members 
within a cluster weighted by their hits (number of 
times a specific prototype was a best matching unit).  

Definition 20: Non-Typical Pattern 
Let ܥ௜ be a cluster found on the lattice of the SOM. 
Then, the non-typical patterns can be constructed as: ܕ஼೔ = ൫݉௧஼೔൯௧∈் 

where  ݉௧஼೔ = ෍ ஼೔∋ܟ.௧ݓܟ߮  

The value ߮ܟ represents the weighting coefficient 
for prototype ܟ and is given by: ߮ܟ =  ஼೔ߛܟߛ
with ܟߛ indicating the number of hits for prototype ܟ and ߛ஼೔ is the total number of hits within cluster ܥ௜: ߛ஼೔ = ෍ ஼೔∋ܟܟߛ . 
5 EVALUATION 

In this section, the performance of the proposed 
approach for discovering abnormal patterns is 
compared to the SAX-based technique explained in 
section 3. 

5.1 Experimental Setup 

In computer programming, unit tests are used to test 
the correctness of a procedure by using artificial data 
for which the outcome is known. Similarly, we 
define the following artificial scenario. The first 
1500 records of the artificial data presented in figure 
14 represent the healthy state of a system and will be 
used as a reference, or training, time series.  

 

Figure 14: Artificial data with patterns. 

Table 1: For a window length of 40, PAA dimension of 4, 
and alphabet size of 6, the SAX-based method results in 
21 of 30 patterns discovered whereby 20 of 30 identified 
precisely, but also featuring 2 false positives. 

  Rank  
#  1 2 3 4 5 6 7 8 9 10 Hits 
…             
18 TT O         Y Y 
19 TT            
20 HS  O        Y Y 
21 DT          Y Y 
22 TT         O  O 
…             
F   1   1      2 

Table 2: For a window of length of 40, PAA dimension of 
5, and alphabet size of 6, the SAX-based method results in 
15 of 30 patterns discovered whereby only 3 of 30 
identified precisely. In addition, 1 false positive was 
present. 

 Rank 
#  1 2 3 4 5 6 7 8 9 10 Hits 
…             
18 TT        O   O 
19 TT            
20 HS         O  O 
21 DT   O        O 
22 TT            
…             
F      1      1 

Table 3: For a window of length 60, PAA dimension of 4, 
and alphabet size of 6, the SAX-based method results in 
17 of 30 patterns discovered whereby none was identified 
precisely. Furthermore, two false positives were present. 

 Rank 
#  1 2 3 4 5 6 7 8 9 10 Hits 
…             
18 TT       O    O 
19 TT            
20 HS     O      O 
21 DT       O   O O 
22 TT    O       O 
…             
F   1 1        2 

The rest of the data, roughly 3000 records, will be 
used for pattern discovery. Three types of patterns 
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are used – head and shoulders (HS), triple top (TT) 
and double top (DT) (see figure 3.4 in (Fu, 2001)).  

Each pattern is added 10 times in the time series 
together with some distortions. However, the length 
of all patterns is kept fixed at 40 records in order to 
give competitive edge to the SAX-based algorithm. 
Note that for our approach, the length of a pattern is 
irrelevant and as such patterns of different 
resolutions can be found. 

5.2 Results 

Tables 1 through 3 present the results obtained using 
the SAX-based approach. In each table, the rows 
represent the 30 patterns inside the time series (only 
patterns 18 to 22 are shown for compactness) while 
the columns are the 10 most surprising patterns 
found by SAX.  The letter “O” indicates that the 
corresponding SAX surprising pattern is 
“overlapping” the real pattern. An example of this is 
displayed next. 

 

Figure 15: “O” - overlapping patterns (SAX-based pattern 
is depicted in bold). 

As seen from the figure, the pattern found by the 
SAX-based approach is overlapping the real pattern 
to some extend – not a complete match. On the other 
hand, “Y” indicates a total hit (figure 16). 

 

Figure 16: “Y” - matching patterns (SAX-based pattern is 
depicted in bold). 

In addition, a false alarm (the “F” row in the tables) 
is considered patterns missing completely the real 
ones (figure 17). 

 

Figure 17: False patterns (SAX-based pattern is depicted 
in bold). 

It can be concluded from the results presented 
above that the SAX-based approach is fairly 
accurate given an optimal configuration (in this case 
40 window length, 4 dimension for PAA, 6 alphabet 
size). However, it is clear that even slight changes in 
this configuration (changing the PAA dimension 
from 4 to 5, or changing the alphabet size from 6 to 
4, or using a sliding window of 60) degrades the 
results greatly. Moreover, even for the optimal 
configuration, the patterns found are mixed – e.g., in 
table 1, rank 10 surprising pattern mixes together all 
patterns (18 is TT, 20 is HS, 21 is DT). 

Next follows the analysis of the proposed work 
flow. Figure 18 portrays the residua obtain from an 
anomaly detection algorithm (in this case an 
improvement of the Nadaraya-Watson-Estimator 
(Feller, 2013) was used). 

 

Figure 18: Residual line. 

After this, the structural breaks detection and the 
SPRT deliver results similar to figure 19. 

 

Figure 19: Structural breaks and SPRT alarms marked by 
vertical lines and crosses respectively. 

For the construction of the non-typical patterns, a 
SOM was used with the following specifications: 

− Number of iterations   = 10000 
− Lattice dimension  = 50x50 
− Neighbourhood kernel  = Gaussian 
− Start / End learning rate = 0.8 / 0.003 
− Start / End radius  = 30 / 5 

The resulting trained lattice is shown next. 
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Figure 20: U-Matrix of trained SOM. 

For determining the optimal number of clusters on 
the lattice, the Davies-Bouldin index was used. As 
seen in figure 21, the index has it minimum value at 
3 as expected.  

 

Figure 21: Davies-Bouldin cluster validity index for 
k=2,..., 10. 

Applying k-means with k=3 yields:  

 

Figure 22: Clustered lattice with 3 clusters. 

The corresponding non-typical patterns are found 
using definition 20 and listed below.  

 

Figure 23: Centroid of cluster 1. 

 

Figure 24: Centroid of cluster 2. 

 

Figure 25: Centroid of cluster 3. 

In addition, all non-trivial pattern candidates were 
successfully mapped to the corresponding clusters.  

6 CONCLUSIONS AND FUTURE 
WORK 

It was described and illustratively shown how with 
the help of an anomaly detection algorithm and a 
flexible compression and transformation technique, 
non-typical patterns can be identified, labelled and 
compared. Applied to the problem of discovering 
abnormal patterns, the proposed work flow 
outperformed the standard literature approaches such 
as SAX-based methods. In addition, the suggested 
knowledge discovery process does not need any a 
priory knowledge regarding the hidden patterns and 
therefore is suitable for non-domain expert users.  

One of the bottlenecks for analyzing huge 
amounts of data with the proposed discovery process 
is the PIP compression with a running time 
of	ܱሺ݊ଶሻ. Therefore, a research in this direction will 
be worthwhile. 

Finally, further comparison and evaluation on 
real industrial data should give supplementary 
insight on how the proposed non-typical pattern 
discovery process performs compared to the 
standard approaches. 
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