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Abstract: We analyse CT image denoising when applied to vessel segmentation. Proposed semi-global quality metric 
based on the contrast-to-noise ratio allowed us to estimate initial image quality and efficiency of denoising 
procedures without prior knowledge about a noise-free image. We show that the total variance filtering in L1 
metric provides the best denoising when compared to other well-known denoising procedures such as non-
local means denoising or anisotropic diffusion. Computational complexity of this denoising algorithm is 
addressed by comparing its implementation for Intel MIC and for NVIDIA CUDA HPC systems. 

1 INTRODUCTION 

Liver volumetry is a critical aspect of safe hepatic 
surgeries. Precise segmentation of the vessel tree 
structure topology can be used in an image-guided 
surgery for liver lobes segmentation, tumor detection, 
and to reduce incisions and prevent post-operative 
bleeding, resulting in less blood loss and rapid patient 
recovery. CT image quality varies widely in different 
tomograms. Image noise and low contrast between 
veins and surrounding tissue make automatic and 
semi-automatic intrahepatic blood vessel 
segmentation a challenging task. 

Radiation dose from clinical CT scanning is an 
increasing health concern worldwide (Brenner and 
Hall, 2007). The guiding principle in CT scanner 
design is to reduce radiation levels as much as 
possible while maintaining acceptable diagnostic 
accuracy. This results in stronger image noise. Most 
noise suppression techniques in CT images can be 
broadly categorized as projection space denoising, 
image space denoising, and iterative reconstruction 
(Li et al., 2014). Denoising is critical for the tasks of 
vascular structure segmentation.  

Low contrast problem is caused by non-optimal 
distribution of the contrast agent during the scan. For 
example, in venous phase the agent may still be 
present in liver veins while absent in inferior vena 

cava. Low contrast in noisy images makes vessel 
structures indistinguishable from surrounding tissue. 

Differences in CT image quality affects 
segmentation results, and new segmentation methods 
have been suggested (Shang, 2010). Multiple 
methods exist to perform image restoration both at the 
scanning and reconstruction stages (Shuman et al., 
2014), and at the image processing stage (Brenner and 
Hall, 2007). 

Quality measure is important for both image and 
segmentation quality evaluation. However, there is no 
unambiguous solution to measure image quality in 
practical CT segmentation tasks. To use a common 
PSNR measure we need to have a noise-free image 
available. Contrast-to-noise measures require a ROI 
in the image to be selected (Shuman et al., 2014). This 
prior knowledge is available only for synthetic tests 
or when we already have a “ground truth” 
segmentation.  

We propose a new contrast-to-noise-based 
measure with reduced dependency on the prior 
knowledge, and proceed to use this measure to test 
different denoising algorithms applied to vessel 
segmentation. Incremental vessel segmentation 
technique is based on fast marching and level-set 
algorithms. 

Total variance in L1 distance (Chambolle and 
Pock, 2011) shows the best denoising quality. To 
make this computational-intensive method practical, 
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we implemented this denoising procedure using two 
“desktop supercomputing” methods: GPGPU using 
NVIDIA CUDA and MIC (Many Integrated Core) 
using Intel Xeon Phi. 

2 ONE POINT  
CONTRAST-TO-NOISE RATIO 
AS A QUALITY MEASURE 

Most of quality measures developed for signal and 
image processing, such as PSNR and method noise 
(Buades, Coll and Morel, 2006), require prior 
knowledge about a noise-free image. For example, 
CT reconstruction quality for different radiation dose 
is investigated using phantom images (Shuman et al., 
2014), (Hendrick, 2008). These metrics measure 
different aspects of image quality: PSNR describes 
degradation of the best signal, while method noise 
measures image edge corruption by denoising 
procedures. The most important image quality aspect 
for vessel segmentation is a contrast between vessels 
and noisy surrounding tissue. 

According to (Hendrick, 2008), contrast-to-noise 
ratio (CNR) is defined as the ratio of signal difference 
(contrast) to the noise level in the image: 

,object backgroundM M
CNR

σ
−

=  (1)

where objectM  and backgroundM  are average intensities 

of the object and its background, σ  is standard 
deviation of the image noise. 

Details of CNR estimation vary across different 
works. Usually, it is necessary to choose one ROI on 
the object and one – on the background to compute 

objectM  and backgroundM  (Shuman et al., 2014), 

(Magnotta and Friedman, 2006). However, it is 
possible to get incorrect CNR estimation on non-
uniform image parts (Mori et al., 2013).  

In (Nikonorov et al., 2014), Sliver7 (Heimann et 
al., 2009) training database was used to estimate 
denoising quality. The training set contains 
segmented livers and these segmentations are used to 
estimate objectM  in (1) and an outside image part is 

used for backgroundM  estimation. Unfortunately, this 

prior knowledge is not available for segmentation 
tasks found in many preoperative planning situations. 

We will use the following image model to 
estimate CNR on real CT data. We assume that the 
image consists of only two components: a vessel of a 
certain unknown diameter that we need to estimate, 
and surrounding tissue. This enables us to apply 

bimodal intensity distribution hypothesis at any local 
neighborhood. 

We used two approaches for CNR-like measure 
computation. In the simple two-point method we use 
one point inside and one outside of the vessel object 
to be segmented. Similar to ROI selection in (Shuman 
et al., 2014), a two-point CNR has the following 
form: 
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where objx  и bkgx  are points at the vessel and 
surrounding tissue, x ,  1, 2,3i i =  is i -th component 

of x , p( )x  is an intensity value at the point x , M is 

an intensity median over a cubic neighborhood, objR  
is the size of the cubic neighborhood on the vessel 
(object), bkgR  – on the surrounding tissues 
(background), ( , )bkg bkgM Rx  is defined the same way 

as ( , )obj objM Rx , ( , )bkg bkgRσ x  is standard deviation 

across the same region as bkgM ,  ,  
∞

 is L∞  or 

Chebyshev distance. 
Computation of objR  could be done assuming 

unimodality of the intensity distribution in the cubic 
image patch centered in objx . Follow (Basu and Das-
Gupta, 1992) if the distribution is unimodal then 

3 / 5,
obj obj

obj

M m

σ
−

≤  (3)

3,
obj obj

obj

M μ
σ

−
≤  (4)

where objm  is mean estimation and objμ  mode 

estimation over the image cubic neighborhood 
centered in objx . 

With objR  increasing above a threshold, the 
distribution loses its unimodality and inequalities (3) 
and (4) fails.  

To separate the object from the background the 
value of (2) must be greater than 1, with a value of 2 
being a better threshold for stable separation of the 
vessel from its surroundings. These values are 
obtained in the experiments, described in section 6.  
Values of (2) vary along with the point on the 
background selection. A low value for (2) means that 
the segmentation quality will be subpar, but if we get 
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good value then it does not follow that quality will be 
high. It would only mean that we have not found a 
bad case, yet. Therefore, the value of metric (2) is 
necessary but not sufficient for good vessels 
separation from background. 

We propose a semi-global method for CNR-like 
measure estimation using only one point inside the 
object. We use a cubic neighborhood of the point xobj  

defined using L∞  as done in (2): 

{ }: , .obj
DD R

∞
= ≤x x x  (5)

The distribution inside the cube is unimodal. The 
tissue surrounding this cube has different intensity 
distribution and thus overall distribution becomes 
bimodal, so inequalities (3), (4) fail and take the 
following form: 

3 / 5
bkg obj
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3
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At least one of (6), (7) must be true if the distribution 
isn’t unimodal. We can estimate the median over the 
set of cubic patches centered in kx  and having the 

size bkgR , all the patches placed in the neighborhood 
D of the objx  point: 
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The { }kM  set includes only patches with either (6) 

or (7) to be true, so it is an estimation of the 
background intensity median. The standard deviation 
for these patches is estimated as follows: 
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Finally, we estimate median and standard deviation 
as modes of (8) and (9). So, semi-global CNR-like 
measure takes the following form: 

1
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The variance of the noise often depends on the signal 
intensity, with the object and the background 
producing different estimates for the variance. As a 
result, it is not clear which variance must be used in 
the denominator of the measure (1). To address this 
problem, we use a half sum of the object and 

background variances in the denominator of the 
proposed one-point contrast-to-noise measure (10) as 
a compromise. 

3 VESSELS SEGMENTATION 
TECHNIQUE 

We applied Level Sets approach to segment vessels. 
Semi-automatic segmentation is performed in two 
steps. At the first “interactive initialization” step, Fast 
Marching Upwind Gradient method is used for the 
rough segmentation of vascular structures. At the 
second “precise segmentation” step, Geodesic Active 
Contours method is used for the final segmentation of 
vascular structures. The algorithm is shown in Fig. 1 
(Antiga, 2002), (Caselles, Kimmel, and Sapiro, 
1997). 

At the first step, seed points and optional target 
points are specified inside the vessel to be segmented. 
Seed points indicate the start of the wave front 
propagation in the Fast Marching algorithm. 

The wave propagation stops when one of the 
specified target points is reached. The wave front 
propagation is determined by a speed image. The 
original image has been used as a speed image after 
applying a threshold. 

At the second step, we use Geodesic Active 
Contour method to refine segmentation. This method 
requires two inputs: The Fast Marching result as the 
initial level set, and the feature image. We use the 
gradient magnitude of the original image with the 
transformation of the nonlinear function (Sigmoid 
filter) as the edge potential map. 

The level-set algorithm produces a real-valued 
image. The binary image, obtained by applying a 
threshold, is the final segmentation result. 

We also used a restricted segmentation region 
defined by a binary image of an organ or an organ 
region to improve segmentation speed and increase 
segmentation precision. 

We used stepwise incremental approach to 
segment the whole vascular tree when it was 
impossible to perform vascular tree segmentation at 
once. Each step implies the segmentation of a certain 
vessel subtree. The final binary image obtained at 
each step is combined with the final binary images 
achieved at previous steps. 

To improve segmentation quality in low-contrast 
situations, the original image has been smoothed by 
Gaussian filter to prevent the leak into the region rich 
in blood vessels represented as less than one pixel 
diameter on low-contrast CT data. 
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Figure 1: Incremental segmentation algorithm. 

The main parameter of the algorithm is a 
threshold between vessels and surrounding tissues. 
We automatically estimate its value by using a 
Mahalanobis-like procedure: 
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and using measure (10): 
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where T is a threshold value, and ( )1
objq x  is defined 

by (10). 

4 DENOISING PROCEDURES 

We compared four denoising techniques applied to 
vessel segmentation: curvature anisotropic diffusion, 
bilateral filtering, non-local-means filter, and total 
variance based denoising in 2L  and 1L . 

We will briefly describe these methods using the 
following notation. Let us denote a noisy source 
image as 0 ( )xp , while the target filtered image as 

* ( )xp . 

The downside of image denoising (smoothing) is 
that it blurs sharp boundaries used to distinguish 

anatomical structures, such as vessels. Perona and 
Malik (1990) introduced an alternative to linear-
filtering called anisotropic diffusion. The motivation 
for anisotropic diffusion (also called nonuniform or 
variable conductance diffusion) is that a Gaussian 
smoothed image is a single time slice of the solution 
to the heat equation that has the original image as its 
initial conditions. Thus, the solution to 

( , )
( , )

g t
g t

t

∂ = ∇ ⋅∇
∂
x

x , (13) 

where ( ,0) ( )g =x p x  is ( , ) G( 2 ) ( )g t t p= ⊗x x , 

and G( )σ  is a Gaussian kernel with standard 

deviation σ . Anisotropic diffusion includes a 
variable conductance term which in turn depends on 
the differential structure of the image. Thus, the 
variable conductance can be formulated to limit edge 
smoothing in images, as measured by a high gradient 
magnitude, for example. In our work, we use 
curvature anisotropic diffusion modification, 
described in (Shang, 2010) and implemented in ITK 
(Johnson et al., 2013). 

Total variation model was invented by Rudin, 
Osher, Fatemi (1992). This model is based on 
minimization of the following functional  

*
01 2

arg min λ= ∇ + −
p

p p p p , (14) 

where 
1

 is the robust 1L  norm, 
2

 is the 2L  

norm used in the least-squares restoration model, 0p  

is the source noisy image, *p  is the target filtered 

image and λ  is the weighting parameter, which 
defines the trade-off between regularization and data 
fitting. The 1L  norm of the image gradient is total 

variation 
1

∇p . This filtering is capable of denoising 

images without blurring edges. We use 
implementation of total variance filtering based on 
(Chambolle and Pock, 2011). We will refer to it as 
TV L2 de-noising. 

An alternative denoising technique, based on non-
local-mean approach proposed in (Buades, Coll and 
Morel, 2006), involves averaging over pixels similar 
in intensity but distant in spatial domain. It is 
therefore necessary to scan a vast portion of the image 
in search of all the pixels that resemble the pixel to 
denoise because the image can have periodic textured 
patterns, or the elongated edges. Denoising is then 
done by computing the average color of these most 
resembling pixels. The resemblance is evaluated by 
comparing a whole window around each pixel. This 
new filter is called non-local means and is computed 
as follows: 
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The family of weights ( , )w x y  depends on the 

similarity between the pixels x  and y , ( )C x  is a 

weighting constant: 
2
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where N( )x  denotes a square neighborhood of a 

fixed size and centered around a pixel x . 
Another filtering method we test is a bilateral or 

Yaroslavsky filter, which we use from ITK package 
(Johnson et al., 2013). 

This approach was previously compared to the 
anisotropic diffusion and total variance filtering in 
(Buades, Coll and Morel, 2006) using method noise 
measure and comparing visual quality. The main idea 
of the method noise measure is to estimate how a 
denoising algorithm alters structures found in the 
image. 

We developed optimization method to de-noise 
3D CT data based on the optimal first-order primal-
dual framework by Chambolle and Pock (2011). It is 
a total variance minimization based on 1L  norm, we 

will call this method TV L1 denoising. 
Let X and Y be the finite-dimensional real vector 

spaces for the primal and dual space, respectively. 
Consider the following operators and functions: 

: X Y→K  is a linear operator from X to Y; 
: X [0, )→ +∞G  is a proper, convex, (l.s.c.) 

function; 
: Y [0, )→ +∞F  is a proper, convex, (l.s.c.) 

function; 
where l.s.c. stands for lower-semi-continuous. 
The optimization framework (Chambolle and 

Pock, 2011) considers general problems in the 
following form: 

ˆ arg min ( ( )) ( ).= +
x

x F K x G x  (17) 

To solve this problem, the following algorithm is 
described in the paper (Chambolle and Pock, 2011). 

During initialization, , Rτ σ ∈ +  are set, [0,1]θ ∈ , 

0 0( , ) X Y∈ ×x y  is some initial approximation, 

0 0=x x . For 3D CT data, the final result obtained on 

the previous slice is used as the initial approximation 
for the next slice. With 0n ≥  as the current step 
number, values of the , ,n n nx y x  are iteratively 

updated as follows: 

1 * ( )n F n nproxσ σ+ = +y y Kx , (18)
*

1 1( )n n nproxτ τ+ += +Gx x K y , (19)

1 1 1( )n n n nθ+ + += + −x x x x . (20)

The proximal operator with respect to G in (19), is 
defined as: 

1

2

2

( ) ( ) ( )

1
arg min ( ),

2

proxτ τ

τ

−= + ∂ =

= − +

G

x

x E G x

x x G x
 (21)

where E is an identity matrix. The proximal operator 
(18) is defined in a similar way. 

The model of denoising is based on the total 
variance approach (Chambolle and Pock, 2011) and 
is described by the following functional: 

*
01 1

min λ= ∇ + −
p

p p p p , (22)

where 
1

 is the robust 1L  norm, 0p  is the source 

noisy image, *p  is the target filtered image and λ  is 

the weighting parameter, which defines the tradeoff 
between regularization and data fitting. 

In order to apply the described algorithm to (22), 
we follow the (Chambolle and Pock, 2011): 

1
( )G = ∇p p , (23)

*
0 1

( )F = −p p p . (24)

Finally, proximal operators for steps (18) and (19) 
of the algorithm can be obtained using (23) and (24). 
Please refer to (Chambolle and Pock, 2011) for 
further details. The denoising algorithm based on 
total variance can preserve sharp edges. Also, the use 
of 1L  makes it possible to efficiently remove strong 

outliers. 

5 HIGH PERFORMANCE 
IMPLEMENTATION OF 
DENOISING ALGORITHM 

As can be seen in the results of our experiments in the 
following Section 6, TV L1 denoising algorithm 
proved to be the best for low-contrast CT data, but it 
is the most computationally expensive one. This is 
why we implemented it for two many-core systems, 
Xeon Phi and CUDA. The work (Pock et al., 2008) 
addressed CUDA implementation of TV L1 
algorithms, but did not provide details. 

A general algorithm is shown in Fig. 2. The 
implementation is based on (11)-(13). Expressions 
(11)-(12) describe the dual part of the iteration of the 
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proximal algorithm, UpdateDual(), and (13) 
describes the primal part UpdatePrimal(). 

 

Figure 2: General algorithm of TV L1 filtering. 

TV L1 is based on proximal algorithms, these 
algorithms have large dimensionality but they are 
separable, as it was shown in (Parikh and Boyd, 
2013). This property enables efficient parallel 
implementation. 

Each iteration of the computation is divided into 
two stages: UpdateDual() and UpdatePrimal(). Inside 
these stages we have a vector-like processing of the 
arrays with a size of about 218. However, these two 
stages are sequential and require synchronization 
between them at each iteration. 

GPU implementation. Intensive memory use of 
TV L1 algorithm represents a challenge for GPU 
implementation. The size of the shared memory is a 
major constraint of the GPU, which can be expressed 
as follows: 

max

max

max

max max

,

,

,

/ ,

MP MP S MP

Th per MP MP B Th per MP

MP MP

opt
B Th per MP MP

S N N S

N N N N

N N

N N N

= ⋅ ≤

= ⋅ ≤

≤

=

 (25) 

where MPS  amount of available shared memory per 

MP in bytes, MPN  - a number of blocks per MP, SN  

necessary amount of shared memory per block, max
MPS  

– maximum amount of shared memory per MP in 
bytes, Th per MPN  - a number of simultaneous threads 

per MP, BN  - a number of threads per block, 
max
Th per MPN  - maximum amount of threads per MP, 
max
MPN  - a number of blocks per MP, opt

BN  - an optimal 

block size in bytes. 
In our case, ( 1)S B typeN N S= + ⋅  , where typeS  is 

the size of pixel in bytes. So, the amount of shared 
memory per multiprocessor is: 

max( 1)MP MP B type MPS N N S S= ⋅ + ⋅ ≤ . (26) 

For both tested GPU platforms we use  
max 16MPN = , max 2048Th per MPN = , max 49152MPS = , so, 

128opt
BN =  threads per block. Finally, 8256MPS =  

bytes for single precision and 16512MPS =  bytes for 

double precision, which is lower than max
MPS . 

We use two CUDA kernel calls for each iteration. 
The first kernel call implements UpdateDual(), the 
second – UpdatePrimal(). There is global memory 
exchange between these two kernel calls, that is why 
we do not have any overhead caused by shared 
memory invalidation between the kernel calls. 

Many-core Xeon Phi implementation is an 
alternative to CUDA. We use OpenMP for both 
multicore CPU and Xeon Phi implementation. For 
Xeon Phi we used non-shared memory offload model. 

We use omp parallel for private pragmas for the 
CPU version. All intermediate variables are made 
private. Synchronization by omp barrier pragmas is 
made after UpdateDual() and UpdatePrimal(), at the 
same places as in the CPU version. Private variables 
are also the same as in the CPU version. 

Main algorithm iteration loop and all inner loops 
are made on the coprocessors side. Parallelization of 
the for-loops is made by omp parallel for simd private 
pragma. The simd modifier allows efficient utilization 
of the Xeon Phi vectorized architecture. We bind 
OpenMP threads to physical processing units by 
setting environment variables KMP_AFFINITY to 
"balanced,granularity=fine" and 
KMP_PLACE_THREADS to "59C,4T". 

We use one CT slice to test performance, with 600 
iterations. The slice is 16-bit image of the 512х512 
size. Testing equipment: Intel Xeon E5-2695 v2, Intel 
Core i7 4770K at 4.2 GHz, Intel Xeon Phi 5110P, 
NVIDIA Tesla K20m, NVIDIA GTX770 4096 MB. 
In the offload model one core of Xeon Phi is reserved 
for system need, which leaves us with 236 threads out 
of 240 available at Xeon Phi. Results are shown in 
Fig. 3. 

As shown in Fig. 3, NVIDIA Tesla slightly 
outperforms Intel Xeon Phi, with both systems about 
10 times faster than a CPU-based version, and only 
slightly faster than an implementation based on an 
inexpensive GTX 770 GPU. A major advantage of 
Xeon Phi is its capability to run the same OpenMP 
implementation as a CPU-based version, which 
makes Xeon Phi a better option for rapid prototyping 
of computationally-expensive algorithms. GPGPU 
approach is optimal for production use, when the cost 
and power consumption are more important 
considerations. With a typical CT that has about 200 
slices, the data could be filtered by a GTX 770-based 
system in about 3.3 seconds, which is acceptable for 

UpdatePrimal(): <in: p; out: head_u; inout: u>

Writing filtered image

UpdateDual(): <in: head_u; out: p>

Reading image: <u = imageIn, head_u = u, p = zeros()>

i = 0:iterCount
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production use. Peak memory usage is one gigabyte 
for single precision and two gigabytes for double 
precision. Neither GPU nor Xeon Phi architectures 
limit the memory needed by slice-by-slice processing. 
A similar workflow for large color image filtering 
was proposed in (Nikonorov, Bibikov and Fursov, 
2010). 

 

Figure 3: Computation time for different systems. 

6 RESULTS AND DISCUSSION 

We tested our algorithm on 20 CT images from Sliver 
7 database and on 8 of our own CT images and used 
proposed metric and visual quality analysis. We also 
used 10 CT scans of the abdomen from a publicly 
available database (IRCAD) in our evaluation of the 
proposed one-point CNR measure (10). 

The implementations of bilateral filter and 
curvature anisotropic diffusion filter can be found in 
ITK library (Johnson et al., 2013). The following 
parameters were used for bilateral filter: domain 
sigma of 7, range sigma of 7; and for curvature 
anisotropic diffusion (Johnson et al., 2013): time step 
of 0.09, 8 iterations and a conductance value of 3.0. 
The total variance filters have [0.2,0.4]λ ∈ . 

We tested different denoising techniques on the 
CT images from (IRCAD) database. All images in 
this database have a good contrast. However, good 
quality venous segmentations are only possible after 
a denoising step.  

For our evaluation, we used the following 
algorithm. We apply different denoising procedures 
with TV L1, TV L2 and non-local-means filtering. 
Then we compute one-point CNR measure and 
perform segmentation. We compared our 

segmentation with the ground truth and compute 
volume overlap error – VOE (Heimann et al., 2009). 

For different CT images the value of one-point 
CNR (10) varies, with values typically between 2 and 
5. VOE is usually between 5% and 18%. To make 
these values comparable across different images, we 
apply normalization to CNR and VOE values. Plots 
of normalized VOE and CNR with its 90% 
confidence interval values are shown in Fig. 6. 

Figure 4: Low quality CT, TV L2 denoising, TV L1 
denoising. 

Figure 5: High quality CT and its TV L2 denoising. 

 

Figure 6: Normalized VOE (bold), mean normalized value 
of measure (10) (regular) and its 90% CI (dashed) for 
different denoising parameters applied to 10 CT images. 

In Fig. 4 low-contrast CT is shown, the quality 
measure (10) for this image is 1.45. The result of TV 
L1 denoising has the quality measure of 3.24, for TV 
L2 denoising – 2.83. As shown in Fig. 4, the visual 
quality for TV L1 is also better. This denoised image 
allows us to segment a portion of the hepatic vein 
(central-bottom part of the Fig. 4). This branch of 
hepatic vein could not be separated otherwise. Only 
TV L1 filtering made it possible to perform a 
complete segmentation of hepatic veins in this CT 
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data using previously described segmentation 
technique. 

A low-contrast example is compared to a high-
contrast one shown in Fig. 5. Quality measure for this 
image is 2.81, the quality increased to 8.62 after 
denoising. 

Quality measure values for bilateral filtering and 
curvature diffusion are lower than results obtained 
with non-local-means filter and total variance 
denoising. Sample results obtained on two low-
contrast CT images (with a quality lower than 2) and 
on two CT images with normal contrast are shown in 
table 1. 

Table 1: Image quality measure for denoising. 

Image type 
Image number/Quality measure (10) 

Image 
#21 

Image 
#3 

Image 
#5 

Image 
#22 

Noisy image 1.45 1.86 2.81 2.27 
Bilateral 
filtering 

2.11 2.13 5.83 3.12 

Curvature 
diffusion 

1.87 2.45 6.17 2.87 

Non-local-
means 

2.30 2.67 8.89 4.13 

TV L2 2.83 2.44 8.62 3.78 
TV L1 3.23 2.94 8.17 3.65 

These results allow us to make the following 
conclusions. First, proposed one-point contrast-to-
noise based CT image quality measure helps to 
predict the quality of the segmentation and allows 
detection of the low-contrast CT data. It is also a 
useful in choosing the best denoising procedure and 
its parameters for individual CT scans. 

Second, for CT images with good contrast and a 
quality measure higher than 2.0, results for total 
variance algorithm using 1L  and 2L  norms and non-

local-means are close. Non-local-means produce a 
slightly better denoising results, which is similar to 
the findings in (Buades, Coll and Morel, 2006).  

Third, TV 1L  denoising shows significantly 

better results for low-contrast images. While these 
low quality images represent only 20% of our data 
set, only TV 1L  filtering makes whole venous 

segmentation technique from section 4 possible. 
As shown in section 5, HPC implementation 

reduces the time of the TV 1L  denoising procedure 

while maintains its effectiveness. It makes this 
denoising method the best practical choice for 
preprocessing low-contrast CT data with quality 
measure (10) lower than 2.0. 

The results achieved with an HPC-based 
implementation of TV L1 algorithm opens new 
opportunities in exploring computationally intensive 
hepatic segmentation algorithms, as well as other 
aspects of image-guided surgery such as non-rigid 
registration and real-time tracking. This will be 
explored in subsequent research. 

Improvement to the segmentation technique for 
low contrast images is another interesting area to 
explore. The challenge here is that the image requires 
different threshold values in various areas of the CT. 
Incorporating threshold prediction in the wave 
propagation process during the first step of the 
segmentation could be a promising direction. An 
HPC implementation of the geodesic active contour 
segmentation step could further reduce segmentation 
processing time. 
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