
Detecting and Isolating Inconsistently Behaving Agents using an
Intelligent Control Loop

Jan Kantert1, Sarah Edenhofer2, Sven Tomforde2, Jörg Hähner2 and Christian Müller-Schloer1

1Institute of Systems Engineering, Leibniz University Hannover, Appelstr. 4, 30167 Hanover, Germany
2Lehrstuhl für Organic Computing, Augsburg University, Eichleitnerstr. 30, 86159 Augsburg, Germany

{kantert, cms}@sra.uni-hannover.de,

Keywords: Adaptive Control Loop, Multi-Agent-Systems, Trust, Norms, Desktop-grid System.

Abstract: Desktop Computing Grids provide a framework for joining in and sharing resources with others. The result
is a self-organised system that typically consists of numerous distributed autonomous entities. Openness and
heterogeneity postulate severe challenges to the overall system’s stability and efficiency since uncooperative
and even malicious participants are free to join. In this paper, we present a concept for identifying agents
with exploitation strategies that works on a system-wide analysis of trust and work relationships. Afterwards,
we introduce a system-wide control loop to isolate these malicious elements using a norm-based approach –
due to the agents’ autonomy, we have to build on indirect control actions. Within simulations of a Desktop
Computing Grid scenario, we show that the intelligent control loop works highly successful: these malicious
elements are identified and isolated with a low error rate. We further demonstrate that the approach results in
a significant increase of utility for all participating benevolent agents.

1 INTRODUCTION

Desktop Computing Grid systems are self-organised
collectives of resources provided by a potentially
large set of participants. For each computer, an agent
is responsible for getting the user’s jobs processed by
others as fast as possible. Simultaneously, it manages
which other agents are allowed to utilised the own
resources. The resulting system is characterised by
openness and heterogeneity - everyone is free to join
if following the basic protocol.

Openness inherently defines drawbacks. For in-
stance, egoistic or even malicious behaviour of agents
is possible. Therefore, counter-measures are needed
to isolate unwanted elements and provide a perfor-
mant platform for normal and benevolent users. By
introducing technical trust, most of these negative ef-
fects can be controlled. One major challenge that
is addressed in this paper is to identify agents with
inconsistent behaviour. This means that an agent
tends to exploit the system as soon as it has es-
tablished stable trust relationships within the system
– and returns to benevolent behaviour if others de-
tected the exploitation strategy. In our concept, we
extend previous work for the Trusted Desktop Grid
(TDG) (Klejnowski, 2014) with an intelligent control

loop. This loop works at system-level and follows the
Observer/Controller concept (Tomforde et al., 2011)
as known from Organic Computing (Müller-Schloer,
2004). Since agents are autonomous, the control loop
works on publicly available information, i.e. trust and
work relationships. We follow a graph-based anal-
ysis strategy and show that even this challenging be-
haviour of so-called Cunning Agents can be identified.

The remainder of this paper is organised as fol-
lows: Section 2 describes the TDG as application sce-
nario with a special focus on the agents’ goals, the
system goal, and the trust mechanism. It also explains
the system-wide control loop that establishes a norm-
oriented management cycle to identify and isolate
negative elements. Afterwards, Section 3 describes
the approach to detect and isolate Cunning Agents in
detail. The mechanism is evaluated in Section 4 by
simulations of our Trusted Desktop Grid. Therein,
we show that the normative approach is highly suc-
cessful and demonstrate that an isolation is achieved
with low failure rate. Section 5 compares the concept
to the current state-of-the-art. Finally, Section 6 sum-
marises the paper and gives an outlook to current and
future work.

246 Kantert J., Edenhofer S., Tomforde S., Hähner J. and Müller-Schloer C..
Detecting and Isolating Inconsistently Behaving Agents using an Intelligent Control Loop.
DOI: 10.5220/0005548402460253
In Proceedings of the 12th International Conference on Informatics in Control, Automation and Robotics (ICINCO-2015), pages 246-253
ISBN: 978-989-758-122-9
Copyright c 2015 SCITEPRESS (Science and Technology Publications, Lda.)



2 APPLICATION SCENARIO

As a possible application scenario, we investigate
open grid computing systems which can host numer-
ous distributable workloads, e.g. distributed render-
ing of films. The system is considered open since
there is no central controlling entity, all communi-
cation is performed peer-to-peer and agents are free
to join. Worker nodes belong to different adminis-
trative domains, thus, good behaviour cannot be as-
sumed. Nodes participate voluntarily to submit work
into the system and, thereby, increase the speedup of
their jobs. However, they also have to compute work
units for other submitters.

2.1 Agent Goal

To analyse such systems, we model nodes as agents
and run a multi-agent system in simulation. Ev-
ery agent works for a user and periodically receives
a job, which contains multiple parallelisable work
units. It aims to accomplish all work units as fast
as possible by requesting other agents to work for it.
Since we consider an open system, agents behave au-
tonomously, and can join or leave at any time. The
system performance is measured by the speedup s. In
Equation (1), tself is the time it would require an agent
to compute a job containing multiple work units with-
out any cooperation. tdistributed represents the time it
took to compute all work units of one job with coop-
eration of other workers including all communication
times. The actual speedup s can only be determined
after the result of the last work unit has been returned.

sB
tself

tdistributed
(1)

If no cooperation partners can be found, agents need
to compute their own work units and achieve a
speedup value equal to one (i.e. no speedup at all).
In general, agents behave selfishly and only cooper-
ate if they can expect an advantage. They have to
decide which agent they give their work to and for
which agents they work themselves. We do not con-
trol the agent implementation, so they might behave
uncooperatively or even maliciously.

2.2 Worker and Submitter Component

Each agent consists of a worker and a submitter com-
ponent. The submitter component is responsible for
distributing work units. When an agent receives a
job containing multiple work units, it creates a list of
trusted workers. It then requests workers from this
list to cooperate and compute work units, until either
no more work units or no more workers are left. If

all workers were asked, but unprocessed work units
remain, the agent computes them on its own. The
worker component decides whether an agent wants
to work for a certain submitter. When the agent re-
ceives an offer, it computes its rewards for accept-
ing or rejecting the job. There are different strate-
gies based on reputation, workload and environment.
If the reward of accepting the job prevails, the agent
accepts the job. It may cancel the job later on, but
typically it computes the job and returns the results to
the worker (Klejnowski, 2014).

2.3 Open Systems and Benevolence

In contrast to other state-of-the-art work, we do not
assume the benevolence of the agents (Wang and Vas-
sileva, 2004). In such an open system we cannot con-
trol the implementation of agents and, therefore, the
system is vulnerable to different kinds of attacks. For
instance, a Freerider could simply refuse to work for
other agents and gain an advantage at the expense of
cooperative agents. Another attacker might just pre-
tend to work and return wrong results. Also, combi-
nations of both or alternating behaviour are possible.
Additionally, attacker can collude to exploit the sys-
tem.

2.4 Trust and Norms

To overcome these problems of an open system where
no particular behaviour can be assumed, we introduce
a trust metric. Agents receive ratings for all their ac-
tions from their particular interaction partners. This
allows others to estimate the future behaviour of a cer-
tain agent based on its previous actions. To perform
this reasoning a series of ratings for a certain agent
can be accumulated to a single reputation value us-
ing the trust metric. Autonomous agents need to be-
come aware of the expected behaviour in the system.
Therefore, we influence the desired actions by norms.
These norms are valid for an Action in a certain Con-
text and, thereby, guide the agents. To enforce the
behaviour, they impose a Sanction if violated or offer
an Incentive if fulfilled.

In this scenario, good trust ratings are used as an
Incentive and, in the opposite, bad trust ratings im-
pose a Sanction (agents with higher reputation val-
ues have a higher chance to get their work units com-
puted). Based on the norms, agents receive a good
rating if they work for other agents and a bad rating
if they reject or cancel work requests. As a result,
the society isolates malevolent agents and maintains a
good system utility in most cases. We call this system
a Trusted Desktop Grid (TDG) (Klejnowski, 2014).

Detecting�and�Isolating�Inconsistently�Behaving�Agents�using�an�Intelligent�Control�Loop

247



Since agents are considered as black boxes they can-
not be controlled directly from the outside. Each
agent is autonomous and selfish. However, we want
to influence the system to optimise and make it more
robust. Therefore, we introduce norms to change the
incentives and sanctions for all agents.

2.5 Agent Types

We consider the following agent types in our system:

• Adaptive Agents - These agents are cooperative.
They work for other agents who earned good rep-
utation in the system. How high the reputation
value has to be generally depends on the esti-
mated current system load and how much the in-
put queue of the agent is filled up.

• Freeriders - Such agents do not work for other
agents and reject all work requests. However, they
ask other agents to work for them. This increases
the overall system load and decreases the utility
for well-behaving agents.

• Egoists - These agents only pretend to work for
other agents. They accept all work requests but
return fake results to other agents, which wastes
the time of other agents. If results are not vali-
dated, this may lead to wrong results. Otherwise,
it lowers the utility of the system.

• Cunning Agents - These agents behave well in the
beginning but may change their behaviour later.
Periodically, randomly, or under certain condi-
tions they behave like Freeriders or Egoists. This
is hard to detect and may lower the overall system
utility.

• Altruistic Agents - Such agents will accept every
job. In general, this behaviour is not malicious
and increases the system performance. However,
it hinders isolation of bad-behaving agents and
impacts the system goals.

2.6 Higher-level Norm Manager

In Figure 1, we present our concept of the Norm
Manager (NM), which uses the common Observer-
Controller pattern (Tomforde et al., 2011). The
complete control loop implemented by the Observer-
Controller component helps to mitigate effects of at-
tacks to the TDG and allows a better fulfilment of
the system goals. Thereby, it defines an intelligent
control mechanism working at system-level. How-
ever, if the additional NM fails, the system itself is
still operational and can continue to run (this refers to

Norm Manager

Agent A

Agent B

Agent C

Norm set

Agent E

Agent D

Observationmodel Change norms

Distribute 
norms

Collect data 
on agents

Observer Controller

Situation 
Description

Detect 
situation

SuOC

Figure 1: System Overview of the Norm Manager consist-
ing of an Observer and a Controller which control the Sys-
tem under Observation and Control (SuOC) using norms.

the desired OC characteristic of non-critical complex-
ity (Schmeck et al., 2010)). When the NM is recov-
ered, it can start to optimise the system again.

2.6.1 Observer - Detect Current Situation

To detect the current system state, the controller mon-
itors work relations of all agents. For this purpose, it
creates a work graph with agents as nodes and edges
between agents which have cooperated in the mon-
itored period. The intensity of the cooperation be-
tween two agents determines the weight of the edge
connecting them. In this context, the intensity is
determined according to the number of shared work
packages. Additionally, the controller creates a trust
graph with agents as nodes and trust relations as
edges. Trust relations between agents can be obtained
from the reputation system and define as how trust-
worthy agents estimates each other within an interval
between 0 (not trustworthy at all) and 1 (fully trust-
worthy, i.e. self-trust). Since we cannot see the inter-
nals or implementation of agents, we need to observe
them from the outside. We could monitor all interac-
tions between agents, but this may lead to a bottleneck
in larger systems. However, it is easy to monitor the
actions indirectly: We can observe the reputation sys-
tem and use the ratings which agents give their part-
ners after every interaction. When we collect those
ratings, we can build a trust-graph. Multiple ratings
will be merged using an arithmetic mean.

Afterwards, the NM calculates certain common
graph metrics for every node (i.e. DegreeCentral-
ity, textitPrestige or ClusteringCoefficient; see (Kan-
tert et al., 2014)). Using statistics, the global system

ICINCO�2015�-�12th�International�Conference�on�Informatics�in�Control,�Automation�and�Robotics

248



state is determined. Based on these metrics, our al-
gorithm forms clusters and finds groups of similar
agents. By further classifying these groups, the Ob-
server achieves an even better understanding about
potentially happening attacks. In the end, it is able to
classify whether the system is under attack, categorise
the type of the attack, and rank attacks according to
their severity. This is accompanied by an estimation
of how accurate this information is. From a methodi-
cal point of view, the observer works as follows: First,
it builds graphs for trust and work relations between
agents. In a second step, it applies graph metrics to
be able to identify groups or clusters of similar agents
in the next step. Afterwards, it runs statistics on every
cluster found and compares them to historic or thresh-
old values. Clusters are tracked over time to detect
tendencies and predict future values.

2.6.2 Controller - Change Norms

The controller is responsible for guiding the overall
system behaviour by applying norms. Such a norm
contains a rule and a sanction or an incentive (Urz-
ică and Gratie, 2013). Agents are still autonomous
and can violate norms with the risk of being sanc-
tioned. Based on the information obtained by the
observer, the controller decides whether the system
norms need to be changed. Norms can not directly
influence agents but modify their actions. To be more
specific, norms can impose sanctions or offer incen-
tives to actions. To defend against attacks, we can
increase sanctions for certain actions. Under certain
conditions we can allow agents to perform security
measures, which would lead to sanctions

3 APPROACH

In previous work (Kantert et al., 2015) we demon-
strated that clearly malicious agents (i.e. Freeriders
and Egoists) can be isolated using norms and a higher-
level observer. In this Section, we present an ap-
proach to also detect Cunning Agents which is signif-
icantly harder to realise due to their exploitation strat-
egy. Afterwards, normative control is performed to
isolate these agents.

3.1 Detecting and Isolating Cunning
Agents

Cunning Agents cannot be easily detected and isolated
locally in a distributed system. Therefore, they pose
a permanent threat to the TDG. However, a higher-

level NM can detect them and then can change norms
to isolate them.

To detect Cunning Agents in the Norm Manager
(NM) we cluster groups using the MCL (Van Don-
gen, 2001) and the BIRCH (Zhang et al., 1996) al-
gorithm on the trust graph and classify them using a
decision matrix. For the purpose of this paper the ma-
trix can only identify groups of Cunning Agents. The
metrics used for that purpose were presented in (Kan-
tert et al., 2014). In particular, we use the value of
Authorities and DegreeCentrality to detect groups of
Cunning Agents.

Once the NM detected groups of Cunning Agents
it has to isolate them. Unfortunately, it cannot influ-
ence agents directly but it can do this using norms.
Therefore, it introduces a new norm which allows
agents to refuse work from Cunning Agents. We pro-
pose to detect them based on their inconsistent be-
haviour.

3.2 Inconsistent Behaviour

In trust-based distributed system such as the TDG, we
condense a series of trust rating R to a single repu-
tation value t (see Equation 3). However, this does
not take into account how consistent those ratings are.
Normally, agents make their decisions based on the
aggregated value t.

r 2 [�1;1]) R 2 [�1;1]k (2)

tB T(R) B
år2R r

år2R jrj
(3)

However, Cunning Agents behave strategically re-
garding their reputation value: They behave well un-
til they reach a certain threshold tupper and then stop
to cooperate with other agents until they fall below a
threshold tlower. Therefore, their reputation t is be-
tween those two values most of the time and they ad-
just their tupper and tlower to be considered as well-
behaving by other agents based on the reputation (see
Equation 4).

tlower � t� tupper^ tlower � twb (4)

Since those agents intentionally exploit the trust met-
ric they cannot get detected and isolated using the rep-
utation value. However, they receive very inconsistent
ratings r because of their changing behaviour and we
can leverage that to detect them. Therefore, we define
the consistency k based on the standard deviation:

kB 1� år2R;r>0 r

år2R jrj
� (t�1)2+

år2R;r<0 r

år2R jrj
� (t+1)2

(5)

We expect a very low value for Cunning Agents and a
value close to one for Adaptive Agents. Other agents

Detecting�and�Isolating�Inconsistently�Behaving�Agents�using�an�Intelligent�Control�Loop

249



such as Freeriders or Egoists also should get a value
of approximately one since they behave consistently
maliciously.

3.3 Changing Norms

The NM cannot directly influence agents or force
them to perform any actions. However, it can change
norms and, thereby, change incentives and sanctions
for certain actions. To cope with Cunning Agents
while maintaining the autonomy of agents we choose
to allow them to reject jobs from inconsistently be-
having agents. Therefore, agents can decide on their
own if they want to work for Cunning Agents since
they will still receive an incentive for that.

In Figure 2, we show the changed norm. The
threshold d for the reputation t is smaller than tlower
and threshold g for consistency is 0:8 in our exper-
iment. requester.reputation is calculated using
the trust metric t and requester.consistency is
determined by k. The sanction results in a rating in
R for the working agent.

context

Target/Rolez }| {
Worker norm

Namez }| {
AcceptJob:

requester:consisteny> g^
requester:reputation> d| {z }

Pertinence Condition

implies acceptJob(requester;job) = true| {z }
Postcondition

sanctioned
if violated| {z }

Default Sanction Condition

then self.reputation += -rejectSanction| {z }
Sanction

Figure 2: Changed norm used in the evaluation to isolate
Cunning Agents. It sanctions allows agents to reject jobs
from inconsistently behaving agents.

4 EVALUATION

In this section we provide experimental validation of
our approach.

4.1 Setup

The setup in the evaluation consists of 100 Adaptive
Agents and additional 50 Cunning Agents for all ex-
periments with attackers. Each experiment ran for
300k ticks and was repeated 100 times. We performed
three series of experiments: (E1) without attacker;

(E2) with attackers; (E3) with attackers and our norm
changes.

4.2 Detection of Cunning Agents

The detection of Cunning Agents in (E2) by the NM
can be observed between tick 15k and 50k and was
successful in all experiments. In average the NM de-
tected the attackers at tick 24920 with a standard de-
viation of 15301. The NM can introduce the norm
at this point. However, to make the impact of the
norm change more comparable we set the time tchange
to 100k for subsequent experiment in (E3).

4.3 Consistency Values

We measured the consistency values for Adaptive
Agents and Cunning Agents in (E2) at the end of the
experiment. Both values turned out to be as expected:
Adaptive Agents have a value of 0:9999� 0:00053
which is very close to one. In contrast Cunning
Agents have a value of 0:0611�0:01338 which is next
to zero.

4.4 Influence of Norm Change

We measure the influence of the norm change us-
ing the speedup s for Adaptive Agents and Cunning
Agents in experiments (E1), (E2) and (E3) (see Fig-
ure 4). In Figure 3, we show one single exemplary
experiment of (E3) with speedup over time. In the be-
ginning Adaptive Agents and Cunning Agents achieve
a similar but varying speedup. After the NM intro-
duced the norm change at tick 100k the speedup for
Cunning Agents falls below one and those agents no
longer gain any advantage from participating in the
system. In contrast, Adaptive Agents gain a stable
high speedup again. In the undisturbed experiment
(E1), we measured that Adaptive Agents can achieve
a speedup of 11:74� 0:73 when there is no attack.
When a heavy attack of Cunning Agents is added in
(E2) the speedup decreases to 5:29�1:26. With norm
change by the NM the speedup increases again to
6:75� 1:24 in (E3) which is less than in Figure 3 at
the end of the experiment because the value is aver-
aged over the complete experiment. Cunning Agents
achieve a speedup of 5:23� 1:38 when they exploit
the system in (E1). At the same time they work sig-
nificantly less than Adaptive Agents. However, when
the NM changes the norm the speedup of Cunning
Agents decreases to 2:49� 0:33. Again, this is aver-
aged over 300k ticks and as shown in Figure 3 the
Cunning Agents are isolated with a speedup below
one at the end of all experiments.

ICINCO�2015�-�12th�International�Conference�on�Informatics�in�Control,�Automation�and�Robotics

250



Figure 3: Exemplary simulation run with norm introduced
at tick 100k. A speedup of less than one means that agents
no longer have an advantage from participating in the sys-
tem.

Adaptive Agents Cunning Agents
0

2

4

6

8

10

12

D
ur

at
io

n
[t

ic
ks

]

E1 - Reference
E2 - No norm
E3 - With norm

Figure 4: Speedup for Adaptive Agents and Cunning Agents
for every experiment series with 100 Experiments each. In
E3 the norm was introduced at tick 100k. All experiments
lasted 300k ticks.

5 RELATED WORK

Our application scenario is a Trusted Desktop Grid
System. These systems are used to share re-
sources between multiple administrative authorities.
The ShareGrid Project in Northern Italy is an ex-
ample for a peer-to-peer-based system (Anglano
et al., 2008). A second approach is the Organic
Grid, which is peer-to-peer-based with decentralised
scheduling (Chakravarti et al., 2004). Compared to
our system, these approaches assume that there are
no malicious parties involved and each node behaves
well. Another implementation with a central tracker is
the Berkeley Open Infrastructure for Network Com-
puting project (BOINC) (Anderson and Fedak, 2006).
All those systems solve a distributed resource allo-

cation problem. Since work units can be computed
faster when agents cooperate, they reward and, thus,
maximise cooperation. Additionally, a high fairness
value ensures equal resource distribution (cf. (Jain
et al., 1996; Demers et al., 1989; Bennett and Zhang,
1996)). We model our grid nodes as agents. Agents
follow a local goal which differs from the global sys-
tem goal (Rosenschein and Zlotkin, 1994). We con-
sider agents as black boxes which means that we can-
not observe their internal state. Thus, their actions
and behaviour cannot be predicted (Hewitt, 1991).
Our Trusted Desktop Grid supports Bag-of-Tasks ap-
plications (Anglano et al., 2006). A classification of
Desktop Grid Systems can be found in (Choi et al.,
2007). A taxonomy can be found in (Choi et al.,
2008). It is emphasised there that there has to be
some mechanism to detect failures and malicious be-
haviour in large-scale systems. Nodes cannot be ex-
pected to be unselfish and well-behaving. In contrast,
to other state-of-the-art works, we do not assume
the benevolence of the agents (Wang and Vassileva,
2004). To cope with this information uncertainty, we
introduced a trust metric. A general overview about
trust in Multi-Agent Systems can be found in (Castel-
franchi and Falcone, 2010). Another implementa-
tion of trust in a Desktop Grid System was evaluated
in (Domingues et al., 2007).

5.1 Normative Multi-agent Systems

This work is part of wider research in the area of
norms in multi-agent systems. However, we fo-
cus more on improving system performance by us-
ing norms than researching the characteristics of
norms (Singh, 1999). Our scenario is similar to
management of common pool resources. Accord-
ing to game theory, this leads to a “tragedy of the
commons” (Hardin, 1968). However, Ostrom (Os-
trom, 1990) observed cases where this did not hap-
pen. She presented eight design principles for suc-
cessful self-management of decentralised institutions.
Pitt et al. (Pitt et al., 2011) adapted these to Normative
Multi-Agent Systems. Normative Multi-Agent Sys-
tems are used in multiple fields: e.g. (Governatori
and Rotolo, 2008) focus on so-called policy-based
intentions in the domain of business process design.
Agents plan consecutive actions based on obligations,
intentions, beliefs, and desires. Based on DL, social
agents reason about norms and intentions.

In (Artikis and Pitt, 2009), the authors present a
generic approach to form organisations using norms.
They assign a role to agents in a normative system.
This system defines a goal, a process to reach the goal,
required skills, and policies constraining the process.

Detecting�and�Isolating�Inconsistently�Behaving�Agents�using�an�Intelligent�Control�Loop

251



Agents directly or indirectly commit to certain actions
using a predefined protocol. Agents may join or form
an organisation with additional rules. The “norm-
change” definition describes attributes, which are re-
quired for Normative Multi-Agent Systems (Boella
et al., 2009). Ten guidelines for implementation of
norms to MAS are given. We follow those rules in
our system. When norms are involved, agents need to
make decisions based on these norms. (Conte et al.,
1999) argue that agents have to be able to violate
norms to maintain autonomy. However, the utility of
certain actions may be lower due to sanctions. Ac-
cording to (Savarimuthu and Cranefield, 2011), Nor-
mative Multi-Agent Systems can be divided into five
categories: norm creation, norm identification, norm
spreading, norm enforcement, and network topology.
We use a leadership mechanism for norm creation
and norm spreading. For norm identification, we use
data mining and machine learning. For norm enforce-
ment, we use sanctioning and reputation. Our net-
work topology is static. Related approaches use Nor-
mative Multi-Agent Systems for governance or task
delegation in distributed systems (Singh et al., 2013).

6 CONCLUSION AND FUTURE
WORK

This paper presented a novel approach to identify
and isolate agents with inconsistent and partly mali-
cious behaviour within open, self-organised systems
such as Desktop Computing Grids. Therefore, we es-
tablished an intelligent system-wide control loop to
guide the self-organised behaviour of heterogeneous
agents that are free to join the system if they follow
the basic protocol. In general, we identified differ-
ent stereo-type agent behaviours that also consider ex-
ploitation strategies and malicious behaviour. Based
on the system-wide identification approach, we pro-
posed to establish an observer/controller loop that is-
sues norms as response to the currently observed con-
ditions. The concept consists of an observer part
that derives an appropriate situation description from
externally monitorable information, i.e. interactions
between agents, and a controller part that generates
norms, i.e. demanded behavioural guidelines that are
augmented with incentive and sanctioning strategies.
For the identification task of exploiting agents, we in-
troduced a graph-based method to detect suspicious
agents or groups of agents at runtime.

The evaluation is based on a simulation of a
Trusted Desktop Grid in which several classes of
stereo-type agent behaviour are considered. The
results demonstrated that the system-wide control

loop works successful in terms of issuing appropri-
ate norms. These norms are followed by benevolent
agents – and as a result, malicious agents are isolated,
i.e. they do not find cooperation partners any more.
Future work will focus on refining the control loop
and improving the controller part. Therefore, we in-
vestigate how norms can be generated automatically
that a suitable for certain situations. In addition, we
currently develop distributed and fully self-organised
strategies to monitor whether agents comply to norms
or not.

REFERENCES

Anderson, D. P. and Fedak, G. (2006). The Computa-
tional and Storage Potential of Volunteer Computing.
In Proc. of CCGRID 2006, pages 73–80, Singapore.
IEEE.

Anglano, C., Brevik, J., Canonico, M., Nurmi, D., and Wol-
ski, R. (2006). Fault-aware Scheduling for Bag-of-
Tasks Applications on Desktop Grids. In Proc. of
GRID 2006, pages 56–63, Singapore. IEEE.

Anglano, C., Canonico, M., Guazzone, M., Botta, M., Ra-
bellino, S., Arena, S., and Girardi, G. (2008). Peer-to-
Peer Desktop Grids in the Real World: The ShareGrid
Project. Proc. of CCGrid 2008, 0:609–614.

Artikis, A. and Pitt, J. (2009). Specifying Open Agent
Systems: A Survey. In Artikis, A., Picard, G., and
Vercouter, L., editors, Engineering Societies in the
Agents World IX, volume 5485 of LNCS, pages 29–
45. Springer, Saint-Etienne, FR.

Bennett, J. C. and Zhang, H. (1996). WF2Q: Worst-case
Fair Weighted Fair Queueing. In INFOCOM ’96. Fif-
teenth Annual Joint Conference of the IEEE Computer
Societies. Networking the Next Generation. Proceed-
ings IEEE, volume 1, pages 120–128, San Francisco,
CA, USA. IEEE.

Boella, G., Pigozzi, G., and van der Torre, L. (2009). Nor-
mative Systems in Computer Science - Ten Guidelines
for Normative Multiagent Systems. In Boella, G.,
Noriega, P., Pigozzi, G., and Verhagen, H., editors,
Normative Multi-Agent Systems, number 09121 in
Dagstuhl Seminar Proceedings, pages 1–21, Dagstuhl,
Germany. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, Germany.

Castelfranchi, C. and Falcone, R. (2010). Trust Theory:
A Socio-Cognitive and Computational Model, vol-
ume 18. John Wiley & Sons, Chichester, UK.

Chakravarti, A. J., Baumgartner, G., and Lauria, M. (2004).
Application-Specific Scheduling for the Organic Grid.
In Proc. of GRID 2004 Workshops, pages 146–155,
Washington, DC, USA. IEEE.

Choi, S., Buyya, R., Kim, H., and Byun, E. (2008). A
Taxonomy of Desktop Grids and its Mapping to State
of the Art Systems. Technical report, Grid Comput-
ing and Dist. Sys. Laboratory, The University of Mel-
bourne.

ICINCO�2015�-�12th�International�Conference�on�Informatics�in�Control,�Automation�and�Robotics

252



Choi, S., Kim, H., Byun, E., Baik, M., Kim, S., Park, C.,
and Hwang, C. (2007). Characterizing and Classifying
Desktop Grid. In Proc. of CCGRID 2007, pages 743–
748, Rio de Janeiro, Brazil. IEEE.

Conte, R., Castelfranchi, C., and Dignum, F. (1999). Au-
tonomous Norm Acceptance. In Müller, J., Rao, A.,
and Singh, M., editors, Intelligent Agents V: Agents
Theories, Architectures, and Languages, volume 1555
of LNCS, pages 99–112. Springer, Paris, France.

Demers, A., Keshav, S., and Shenker, S. (1989). Analy-
sis and Simulation of a Fair Queueing Algorithm. In
Symposium Proceedings on Communications Archi-
tectures & Protocols, SIGCOMM ’89, pages 1–12,
New York, NY, USA. ACM.

Domingues, P., Sousa, B., and Moura Silva, L. (2007).
Sabotage-tolerance and Trustmanagement in Desktop
Grid Computing. Future Generation Computer Sys-
tems, 23(7):904–912.

Governatori, G. and Rotolo, A. (2008). BIO Logical
Agents: Norms, Beliefs, Intentions in Defeasible
Logic. Autonomous Agents and Multi-Agent Systems,
17(1):36–69.

Hardin, G. (1968). The Tragedy of the Commons. Science,
162(3859):1243–1248.

Hewitt, C. (1991). Open Information Systems Semantics
for Distributed Artificial Intelligence. Artificial intel-
ligence, 47(1):79–106.

Jain, R., Babic, G., Nagendra, B., and Lam, C.-C. (1996).
Fairness, Call Establishment Latency and Other Per-
formance Metrics. ATM-Forum, 96(1173):1–6.

Kantert, J., Edenhofer, S., Tomforde, S., Hähner, J., and
Müller-Schloer, C. (2015). Defending Autonomous
Agents Against Attacks in Multi-Agent Systems Us-
ing Norms. In Proceedings of the 7th Interna-
tional Conference on Agents and Artificial Intelli-
gence, pages 149–156, Lisbon, Portugal. INSTICC,
SciTePress.

Kantert, J., Scharf, H., Edenhofer, S., Tomforde, S., Hähner,
J., and Müller-Schloer, C. (2014). A Graph Analysis
Approach to Detect Attacks in Multi-Agent-Systems
at Runtime. In 2014 IEEE Eighth International Con-
ference on Self-Adaptive and Self-Organizing Sys-
tems, pages 80–89, London, UK. IEEE.

Klejnowski, L. (2014). Trusted Community: A Novel Mul-
tiagent Organisation for Open Distributed Systems.
PhD thesis, Leibniz Universität Hannover.

Müller-Schloer, C. (2004). Organic Computing: On the
Feasibility of Controlled Emergence. In Proc. of
CODES and ISSS’04, pages 2–5. ACM Press.

Ostrom, E. (1990). Governing the Commons: The Evolu-
tion of Institutions for Collective Action. Cambridge
university press, Cambridge, US.

Pitt, J., Schaumeier, J., and Artikis, A. (2011). The Ax-
iomatisation of Socio-Economic Principles for Self-
Organising Systems. In Self-Adaptive and Self-
Organizing Systems (SASO), 2011 Fifth IEEE Interna-
tional Conference on, pages 138–147, Michigan, US.
IEEE.

Rosenschein, J. S. and Zlotkin, G. (1994). Rules of En-

counter: Designing Conventions for Automated Ne-
gotiation Among Computers. MIT Press, Cambridge.

Savarimuthu, B. T. R. and Cranefield, S. (2011). Norm Cre-
ation, Spreading and Emergence: A Survey of Simula-
tion Models of Norms in Multi-Agent Systems. Mul-
tiagent and Grid Systems, 7(1):21–54.

Schmeck, H., Müller-Schloer, C., Çakar, E., Mnif, M., and
Richter, U. (2010). Adaptivity and self-organization
in organic computing systems. ACM Trans. Auton.
Adapt. Syst., 5:10:1–10:32.

Singh, M. P. (1999). An Ontology for Commitments in
Multiagent Systems. Artificial Intelligence and Law,
7(1):97–113.

Singh, M. P., Arrott, M., Balke, T., Chopra, A. K., Chris-
tiaanse, R., Cranefield, S., Dignum, F., Eynard, D.,
Farcas, E., Fornara, N., Gandon, F., Governatori, G.,
Dam, H. K., Hulstijn, J., Krueger, I., Lam, H.-P.,
Meisinger, M., Noriega, P., Savarimuthu, B. T. R.,
Tadanki, K., Verhagen, H., and Villata, S. (2013). The
Uses of Norms. In Normative Multi-Agent Systems,
volume 4 of Dagstuhl Follow-Ups, pages 191–229.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
Dagstuhl, Germany.

Tomforde, S., Prothmann, H., Branke, J., Hähner, J., Mnif,
M., Müller-Schloer, C., Richter, U., and Schmeck, H.
(2011). Observation and Control of Organic Systems.
In Organic Computing - A Paradigm Shift for Complex
Systems, pages 325 – 338. Birkhäuser, Basel, CH.

Urzică, A. and Gratie, C. (2013). Policy-Based Instan-
tiation of Norms in MAS. In Fortino, G., Badica,
C., Malgeri, M., and Unland, R., editors, Intelligent
Distributed Computing VI, volume 446 of Studies in
Computational Intelligence, pages 287–296. Springer,
Calabria, Italy.

Van Dongen, S. M. (2001). Graph clustering by flow simu-
lation. PhD thesis, Utrecht University.

Wang, Y. and Vassileva, J. (2004). Trust-Based Community
Formation in Peer-to-Peer File Sharing Networks. In
Proc. on Web Intelligence, pages 341–348, Beijing,
China. IEEE.

Zhang, T., Ramakrishnan, R., and Livny, M. (1996). Birch:
an efficient data clustering method for very large
databases. In ACM SIGMOD Record, volume 25,
pages 103–114, Montreal, Canada. ACM.

Detecting�and�Isolating�Inconsistently�Behaving�Agents�using�an�Intelligent�Control�Loop

253


