
Formal Analysis of E-Cash Protocols�

Jannik Dreier1, Ali Kassem2 and Pascal Lafourcade3

1Institute of Information Security, Department of Computer Science, ETH, Zurich, Switzerland
2University Grenoble Alpes, Verimag, Grenoble, France

3University Clermont Auvergne, Limos, France

Keywords: E-Cash, Formal Analysis, Double Spending, Exculpability, Privacy, Applied p-Calculus, ProVerif.

Abstract: Electronic cash (e-cash) aims at achieving client privacy at payment, similar to real cash. Several security
protocols have been proposed to ensure privacy in e-cash, as well as the necessary unforgery properties. In
this paper, we propose a formal framework to define, analyze, and verify security properties of e-cash systems.
To this end, we model e-cash systems in the applied p-calculus, and we define two client privacy properties and
three properties to prevent forgery. Finally, we apply our definitions to an e-cash protocol from the literature
proposed by Chaum et al., which has two variants and a real implementation based on it. Using ProVerif, we
demonstrate that our framework is suitable for an automated analysis of this protocol.

1 INTRODUCTION

Although current banking and electronic payment
systems such as credit cards or, e.g., PayPal allow
clients to transfer money around the world in a frac-
tion of a second, they do not fully ensure the clients’
privacy. In such systems, no transaction can be made
in a completely anonymous way, since the bank or
the payment provider knows the details of the clients’
transactions. By analyzing a client payments for, e.g.,
transportations, hotels, restaurants, movies, clothes,
and so on, the payment provider can typically deduce
the client’s whereabouts, and much information about
his lifestyle.

Physical cash provides better privacy: the pay-
ments are difficult to trace as there is no central au-
thority that monitors all transactions, in contrast to
most electronic payment systems. This property is the
inspiration for “untraceable” e-cash systems. The first
such e-cash system preserving the client’s anonymity
was presented by David Chaum (Cha83): a client
can withdraw a coin anonymously from his bank and
spend it with a seller. The seller can then deposit
the coin at the bank, who will credit his account. In
this protocol coins are non-transferable, i.e., the seller
cannot spend a received coin again, but has to deposit
it at the bank. If he wants to spend a coin in another
�This research was conducted with the support of the “Dig-
ital trust” Chair from the University of Auvergne Founda-
tion.

shop, he has to withdraw a new coin from his account,
similar to the usual payment using cheques. In con-
trast, there are protocols where coins are also trans-
ferable, i.e., coins do not need to be deposited directly
after each spend, but can be used again, e.g., (OO89;
CGT08).

To be secure, an e-cash protocol should not only
ensure the client’s privacy, but must also ensure that a
client cannot forge coins which were not issued by the
bank. Moreover, it must protect against double spend-
ing – otherwise a client could try to use the same coin
multiple times. This can be achieved by using on-
line payments, i.e., a seller has to contact the bank
at payment before accepting the coin, however it is
an expensive solution. An alternative solution, which
is usually used to support off-line payments (i.e., a
seller can accept the payment without contacting the
bank), is revealing the client’s identity if he spent a
coin twice. Finally, exculpability ensures that an at-
tacker cannot forge a double spend, and hence incor-
rectly blame an honest client for double spending.

In the literature, many e-cash protocols have been
proposed (Cha83; CFN90; Dam90; DC94; Cre94;
Bra94; AF96; KO01; FHY13). For example, Abe
et al. (AF96) introduced a scheme based on partial
blind signature, which allows the signer (the bank) to
include certain information in the blind signature of
the coin, for example the expiration date or the value
of the coin. Kim et al. (KO01) propose an e-cash
system that supports coin refund and assigns them a

65Dreier J., Kassem A. and Lafourcade P..
Formal Analysis of E-Cash Protocols.
DOI: 10.5220/0005544500650075
In Proceedings of the 12th International Conference on Security and Cryptography (SECRYPT-2015), pages 65-75
ISBN: 978-989-758-117-5
Copyright c 2015 SCITEPRESS (Science and Technology Publications, Lda.)

value, based again on partial blind signature.
At the same time, many attacks have been found

against various existing e-cash protocols: for ex-
ample Pfitzmann et al. (PW91; PSW95) break the
anonymity of (Dam90; DC94; Cre94). Cheng et
al. (CYS05) show that Brand’s protocol (Bra94) al-
lows a client to spend a coin more than once with-
out being identified. Aboud et al. (AA14) show
that (FHY13) cannot ensure the anonymity and un-
linkability properties that were claimed.

These numerous attacks triggered some first work
on formal analysis of e-cash protocols in the com-
putational (CG08) and symbolic world (LCPD07;
SK14). Canard et al. (CG08) provide formal defi-
nitions for various privacy and unforgeability proper-
ties in the computational world, but only with man-
ual proofs as their framework is difficult to automate.
In contrast, Luo et al. (LCPD07) and Thandar et
al. (SK14) both rely on automatic tools (AVISPA2

and ProVerif (Bla01), respectively). Yet, they only
consider a fraction of the essential security properties,
and for some properties Thandar et al. only perform a
manual analysis. Moreover, much of their reasoning
is targeted on their respective case studies, and cannot
easily be transferred to other protocols.

Contributions: This paper fills the gaps of previ-
ous formal verification work. Inspired by other do-
mains such as e-voting (BHM08; DKR09; DLL12),
e-auctions (DLL13), and e-exams (DGK+14), we
propose a more general formalization for non-
transferable e-cash protocols in the applied p-
calculus (AF01). Our definitions are amenable to au-
tomatic verification using ProVerif (Bla01), and cover
all crucial privacy and unforgery properties: Weak
Anonymity, Strong Anonymity, Unforgeability, Dou-
ble Spending Identification, and Exculpability. Fi-
nally, we validate our approach by analyzing the on-
line protocol proposed by Chaum et al. (Cha83), as
well as, a real implementation based on it (Sch97).
We also analyze the off-line variant of this e-cash sys-
tem (CFN90).

Outline: In Section 2, we model e-cash protocols in
the applied pi-calculus. Then, we specify the security
properties in Section 3. We validate our framework
by analyzing the on-line and off-line e-cash systems
by Chaum et al. (Cha83; CFN90), and the imple-
mentation based on the on-line protocol (Sch97) in
Section 4. In Section 5, we discuss our results and
outline future work.

2www.avispa-project.org

2 MODELING E-CASH
PROTOCOLS

We model e-cash protocols in the applied p-calculus,
a process calculus designed for the verification of
cryptographic protocols. We refer to the original pa-
per (AF01) for a detailed description of its syntax and
semantics.

In the applied p-calculus, we have a Dolev-Yao
style attacker (DY83), which has a complete control
to the network, except the private channels. He can
eavesdrop, remove, substitute, duplicate and delay
messages that the parties are sending to one another,
and even insert messages of his choice on the public
channels.

Parties other than the attacker can be either hon-
est or corrupted. Honest parties follow the protocol’s
specification, do not reveal their secret data (e.g., ac-
count numbers, keys etc.) to the attacker, and do
not take malicious actions such as double spending
a coin or generating fake transactions. Honest parties
are modeled as processes in the applied p-calculus.
These processes can exchange messages on public or
private channels, create fresh random values and per-
form tests and cryptographic operations, which are
modeled as functions on terms with respect to an
equational theory describing their properties.

Corrupted parties are those that collude with the
attacker by revealing their secret data to him, tak-
ing orders from him, and also making malicious ac-
tions. We model corrupted parties as in Definition 15
from (DKR09): if the process P is an honest party,
then the process Pc is its corrupted version. This is
a variant of P which shares with the attacker chan-
nels ch1 and ch2. Through ch1, Pc sends all its inputs
and freshly generated names (but not other channel
names). From ch2, Pc receives messages that can in-
fluence its behavior.

An e-cash system involves the following parties:
the client C who has an account at the bank, the seller
S who accepts electronic coins, and the bank B, which
certifies the electronic coins. E-cash protocols typi-
cally run in three phases:

1. Withdrawal: the client withdraws an electronic
coin from the bank, which debits the client’s ac-
count.

2. Payment: the client spends the coin by executing
a transaction with a seller.

3. Deposit: the seller deposits the transaction at the
bank, which credits the seller’s account.

In addition to these three main phases, some systems
allow the clients

SECRYPT�2015�-�International�Conference�on�Security�and�Cryptography

66

(a) to return coins directly to the bank without using
them in a payment, for instance in case of expira-
tion, or to re-distribute the coins denominations,
and

(b) to restore coins that have been lost, for instance
due to a hard disk crash.

As these functionalities are not implemented by all
protocols, our model does not require them. More-
over, we assume that the coins are neither transferable
nor divisible.

We define an e-cash protocol as a tuple of pro-
cesses each representing the role of a certain party.

Definition 1. (E-cash Protocol). An e-cash protocol
is a tuple (B;S;C; ñ), where B is the process executed
by the bank, S is the process executed by the sellers,
C is the process executed by the clients, and ñ is the
set of the private channel names used by the protocol.

To reason about privacy properties we use runs of
the protocol, called e-cash instances.

Definition 2. (E-cash Instance). Given an e-cash
protocol, an e-cash instance is a closed plain process:

CP =nñ0:(BjSsids1 j : : : jSsidsl j
(Csidc1sc11 sids11 j : : : jCsidc1sc1p1

sids1p1
)j

...
j(Csidck sck1sidsk1 j : : : jCsidck sckpk

sidskpk
))

where ñ0 is the set of all restricted names which in-
cludes the set of the protocol’s private channels ñ; B
is the process executed by the bank; Ssidsi is the pro-
cess executed by the seller whose identity is specified
by the substitution sidsi ; Csidcisci j sidsi j is the process
executed by the client whose identity is specified by
the substitution sidci , and which spends the coin iden-
tified by the substitution sci j to pay the seller with the
identity specified by the substitution sidsi j . Note that
idci can spend pi coins.

To improve the readability of our definitions, we
introduce the notation of context CPI[] to denote
the process CP with “holes” for all processes exe-
cuted by the parties whose identities are included in
the set I. For example, to enumerate all the ses-
sions executed by the client idc1 without repeating
the entire e-cash instance, we can rewrite CP as
CPfidc1g[Csidc1 sc11 sids11 j : : : jCsidc1sc1p1

sids1p1
].

Finally, we use the notation Cw to denote a client
that withdraws a coin, but does not spend it in a pay-
ment: Cw is a variant of the process C that halts at the
end of withdrawal phase, i.e., where the code corre-
sponding to the payment phase is removed.

3 SECURITY PROPERTIES

We define three properties related to forgery: Un-
forgeability, Double Spending Identification, and Ex-
culpability. Moreover, we formalize two privacy
properties: Weak Anonymity and Strong Anonymity.

3.1 Forgery-related Properties

In an e-cash protocol a client must not be able to cre-
ate a coin without involving the bank, resulting in a
fake coin, or to double spend a valid coin he withdrew
from the bank. This is ensured by Unforgeability,
which says that the clients cannot spend more coins
than they withdrew.

To define unforgeability we use the following two
events:

� withdraw(c): is an event emitted when the coin
c is withdrawn. This event is placed inside the
bank process just after the bank outputs the coin’s
certificate (e.g., a signature on the coin).

� spend(c): is an event emitted when the coin c is
spent. This event is placed inside the seller pro-
cess just after he receives and accepts the coin.

Events are annotations that mark important steps in
the protocol execution, but do otherwise not change
the behavior of processes.

Definition 3. (Unforgeability). An e-cash protocol
ensures Unforgeability if, for every e-cash instance
CP, each occurrence of the event spend(c) is preceded
by a distinct occurrence of the event withdraw(c) on
every execution trace.

If a fake coin is successfully spent, the event spend
will be emitted without any matching event withdraw,
violating the property. Similarly, in the case of a suc-
cessful double spending the event spend will be emit-
ted twice, but these events are preceded by only one
occurrence of the event withdraw.

In the rest of the paper, we illustrate all our notions
with the ”real cash” system (mainly coins and ban-
knotes) as a running example. We hope that it helps
the reader to understand the properties but also to feel
the difference between real cash and e-cash systems.

Example 1. (Real Cash). In real cash, unforgeabil-
ity is ensured by physical measures that make forging
or copying coins and banknotes difficult, for example
by adding serial numbers, using special paper, ultra-
violet ink, holograms and so on.

Since a malicious client might be interested to cre-
ate fake coins or double spend a coin, it is particu-
larly interesting to study Unforgeability with an hon-
est bank and corrupted clients. A partially corrupted

Formal�Analysis�of�E-Cash�Protocols

67

seller, which e.g., gives some information to the at-
tacker but still emits the event spend correctly, could
also be considered to check if a seller colluding with
the client and the attacker can results in a coin forg-
ing. Note that if the seller is totally corrupted then
Unforgeability will be trivially violated, since a cor-
rupted seller can simply emit the event spend for a
forged coin, although there was no transaction.

In case of double spending, the bank should be
able to identify the responsible client. This is ensured
by Double Spending Identification, which says that a
client cannot double spend a coin without revealing
his identity.

To deposit a coin at the bank the seller has to
present a transaction which contains, in addition to
the coin, some information certifying that he received
the coin in a payment. A valid transaction is a trans-
action which could be accepted by the bank, i.e., it
contains a correct proof that the coin is received in a
correct payment. The bank accepts a valid transaction
if it does not contain a coin that is already deposited
using the same or a different transaction.

In the following, we denote by TR the set of all
transactions, and we define the function transId
which takes a transaction tr 2 TR and returns a pair
(s;c), where s identifies tr and c is the coin involved
in tr. Such a pair can usually be computed from a
transaction. We also denote by ID the set of all client
identities, and by D a special data set that includes the
data known to the bank after the protocol execution,
e.g., the data presents in the bank’s database.

Definition 4. (Double Spending Identification). An e-
cash protocol ensures Double Spending Identifica-
tion if there exists a test TDSI : TR� TR� D 7! ID[
f?g satisfying: for any two valid transactions tr1
and tr2 that are different but involve the same coin
(i.e., transId(tr1) = (s1;c), and transId(tr2) =
(s2;c) for some coin c with s1 6= s2), there exists p 2 D
such that TDSI(tr1; tr2; p) outputs (idc;e) 2 ID� D,
where e is an evidence that idc withdrew the coin c.

Double Spending Identification allows the bank to
identify the double spender by running a test TDSI on
two different transactions that involves the same coin.
For example, consider a protocol where after a suc-
cessful transaction the seller gets x = m:id + r where
id is the identity of the client (e.g., his secret key),
r is a random value (identifies the coin) chosen by
the client at withdrawal, and m is the challenge of the
seller. So, if the client double spends the same coin
then the bank can compute id and r using the two
equations: x1 =m1:id+r and x2 =m2:id+r. The data
p could be some information necessary to identify the
double spender or to construct the evidence e. This
data is usually presented to the bank at withdrawal or

at deposit. The required evidence depends on the pro-
tocol. Note that e is an evidence from the point of
view of the bank, and not necessarily a proof for an
outer judge. Thus, the goal of Double Spending Iden-
tification is to preserve the security of the bank so that
he can detect and identify the responsible of double
spending when happens. Note that, if a client with-
draws a coin and gives it to an attacker which double
spends it, then the test returns the identity of the client
and not the attacker’s identity.
Example 2. (Real Cash). In real cash, double spend-
ing is prevented by ensuring that notes cannot be
copied. However, Double Spending Identification is
not ensured: even if a central bank is able to iden-
tify copied banknotes using, e.g., their serial numbers,
this does not allow it to identify the person responsi-
ble for creating the counterfeit notes.

Double Spending Identification gives rise to a po-
tential problem: what if the client is honest and
spends the coin only once, but the attacker (e.g., a
corrupted seller) is able to forge a second spend, or
what if a corrupted bank is able to simulate a coin
withdrawal and payment i.e., to forge a coin with-
drawal and payment that seems to be made by a cer-
tain client. For instance, in the example mentioned
above, the two equations are enough evidence for the
bank. However, if the bank knows id he can gener-
ate the two equations himself and blame the client for
double spending. So, to convince a judge, an addi-
tional evidence is needed, e.g., the client’s signature.

If any of the two situations mentioned above is
possible, then a honest client could be falsely blamed
for double spending, and also it gives raise to a cor-
rupted client which is responsible of double spend-
ing to deny it. To solve this problem we define Ex-
culpability, which says that the attacker, even when
colluding with the bank and the seller, cannot forge
a double spend by a certain client in order to blame
him. More precisely, provided a transaction executed
by a client idc, the attacker cannot provide two differ-
ent valid transactions which involves the same coin,
and the data p necessary for the test TDSI to output the
identity idc with an evidence. Note that Exculpabil-
ity is only relevant if Double Spending Identification
holds: otherwise a client cannot be blamed regardless
of the ability to forge a second spend or to simulate a
coin withdrawal and payment, as his identity cannot
be revealed.
Definition 5. (Exculpability). Assume that we have
a test TDSI as specified in Def. 4, i.e., Double Spending
Identification holds, and that the bank is corrupted.
Let idc be a honest client (in particular he does not
double spend a coin), and ids be a corrupted seller.
Then, Exculpability is ensured if, after observing a

SECRYPT�2015�-�International�Conference�on�Security�and�Cryptography

68

transaction made by idc with ids, the attacker can-
not provide two valid transactions tr1; tr2 2 T that are
different but involve the same coin c, and some data
p such that TDSI(tr1; tr2; p) outputs (idc;e) where e is
an evidence that idc withdrew the coin c.

The intuition is: if the attacker can provide two
transactions tr1; tr2 such that TDSI(tr1; tr2) returns a
client’s identity (that is, the two different valid trans-
actions involve same coin), then it was able to forge
(at least) one transaction since the honest client per-
forms (at most) one transaction per coin.

If after observing a transaction executed by a
client idc, the attacker can provide a different valid
transaction which involves the same coin, and the re-
quired data p, then the test will return the identity idc
with the necessary evidence, thus the property will
be violated. Similarly, in the case where the attacker
can forge a coin withdrawal and payment seems to
be made by a client idc, then the attacker can obtain
two transactions satisfying the required conditions,
together with the necessary data p, so that the test will
return the identity idc with an evidence.

Note that, Double Spending Identification and Ex-
culpability are only relevant in case of off-line e-cash
systems where double spending might be possible.

Example 3. (Real Cash). As Double Spending Iden-
tification is not ensured in real cash, exculpability is
not relevant: any client that posses a counterfeit ban-
knote can plausibly deny that he produced this note.

3.2 Privacy Properties

We express our privacy properties as observational
equivalence, a standard choice for such kind of prop-
erties. We use the labeled bisimilarity (�l) to express
the equivalence between two processes (AF01). In-
formally, two processes are equivalent if an attacker
interacting with them observer has no way to tell them
apart.

To ensure the privacy of the client, the following
two notions have been introduced by cryptographers
and are standard in the literature e.g., (CG08; Fer94;
Sch97).

1. Weak Anonymity: the attacker cannot link a client
to a spend, i.e., he cannot distinguish which client
makes the payment.

2. Strong Anonymity: additionally to weak
anonymity, the attacker should not be able
to decide if two spends were done by the same
client, or not.

In (CG08), Weak Anonymity is defined as the follow-
ing game: two honest clients each withdraw a coin
from the bank. Then one of them (randomly chosen)

spends his coin to the adversary. The adversary al-
ready knows the identities of these two clients, and
also the secret key of the bank. It wins the game if
it guesses correctly which client spends the coin. In-
spired by this definition, we define Weak Anonymity
in the applied p-calculus as follows:

Definition 6. (Weak Anonymity). An e-cash
protocol ensures Weak Anonymity if for any
e-cash instance CP, any two honest clients
idc1, idc2, any corrupted seller ids, we have
that: CPI [Csidc1sc1sidsjCwsidc2sc2 jScsidsjBc] �l
CPI [Cwsidc1sc1 jCsidc2sc2sidsjScsidsjBc], where c1,
c2 are any two coins (not previously known to the
attacker) withdrawn by idc1 and idc2 respectively,
I = fidc1; idc2; ids; idBg, idB is the bank’s identity,
and Cw is a variant of C that halts at the end of the
withdrawal phase.

Weak anonymity ensures that a process in which
the client idc1 spends the coin c1 to the corrupted
seller ids1, is equivalent to a process in which the
client idc2 spends the coin c2 to the corrupted seller
ids1. We assume a corrupted bank represented by
Bc. Note that the client that does not spend his coin
still withdraws it. This is necessary since otherwise
the attacker could likely distinguish both sides during
the withdrawal phase, as the bank is corrupted and
typically the client reveals his identity to the bank at
withdrawal so that his account can be charged. We
also note that we do not necessarily consider other
corrupted clients, however this can easily be done by
replacing some honest clients from the context CPI
(i.e., other than idc1 and idc2) with corrupted ones.

Example 4. (Real Cash). Real coins ensure weak
anonymity as two coins (assuming the same value
and production year) are indistinguishable. How-
ever, banknotes do not ensure weak anonymity ac-
cording to our definition, as they include serial num-
bers. Since the two clients withdraw a note each,
the notes hence have different serial numbers which
the bank can identify. In reality this is used by cen-
tral banks to trace notes and detect suspicious ac-
tivities that, e.g., could hint at money laundering.
Note however that banknotes ensure a weaker form of
anonymity: if two different clients use the same note,
one cannot distinguish them.

Strong Anonymity is defined in (CG08) using the
same game as for Weak Anonymity, with the differ-
ence that the adversary may have previously seen
some coins being spent by the two honest clients ex-
plicitly mentioned in the definition. We define Strong
Anonymity as follows:

Definition 7. (Strong Anonymity.) An e-cash pro-
tocol ensures Strong Anonymity if for any e-cash in-

Formal�Analysis�of�E-Cash�Protocols

69

stance CP, any two honest clients idc1, idc2, any cor-
rupted seller ids, we have that:

CPI [j0�i�m1Csidc1sci
1
sidsj0�i�m2Csidc2sci

2
sidsj

Csidc1 sc1sidsjCwsidc2sc2 jS
c
sidsjBc]�l

CPI [j0�i�m1Csidc1sci
1
sidsj0�i�m2Csidc2sci

2
sidsj

Cwsidc1sc1 jCsidc2sc2sidsjSc
sidsjBc]

where c1 and c1
1 : : :c

m1
1 are any coins withdrawn by

idc1, c2 and c1
2 : : :c

m2
2 are any coins withdrawn by

idc2, I = fidc1; idc2; ids; idBg, idB is the bank’s iden-
tity, and Cw is a variant of C that halts at the end of
the withdrawal phase.

Strong Anonymity ensures that the process in
which the client idc1 spends m1 +1 coins, while idc2
spends m2 coins and additionally withdraws another
coin without spending it, is equivalent to the process
in which the client idc1 spends m1 coins and with-
draws an additional coin, while idc2 spends m2 + 1
coins. The definition assumes that the bank is cor-
rupted, and that the seller receiving the coins from the
two clients idc1 and idc2 is also corrupted. Note that,
we consider Cw to avoid distinguishing from the num-
ber of withdrawals by each client.

Again, we can replace some honest clients from
CPI by corrupted ones.
Example 5. (Real Cash). Again, real coins ensure
strong anonymity as, assuming the same value and
production year, two coins are indistinguishable. Yet,
for the same reason as in weak anonymity, banknotes
do not ensure strong anonymity according to our def-
inition: the serial numbers allow an attacker to iden-
tify the different clients.

We note that any protocol satisfying Strong
Anonymity also satisfies Weak Anonymity, as Weak
Anonymity is a special case of Strong Anonymity for
m1 = m2 = 0, i.e. when the two honest clients do not
make any previous spends.

4 CASE STUDY: CHAUM’S
PROTOCOL

David Chaum proposed the first (on-line) e-cash sys-
tem in (Cha83) based on blind signatures, and an off-
line variant of the protocol is proposed in (CFN90).
A real implementation based on these two variants,
allowing users to make purchases over open networks
such as the Internet, was put in service by DigiCash
Inc. The corporation declared bankruptcy in 1998,
and was sold to Blucora3 (formerly Infospace Inc.).

3http://www.blucora.com/

The on-line protocol implemented by DigiCash is pre-
sented in (Sch97).

In the following, we describe and analyze both the
on-line and the off-line variants of the protocol, as
well as, the on-line protocol implemented by Digi-
Cash. For this we use ProVerif an automatic tool that
verifies cryptographic protocols (Bla01). All the ver-
ification presented in the paper are carried out on a
standard PC (Intel(R) Pentium(R) D CPU 3.00GHz,
2GB RAM).

4.1 Chaum’s On-line Protocol

The Chaum On-line Protocol was proposed
in (Cha83) and detailed in (CFN90). It allows a
client to withdraw a coin blindly from the bank, and
then spend it later in a payment without being traced
even by the bank. The protocol is “on-line” in the
sense that the seller does not accept the payment
before contacting the bank to verify that the coin
has not been deposited before, to prevent double
spending. We start by giving a description of the
protocol.

Withdrawal Phase: To obtain an electronic coin,
the client communicates with the bank using the fol-
lowing protocol:

1. The client randomly chooses a value x, and a co-
efficient r, the client then sends to the bank his
identity u and the value b = blind(x;r), where
blind is a blinding function.

2. The bank signs the blinded value b using a signing
function sign and his secret key skB, then sends
the signature bs = sign(b;skB) to the client. The
bank also debits the amount of the coin from the
client’s account.

3. The client verifies the signature and removes
the blinding to obtain the bank’s signature s =
sign(x;skB) on x. The coin consists of the pair
(x;sign(x;skB)).

Payment (and Deposit) Phases: To spend the coin

1. The client sends the pair (x;sign(x;skB)) to the
seller.

2. After checking the bank’s signature, the seller
sends the coin (x;sign(x;skB)) to the bank to ver-
ify that it is not deposited before.

3. The bank verifies the signature s, and that the coin
is not in the list of deposited coins. If these checks
succeed the bank credits the seller’s account with
the amount of the coin and informs him of accep-
tance. Otherwise, the payment is rejected.

SECRYPT�2015�-�International�Conference�on�Security�and�Cryptography

70

Modeling in ProVerif: We use ProVerif to per-
form the automatic protocol verification. ProVerif
uses a process description based on the applied p-
Calculus, but has syntactical extensions and is en-
riched by events to check reachability and corre-
spondence properties. Besides, it can check equiva-
lence properties. As explained above, we model pri-
vacy properties as equivalence properties, and we use
events to verify the other properties.

The equational theory depicted in Table 1 models
the cryptographic primitives used within Chaum on-
line protocol. It includes well-known model for digi-
tal signature (functions sign, getmess, and checksign).
The functions blind/unblind are used to blind/unblind
a message using a random value. We also include the
possibility of unblinding a signed blinded message, so
that we obtain the signature of the message – the key
feature of blind signatures.

Table 1: Equational theory.

getmess(sign(m;k)) = m
checksign(sign(m;k); pk(k)) = m

unblind(blind(m;r);r) = m
unblind(sign(blind(m;r);k);r) = sign(m;k)

Analysis: The result of the analysis is summarized
in Table 2.

We model Unforgeability as an injective corre-
spondence between the two events withdraw and
spend, they are placed in their appropriate positions,
according to the Def. 3, inside the bank and seller
processes respectively. We consider a honest bank
and honest seller but corrupted clients. We assume
that the bank sends an authenticated message through
private channel to inform the seller about a coin ac-
ceptance. Otherwise, the attacker can forge a mes-
sage which leads the seller to accepting an already
deposited coin. However, ProVerif still finds an at-
tack against Unforgeability when two copies of the
same coin spent at the same time. In this case the
bank makes two parallel database lookups to check if
the coin was deposited before. If the parallel deposit
was not finished yet and thus the coin is not yet in-
serted in the database, then each lookup confirms that
the coin was not deposited before which results in ac-
ceptance of two spends of the same coin. This attack
may be avoided with some synchronization like lock-
ing the table when a coin deposit is initiated and then
unlocking it when the operation is finished. ProVerif
does not support such an feature. Protocols that rely
on state could be analyzed using the Tamarin Prover4

4http://www.infsec.ethz.ch/research/software/
tamarin.html

Table 2: Analysis of the Chaum on-line protocol.
A X indicates that the property holds. A � indicates that
it fails (ProVerif shows an attack).

Property Result Time
Unforgeability � < 1s

Weak Anonymity X < 1s
Strong Anonymity X < 1s

thanks to the SAPIC5 tool (we keep this for future
work).

Note that corrupted clients cannot create a fake
coin as the correspondence holds without injectivity.

Double Spending Identification and Exculpabil-
ity are not relevant in the case of on-line protocols
as their countermeasure against double spending is
the on-line calling of the bank at payment, and thus
they do not have any kind of test to identify double
spenders.

For privacy properties, we assume a corrupted
bank and a corrupted seller, but honest clients.
ProVerif confirms that the privacy of the client is
preserved, as both Weak Anonymity, and Strong
Anonymity are satisfied. This due to the fact that the
coin is signed blindly during the withdrawal phase,
and thus cannot be traced later by the attacker even
when colludes with the bank and the seller. Note that,
for Strong Anonymity, we consider an unbounded
number of spends by each client and one spend that
is made by either the first client or by the second one.

4.2 DigiCash On-line Protocol

The on-line protocol implemented by DigiCash Inc.
is outlined in (Sch97). It has the same withdrawal
phase as Chaum on-line protocol, except that the
client sends an authenticated coin to be signed by the
bank, however the paper does not specify the way of
authentication. We ignore this authentication as its
purpose is to ensure that the bank debits the correct
client account. Hence, we believe that it does not ef-
fect the privacy and unforgeability properties (analy-
sis confirms that as we can see in Table 2). The pay-
ment and deposit phases are different from those of
Chaum on-line protocol. They are summarized as fol-
lows:

Payment (and Deposit) Phases in DigiCash:
1. The client sends to the seller pay =

enc((ids;h(pay-spec);x;sign(x;skB)); pkB)
which is the encryption, using the public key of
the bank pkB, of the seller’s identity ids, hash of

5http://sapic.gforge.inria.fr/

Formal�Analysis�of�E-Cash�Protocols

71

Table 3: Analysis of DigiCash on-line protocol.
A X indicates that the property holds. A � indicates
that it fails (ProVerif shows an attack).

Property Result Time
Unforgeability � < 1s

Weak Anonymity X < 1s
Strong Anonymity X < 1s

the payment specification pay-spec (specifica-
tion of the sold object, price etc), and the coin
(x;sign(x;skB)).

2. The seller signs (h(pay-spec); pay) and sends it
along with his identity ids to the bank.

3. The bank verifies the signature, decrypts pay then
verifies the value of h(pay-spec) and that the coin
is valid and not deposited before. If so it informs
the seller to accept the coin, and to reject it other-
wise.

Modeling in ProVerif: Additionally to the equa-
tional theory of the Chaum on-line protocol (Ta-
ble 1), the equational theory of DigiCash on-line
protocol includes well-known model of the public
key encryption represented by the following equation:
dec(enc(m; pk(k));k) = m.

Analysis: The result of analysis of DigiCash on-
line protocol using ProVerif is summarized in Ta-
ble 3. ProVerif shows the same results as obtained
for Chaum on-line protocol. Namely, it shows that
Weak Anonymity, and Strong Anonymity are satisfied,
and it outputs the same attack presented in Section 4.1
against Unforgeability. Again Double Spending Iden-
tification and Exculpability are not relevant.

Note that, obtaining the same result for the two
protocols, even that they have different payment and
deposit phases, confirms that the blinding signature
used during the withdrawal phase plays the key role
in preserving the privacy of the client, as claimed by
David Chaum.

4.3 Chaum’s Off-line Protocol

The off-line variant of the Chaum protocol is pro-
posed in (CFN90). It removes the requirement that
the seller must contact the bank during every pay-
ment. This introduces the risk of double spending a
coin by a client.

Withdrawal Phase: to obtain an electronic coin,
the client randomly chooses a, c and d, and calcu-
lates the pair H = (h(a;c);h(a�u;d)), where u is the

client identity and h is a hash function. The client then
proceed as in the Chaum on-line protocol but with x
(the potential coin) replaced by the pair H. Namely,
the client blinds the pair H and sends it to the bank.
Then the bank signs and returns it to the client. The
main difference from the Chaum on-line protocol is
that the coin has to be of the following form

(h(a;c);h(a�u;d))

where the client identity is masked inside it. This aims
to reveal the identity if the client later double spends
the coin. In order for the bank to be sure that the client
provides a message of the appropriate form, Chaum et
al. used in (CFN90) the well known “cut-and-choose”
technique. Precisely, the client computes n such a pair
H where n is the system security parameter. The bank
then selects half of them and asks the client to reveal
their corresponding parameters (a, b, c and r). If n is
large enough the client can cheats with a low proba-
bility.

At the end of this phase the client holds the elec-
tronic coin composed of the pair H, and the bank’s
signature S = sign(H;skB). The client also has to
keep the random values a, c, d which are used later to
spend the coin.

Payment Phase:

1. To make the payment, the client presents the pair
H and the bank’s signature S to the seller. The
seller checks the signature, if it is correct then he
chooses and sends a random binary bit y, a chal-
lenge, to the client. The client returns to the seller:

� The values a and c if y is 0.
� The values a�u and d if y is 1.

2. The seller checks the compliance of the values
sent with the pair H. If everything (the signature
and the values) is correct, the payment is accepted.

At the end of the payment phase, the seller holds the
pair H, the signature S, the values of either (a;c) or
(a�u;d), and the challenge y. All these data together
compose the transaction the seller has to present to
the bank at deposit.

Note, in case where n pairs are used for the coin,
the challenge y will be n bit string and for each bit
either the corresponding values of (a;c) or (a� u;d)
are revealed to the seller.

Deposit Phase:

1. The seller contacts the bank and provides it with
the transaction (H, S, y, (a;c)) or (H, S, y, (a�
u;d)).

SECRYPT�2015�-�International�Conference�on�Security�and�Cryptography

72

2. The bank checks the signature and also whether
the values (a;c) or (a� u;d) correspond to their
hash value in H. If any of these values is incor-
rect, the fault is on the seller’s part, as he was able
to independently check the regularity of the coin
at payment. If the coin is correct, the bank checks
its database to see whether the same coin had been
used before. If it has not, the bank credits the
seller’s account with the appropriate amount. Oth-
erwise, the bank rejects the transaction.

Chaum off-line protocol does not prevent double
spending, however it preserve client’s anonymity only
if he spend a coin once.

Note that, a double spender can be identified when
the coin has the form (h(a;c);h(a� u;d)). How-
ever, the bank can simulate the coin withdrawal and
payment (as the bank knows the identities of all the
clients), thus the bank can blame a honest client for
double spending. As a countermeasure, the authors
propose to concatenate two values z and z0 with u in-
side the pair H to have (h(a;c);h(a�(u;z;z0);d)) and
provide to the bank, at withdrawal, additionally the
client’s signature on h(z;z0).

Modeling in ProVerif: To mode the Chaum off-
line protocol in ProVerif, in addition to the equational
theory used for the Chaum on-line protocol (Table 1),
we use the function xor to represent the exclusive or
(�) of two values. Given the first value, the sec-
ond value can be obtained using the function unxor.
Such an – admittedly limited – modeling for � oper-
ator is sufficient to catch the functional properties of
the scheme required by Chaum off-line protocol, but
does not catch all algebraic properties of this opera-
tor. However, there are currently no tools that sup-
port observational equivalence – which we need for
the anonymity properties – and all algebraic proper-
ties of �. Kuesters et al. (KT11) proposed a way
to extend ProVerif with �. Their tool translates a
model of the protocol to a ProVerif input where all
� are ground terms to enable automated reasoning.
However, this tool can only deal with secrecy and au-
thentication properties, and does not support equiva-
lence properties. The xor function is only used to hide
the client’s identity u using a random value a (a�u),
which we model as xor(a;u). The bank then uses a
to reveal the client’s identity u if he double spends a
coin. This is modeled by the following two equations

unxor(xor(a;u);a) = u
unxor(a;xor(a;u)) = u

which represents the various ways: ((a�u)�a) = u,
or (a� (a�u)) = u. We always assume that identity

is the second value, and this is how we model it inside
honest processes.

Analysis: As expected ProVerif confirms that Un-
forgeability is not satisfied, a corrupted client can
double spend a coin. In fact the seller cannot know
whether a certain coin is already spent or not, he ac-
cepts any coin that is certified by the bank. However,
a collusion between the client and the attacker cannot
lead to forging a coin.

In case of double spending, the bank
may receive two transactions of the form
tr1 = (h;hx;sign((h;hx);skB);0;a;c) and
tr1 = (h;hx;sign((h;hx);skB);1;xor(a;u);d).
The bank can apply a test to obtain the iden-
tity u. This is done using the unxor function as
unxor(xor(a;u);a) = u. The evidence here is show-
ing that the identity of the client is masked inside
the coin. This can be done thanks to the values of
(a;c;xor(a;u);d) which are initially known only
to the client. Spending the coin only once reveals
either (a;c) or (xor(a;u);d) which does not allow
to obtain the identity u. Note that, if the two sellers
provide the same challenge, the two transactions will
be exactly equal. In this case no double spending is
detected, and the second transaction will be rejected
by the bank which considers it as a second copy of
the first transaction. In practice this can be avoided
with high probability if n pairs coin is used and thus
n bits challenge. Note that ProVerif consider all the
possibilities.

We model the output of an identity and an evi-
dence of the test TDSI by an emission of the event OK,
and event KO otherwise. To say that Double Spend-
ing Identification is satisfied we should have that the
test TDSI does not emit the event KO for every two
valid transactions tr1, tr2 that are different but in-
volves the same coin, i.e., it always emits event OK
for such transactions. ProVerif shows that the test can
emit the event KO for certain two transactions satisfy
the required conditions. Actually, a corrupted client
can withdraw a coin that does not have the appropri-
ate form (e.g., client’s identity is not masked inside
it), thus the bank cannot obtain the identity in case
of double spending. Note that, if the bank only cer-
tifies coins with the appropriate form at withdrawal
(i.e., of the form (h(a;c);h(a�u;d))), then the prop-
erty holds, ProVerif confirms that. Again, in practice
applying the “cut-and-choose” technique can guaran-
tee with high probability that the coin is in the appro-
priate form. However, applying this technique using
Proverif does not make any difference since ProVerif
works under symbolic world which deals with possi-
bilities and not with probabilities. For instance, the

Formal�Analysis�of�E-Cash�Protocols

73

Table 4: Analysis of Chaum off-line protocol.
A X indicates that the property holds. A � indicates
that it fails (ProVerif shows an attack).
(�) Only coins with the appropriate form are considered.
(†) After applying the countermeasure.

Property Result Time
Unforgeability � <1s

Double Spending Identif. � <2s
Double Spending Identif.� X <2s

Exculpability� � < 6s
Exculpability† X < 6s

Weak Anonymity X <1s
Strong Anonymity X <1s

attacker still can guess the pairs that the bank will re-
quest to reveal and construct them in the appropriate
form, but cheat with the others which will compose
the coin.

We analyze Exculpability in case where only coins
of appropriate forms are considered i.e., the case
where Double Spending Identification holds. ProVerif
confirms that a corrupted bank can blame a honest
client. The bank can simulate the withdrawal and
the payment since the bank knows the identity of the
client. Thus it can obtain two transactions satisfying
the required conditions. This is due to the fact that
the evidence obtained by the test, which is showing
that the client’s identity is masked inside the coin, is
not strong enough to act as a proof. However, the at-
tacker cannot re-spend a coin withdrawn and spent by
a honest client.

After applying the countermeasure that is includ-
ing some terms z and z0 so that the client signs h(z;z0),
ProVerif confirms that Exculpability holds. Applying
the countermeasure results in a new test which takes,
in addition to the two transactions, the client’s sig-
nature on h(z;z0). The test shows, in case of double
spending, that the identity u and the preimage (z;z0)
of the hash signed by the client are masked inside the
coin. This represents a stronger evidence which acts
as a proof that the client withdrew the coin since the
bank cannot forge the client’s signature.

We note that, Ogiela et al. (OS14) show an attack
on Chaum’s off-line protocol: when a client double
spends a coin, the sellers can forge additional transac-
tions involving the same coin, so that the bank cannot
know how many transactions are actually result from
spends made by the client and how many are forged
by the sellers. In such a case, according to our defini-
tion, Unforgeability does not hold since the client has
to spend the coin at least twice. Yet, corrupted sell-
ers can blame a corrupted client who double spends a
coin for further spends. Moreover the bank can still

identify the client and punish him as the bank can be
sure that he at least spend the coin twice.

Concerning privacy properties, ProVerif shows
that Chaum off-line protocol still satisfies both Weak
Anonymity and Strong Anonymity.

To sum up, ProVerif confirms the claim about pre-
serving client’s anonymity. ProVerif also was able to
show that a client can double spend a withdrawn coin
but cannot forge a coin, and that the bank can iden-
tify the double spender if the coin is in the appropri-
ate form. ProVerif also shows, in case of coin with
appropriate form, that the bank can simulate a with-
drawal and payment, and thus can blame him for dou-
ble spending. After applying the countermeasure no
attack against Exculpability is found.

5 CONCLUSIONS

E-cash protocols can offer anonymous electronic pay-
ment services. Numerous protocols have been pro-
posed in the literature, and multiple flaws were dis-
covered. To avoid further bad surprises, formal veri-
fication can be used to improve confidence in e-cash
protocols. In this paper, we developed a formal frame-
work to automatically verify e-cash protocols with re-
spect to multiple essential privacy and forgery proper-
ties. Our framework relies on the applied p-calculus
and uses ProVerif as the verification tool. As a case
study, we analyzed the on-line protocol proposed by
Chaum et al. , as well as, a real implementation based
on it. We also analyze the off-line variant of this
system. We confirm some claims and known weak-
nesses. We also identified that some synchronization
is necessary in case of on-line protocols to prevent
double spending.

As future work, we would like to investigate fur-
ther case studies and to extend our model to cover
transferable protocols with divisible coins. Also we
would like to use the tool SAPIC based on Tamarin,
in order to see how it can help to analyze e-cash pro-
tocols.

REFERENCES

Sattar J. Aboud and Ammar Agoun. Analysis of a known
offline e-coin system. International Journal of Com-
puter Applications, 2014.

Masayuki Abe and Eiichiro Fujisaki. How to date blind
signatures. In Advances in Cryptology - ASIACRYPT
’96, Korea, November 3-7, 1996, Proceedings, vol-
ume 1163, pages 244–251. Springer, 1996.

Martı́n Abadi and Cédric Fournet. Mobile values, new
names, and secure communication. In The 28th Sym-

SECRYPT�2015�-�International�Conference�on�Security�and�Cryptography

74

posium on Principles of Programming Languages,
ACM, UK, 2001.

M. Backes, C. Hritcu, and M. Maffei. Automated verifica-
tion of remote electronic voting protocols in the ap-
plied pi-calculus. In CSF, 2008.

Bruno Blanchet. An efficient cryptographic protocol ver-
ifier based on prolog rules. In 14th IEEE Computer
Security Foundations Workshop (CSFW-14), Canada,
2001.

Stefan Brands. Untraceable off-line cash in wallets with
observers (extended abstract). In Proceedings of the
13th Annual International Cryptology Conference on
Advances in Cryptology, CRYPTO ’93, pages 302–
318, London, UK, UK, 1994. Springer-Verlag.

David Chaum, Amos Fiat, and Moni Naor. Untraceable
electronic cash. In Advances in Cryptology: Proceed-
ings of CRYPTO ’88, pages 319–327. Springer New
York, 1990.

Sébastien Canard and Aline Gouget. Anonymity in trans-
ferable e-cash. In Applied Cryptography and Network
Security, ACNS, USA, pages 207–223, 2008.

Sébastien Canard, Aline Gouget, and Jacques Traoré. Im-
provement of efficiency in (unconditional) anonymous
transferable e-cash. In Financial Cryptography and
Data Security, 12th International Conference, FC,
Mexico. Springer, 2008.

David Chaum. Blind signatures for untraceable payments.
In Advances in Cryptology: Proceedings of CRYPTO
’82. Springer US, 1983.

Giovanni Di Crescenzo. A non-interactive electronic cash
system. In Algorithms and Complexity, Second Ital-
ian Conference, Italy, volume 778 of Lecture Notes in
Computer Science, pages 109–124. Springer, 1994.

Chang Yu Cheng, Jasmy Yunus, and Kamaruzzaman Se-
man. Estimations on the security aspect of brand’s
electronic cash scheme. In 19th International Confer-
ence on Advanced Information Networking and Appli-
cations AINA, Taiwan, 2005.

I. B. Damgård. Payment systems and credential mecha-
nisms with provable security against abuse by indi-
viduals. In Proceedings on Advances in Cryptology,
pages 328–335. Springer-Verlag, 1990.

Stefano D’Amiano and Giovanni Di Crescenzo. Methodol-
ogy for digital money based on general cryptographic
tools. In Advances in Cryptology - EUROCRYPT ’94,
Workshop on the Theory and Application of Crypto-
graphic Techniques, Italy. Springer, 1994.

Jannik Dreier, Rosario Giustolisi, Ali Kassem, Pascal
Lafourcade, Gabriele Lenzini, and Peter Y. A. Ryan.
Formal analysis of electronic exams. In SECRYPT,
Austria, 2014, pages 101–112, 2014.

S. Delaune, S. Kremer, and M.D. Ryan. Verifying privacy-
type properties of electronic voting protocols. Journal
of Computer Security, 17(4):435–487, jul 2009.

J. Dreier, P. Lafourcade, and Y. Lakhnech. A formal tax-
onomy of privacy in voting protocols. In ICC, pages
6710–6715, 2012.

Jannik Dreier, Pascal Lafourcade, and Yassine Lakhnech.
Formal verification of e-auction protocols. In Prin-

ciples of Security and Trust, POST, pages 247–266.
Springer, 2013.

D. Dolev and Andrew C. Yao. On the security of public key
protocols. Information Theory, IEEE Transactions on,
29(2):198–208, 1983.

Niels Ferguson. Single term off-line coins. In Advances
in Cryptology, Lecture Notes in Computer Science
- EUROCRYPT ’93, volume 765, pages 318–328.
Springer-Verlag, 1994.

Chun-I Fan, Vincent Shi-Ming Huang, and Yao-Chun Yu.
User efficient recoverable off-line e-cash scheme with
fast anonymity revoking. Mathematical and Com-
puter Modelling, 2013.

Sangjin Kim and Heekuck Oh. Making electronic refunds
reusable, 2001.

Ralf Küsters and Tomasz Truderung. Reducing protocol
analysis with xor to the xor-free case in the horn the-
ory based approach. Journal of Automated Reasoning,
2011.

Zhengqin Luo, Xiaojuan Cai, Jun Pang, and Yuxin Deng.
Analyzing an electronic cash protocol using applied
pi calculus. In Applied Cryptography and Network
Security, 5th International Conference, ACNS, China,
2007.

Tatsuaki Okamoto and Kazuo Ohta. Disposable zero-
knowledge authentications and their applications to
untraceable electronic cash. In Proceedings on Ad-
vances in Cryptology, CRYPTO ’89, pages 481–496.
Springer-Verlag New York, Inc., 1989.

Marek R. Ogiela and Piotr Sulkowski. Improved cryp-
tographic protocol for digital coin exchange. In
Soft Computing and Intelligent Systems (SCIS), pages
1148–1151, 2014.

Birgit Pfitzmann, Matthias Schunter, and Michael Waidner.
How to break another provably secure payment sys-
tem. In EUROCRYPT ’95, International Conference
on the Theory and Application of Cryptographic Tech-
niques, France, pages 121–132, 1995.

Birgit Pfitzmann and Michael Waidner. How to break
and repair A ”provably secure” untraceable payment
system. In CRYPTO ’91, 11th Annual International
Cryptology Conference, USA, pages 338–350, 1991.

Berry Schoenmakers. Basic security of the ecash pay-
ment system. In In Applied Cryptography, Course
on Computer Security and Industrial Cryptography,
pages 201–231. Springer-Verlag, LNCS, 1997.

Aye Thandar Swe and Khin Khat Khat Kyaw. Formal anal-
ysis of secure e-cash transaction protocol. In Inter-
national Conference on Advances in Engineering and
Technology, Singapore, 2014.

Formal�Analysis�of�E-Cash�Protocols

75

