
Modeling Authorization Policies for Web Services in Presence of
Transitive Dependencies

Worachet Uttha1, Clara Bertolissi1;2 and Silvio Ranise2

1LIF, CNRS UMR 7279 & AMU, Marseille, France
2Fondazione Bruno Kessler, Trento, Italy

Keywords: Access Control, Transitive Access, Security Policy, OrBAC, Web Services, XACML.

Abstract: Access control is a crucial issue for the security of Web Services. Since these are independently designed,
implemented, and managed, each with its own access control policy, it is challenging to mediate the access
to the information they share. In this context, a particularly difficult case occurs when a service invokes
another service to satisfy an initial request, leading to indirect authorization errors. To overcome this problem,
we propose a new approach based on a version of ORganization Based Access Control (OrBAC) extended
by a delegation graph to keep track of transitive authorization dependencies. We show that Datalog can be
used as the specification language of our model. As a byproduct of this, an automated analysis technique
for simulating execution scenarios before deployment is proposed. Finally, we show how to implement an
enforcement mechanism for our model on top of the XACML architecture. To validate our approach, we
present a case study adapted from the literature.

1 INTRODUCTION

In the Service Oriented Architecture (SOA)
paradigm, applications can be given a standard
interface and stored as reusable units for compo-
sition. This loosely-coupled architecture makes
platform-independent computing possible but sub-
sumes all the problems and issues of distributed
computing (such as non-determinism and synchro-
nization) while adding, among others, a number of
additional problems related to the dependability of
the services. Dependability refers to the property
of a system by which some trust can be placed
on the delivered service. Since SOA systems are
usually obtained by composition of simpler services,
dependability is the result of the capability of the
component services to deliver certain results and the
way these results are exchanged among the services.
This aspect is particularly important when security
properties come into the picture and authentication or
authorization of users with respect to the integrated
services must be enforced. While for authentication,
there exist standardized and thoroughly analyzed
solutions—such as the Single-Sign On (Armando
et al., 2012) —for authorization, the situation is much
less satisfactory. One of the main problems is due to
the presence of transitive dependencies, which can be

explained as follows. In the processing of a request,
a service may call other services to complete its
computations. Even though the user had the rights to
access the original service, he/she might not have the
permissions to access the invoked services, leading
to indirect authorization errors. In general, these
errors are difficult to prevent through testing once the
integrated services have been deployed, because of
the large number of possible execution scenarios.

The first contribution of this paper is a frame-
work for the modeling of access control policies—at
design time—of Web Services, an important class of
SOA applications. For concreteness, we develop our
ideas in the context of designing and implementing
portals, i.e. specially designed services bringing in-
formation together from a set of heterogeneous ser-
vices in a uniform way. The portal plays the role of
a mediation service, encharged to integrate and medi-
ate the exchange of information among the various
services. Following (Brown, 2008), a portal is the
ideal place where to locate the policy enforcement
point which, together with a module for messaging,
provides the interface to both users and the different
services protected by their own authorization policy
(see, Figure 1). Since the messaging module inter-
cepts all messages flowing among the integrated ser-
vices, the policy enforcement point can be invoked

293Uttha W., Bertolissi C. and Ranise S..
Modeling Authorization Policies for Web Services in Presence of Transitive Dependencies.
DOI: 10.5220/0005548502930300
In Proceedings of the 12th International Conference on Security and Cryptography (SECRYPT-2015), pages 293-300
ISBN: 978-989-758-117-5
Copyright c 2015 SCITEPRESS (Science and Technology Publications, Lda.)



Figure 1: Access control with a mediation service.

whenever needed so as to enforce the appropriate ac-
cess control policy and to record the transitive calls.
For simplicity, we assume that the topology of the sys-
tem (i.e. how the integrated services may invoke each
other) is known and fixed.

Technically, we develop our approach by extend-
ing the ORganization Based Access Control (OrBAC)
model (Y. Deswarte, 2009) with a delegation graph
for transitive dependencies. Following a long tradi-
tion (see, e.g., (Li and Mitchell, 2003)), we use Data-
log (Ceri et al., 1989) as the specification language in
which to express our model. As a byproduct of choos-
ing Datalog, our framework supports the automated
analysis of execution scenarios through the invoca-
tion, off-the-shelf, of available Datalog engines (in
our experiments, we use (Carbonnelle, 2014)). The
main advantage of our analysis technique is twofold.
First, there is no need to implement a prototype to
experiment with the system behavior since it is pos-
sible to perform the simulation of the system from an
abstract design before its deployment. Second, some-
times the code of some of the integrated services may
not be easily accessible or may cost money to be in-
voked; it is indeed desirable to be able to build an ab-
stract specification that can be used to predict (some
of) the outcomes of the system without incurring in
extra costs for testing. Additionally, the environment
in which the various services will be run may not be
easily accessible; thereby making the testing of the
composed system very difficult, if possible at all.

The framework for modeling access control poli-
cies and the related automated analysis technique al-
though a necessary first step in producing high qual-
ity SOA applications, are insufficient if not supported
by adequate run-time support for the enforcement of
policies in deployed systems. The second contribu-
tion of this paper is the description of an extension
of the XACML architecture1 to support the enforce-

1http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-

ment of access control policies in presence of transi-
tive dependencies. The extension consists of incorpo-
rating the construction of the delegation graph in the
policy information point of the XACML architecture
for keeping track of delegated authorization rights in
transitive chains of service invocations. We have im-
plemented the architecture on top of the WSO2 plat-
form,2 an open source middle-ware platform for de-
veloping web service solutions, and we briefly report
on our experience in using it with a case study.
Plan of the paper. Section 2 describes the access con-
trol problem with transitive dependencies and illus-
trates it on a case study adapted from (Fischer and
Majumdar, 2008). Section 3 describes our formal
modeling technique to solve the access control prob-
lem in presence of transitive dependencies. Section 4
shows how to use Datalog as a specification language
for the model previously developed and explains how
to invoke a Datalog engine to perform the (symbolic)
simulation of scenarios. Section 5 describes the im-
plementation of our solution and briefly discusses our
experience with the case study introduced in Sec-
tion 2. Section 6 discusses the related work and
Section 7 concludes the paper. An extended version
of this paper containing the complete Datalog model
of the case study is available at http://pageperso.lif.
univ-mrs.fr/�worachet.uttha/dl/secrypt2015-full.pdf.

2 CASE STUDY

To illustrate the transitive dependency problem, we
have developed a case study inspired from (Fischer
and Majumdar, 2008). We consider 4 collaborating
yet independent medical services: the clinical man-
agement service managing the scheduling of patients,
the laboratory information system tracking laboratory
tests and their results, and the patient records service
maintaining historical data about patients health. In
addition, the web portal provides convenient web ac-
cess to the previous three services. It does not store
any confidential data locally. Instead, when the user
requests a page, the portal makes service calls to the
other services using the requesting user’s attributes.

Each service has its own access control policy
that is managed independently. Therefore, several
different models of access control may have to co-
habit and interact in the case of transitive calls (as de-
tailed in Section 3). For such a kind of distributed,
dynamic environments, the classical Role Based Ac-
cess Control (RBAC) model shows its limitations. We

spec-os-en.html
2http://wso2.com

SECRYPT�2015�-�International�Conference�on�Security�and�Cryptography

294



Figure 2: Topology of the case study in Section 2 with an
example of transitive dependency (red path).

consider here a more general model called Category-
Based Access Control (CBAC) model (Bertolissi and
Fernández, 2014), where a category is any of sev-
eral distinct classes or groups to which subjects may
be assigned. CBAC is defined as a meta-model of
access control that can be instantiated with several
known models, e.g. with RBAC if the indirection be-
tween subjects and permissions is a set of roles, or
Attributes Based Access Control (ABAC) if autho-
rization privileges are based on user’s credentials. In
our case study, each service has a set of registered
users to which categories are assigned according to
e.g. their age, diploma, qualifications, etc. Permis-
sions are then associated to each category. For in-
stance, for Clinical Management we have the cate-
gory CM Doctor to which a user is assigned if she/he
has a diploma in Medicine or his/her speciality is
physician. The privileges associated to this category
are consulting a file in vitals and care orders services.

The transitive dependencies problem in the medi-
cal scenario may occur e.g. when a user requests from
the Web portal the access to some of his medical data
such as the care orders prescribed by its physician.
In this case, for answering the initial request, the ser-
vice Care Orders may need to invoke the service Test
Orders located in Laboratory to retrieve some details
about a test ordered by the doctor. As each organi-
zation is protected by its own access control policy,
the requester may have the right to make a call to the
Clinical Management but this does not mean that he
has the right to invoke the Laboratory to retrieve the
test’s results. We show this example of transitive call
in red in Figure 2.

3 OUR FORMAL MODEL

In order to solve the problem mentioned in section 2,
we will develop a formal model based on the Organi-
zation Based Access Control (OrBAC) model (Kalam
et al., 2003).

In OrBAC it is possible to handle simultaneously
several security policies associated with different or-
ganizations that can be seen as organized groups of
activities or groups of services. Each security policy
is defined for and by an organization and it is possi-
ble to handle simultaneously several security policies,
since their specification is parametrized by the orga-
nization.

Although the OrBAC model can deal with the
specification of policies for organizations or sub-
organizations, the transitive access request is still not
solved. In distributed environments, a subject may
be recognized in an organization but it may not be
known outside it. We will introduce the delegation of
authority in order to overcome this issue. Moreover,
in order to increase flexibility w.r.t standard OrBAC
which structures subjects into roles as in RBAC, in
our approach we structure the subjects in a general en-
tity called category (as in (Bertolissi and Fernández,
2014)). Categories are associated to users on the base
of the credentials they own, and permissions are as-
signed to each category.

Therefore, in our extended OrBAC model we have
the following main entities:

� Organization (denoted org0, org1, : : : ). can be
seen as an organized group of activities (such
as Clinical management, Laboratory and Patient
Records in our case study) or it can be seen as an
organized group of services (such as the Web por-
tal in the case study).

� Subjects and Categories. The entity Subject (de-
noted s0, s1, : : : ) is an active entity, (i.e. a user
or an organization). Subjects that have the same
attributes’ value or satisfy same conditions belong
to the same group, called Category (denoted cat0,
cat1, : : : ) and have the same permissions.

� Objects and Actions3. Objects (denoted o0,
: : : ) are passive entities such as data files, pa-
tient’s records, etc. Action entities (denoted act0,
act1, : : : ) contain computer actions such as ”read”,
”write”, ”send” or ”print”.

The access control policy is modeled using the
predicate Permission(org, cat, act, o) that specifies

3For easing the notation, we do not consider the abstrac-
tion of objects and actions as in the original OrBAC model,
but this can be easily accommodated by adding 2 extra en-
tities and the corresponding relations.

Modeling�Authorization�Policies�for�Web�Services�in�Presence�of�Transitive�Dependencies

295



the permissions between categories, actions and ob-
jects, while the evaluation of requests is modeled us-
ing the predicate Is permitted(s, act, o) that allows to
derive permissions between subjects, actions and ob-
jects. The Subject-Category assignment is modeled
using the predicate Empower(org, s, cat).

In organization org, a subject s has a permission to
perform an action act on an object o if (i) s is associ-
ated to a category cat in the organization org and (ii)
the organization org grants the category cat the per-
mission to perform the action act on the object o. The
derivation of permissions is modeled by the following
rule:

8org;8cat;8s;8o;8act;
Permission(org;cat;act;o)^Empower(org;s;cat)

! Is permitted(s;act;o) (1)

Subject, action and object attributes are mod-
eled by a set of binary predicates having the
form org attribute(entity, value). For instance
CM experience(David, 5) means that David’s work
experience in Clinical Management is of 5 years. We
can model the Subject-Category assignment accord-
ing to the attributes of the subject as follows:

8org;8cat;8s;
Empower(org;s;cat) org attr1(s;val1)�

org attr2(s;val2)� � � � �org attrn(s;valn) (2)

Where * can be disjunction(_), conjunction (^) or a
mixture of both.

As our system is distributed across several organi-
zations, each having a different authorization domain,
we have defined a delegation policy specifying the
mapping of categories belonging to different autho-
rization domains. This is formalized by a delegation
graph in the form of Directed Acyclic Graph (DAG)
that describes the way a category may be delegated
(see Fig. 3). Each node represents a service autho-
rization domain that can delegate categories (and thus

Figure 3: Delegation graph for the case study in Section 2.

permissions) to another. This supposes that an agree-
ment on a set of categories that are allowed to be del-
egated has been previously reached between the dif-
ferent participants.

The formal representation of the delegation graph
is a logical predicate that takes four parameters Del-
egate(org1, cat1, org2, cat2) that means the category
cat1 from organization org1 is mapped to the cate-
gory cat2 from the organization org2. The delegation
graph is of crucial importance to determinate access
request decisions in the case of transitive service in-
vocation. The derivation of permissions in the case of
a service invoking another service outside of its orga-
nization is modeled by the following rule:

8org1;8org2;8cat1;8cat2;8s;8o;8act;
Empower(org2;s;cat2)^

Permission(org1;cat1;act;o)^
Delegate(org1;cat1;org2;cat2)

! Is permitted(s;act;o) (3)

The rule above means that a subject s has a permis-
sion to perform an action act on an object o if (i) s
is associated to a category cat2 in the organization
org2, (ii) a category cat2 from the organization org2
is mapped to the category cat1 in the organization
org1 and (iii) the organization org1 grants the cate-
gory cat1 the permission to perform the action act on
the object o.

4 AUTOMATED ANALYSIS OF
EXECUTION SCENARIOS

Our approach can be validated through declarative
programming, e.g., using a language such as Datalog
based on facts, rules and queries with built-in support
for backtracking.
Datalog. Facts are represented as n-ary relations of
the form f act(t1; t2; :::; tn) where each ti is either a
constant or variable. Rules take the form Head :
�Body, where the head is a fact and the body is a
conjunction of facts, all of which need to be satisfied
so that the head of the rule can succeed. A clause is
either a fact or a rule. A Datalog program is a finite set
of clauses. Datalog also allows one to ask questions,
for instance ?� f act(t1; t2; :::; tn) models a query for
verifying that the considered fact holds. When im-
plementing in Datalog, instead of specifying how to
achieve a certain goal in a certain situation, we spec-
ify what the situation (rules and facts) and the goal
(query) are and let the Prolog interpreter derive the
answer true/false for us. For a thorough review on
Datalog, we refer the reader to (Ceri et al., 1989).

SECRYPT�2015�-�International�Conference�on�Security�and�Cryptography

296



Several techniques have been proposed for the effi-
cient evaluation of Datalog programs; see (Abiteboul
et al., 1995) for an introduction.
Example of Queries on the Case Study. We
show now how the medical center case study can be
specified and validated through Datalog. We con-
sider the four organizations Web portal(wp), Clin-
ical Management(cm), Laboratory(la) and Patient
History(ph). User’s attributes are represented by
facts, such as org(Bob;cm), role(Bob;cm doctor),
speciality(Bob;dentist), specifying Bob’s organiza-
tion, role and speciality, respectively.

Each organization policy assigns subjects to cate-
gories (according to the subject’s attributes). The Dat-
alog rules allowing to define such assignments may be
as following:
cat(wp,U,wp_nurse) :- role(U, nurse).
cat(cm,U,cm_senior_doctor) :-

cat(cm,U,cm_doctor),
experience(U,Exp), Exp >= 5.

The first rule means that a subject U is assigned
to category wp nurse in Web Portal if his/her role
is nurse. The second rule means that for being as-
signed to the category cm senior doctor in Clinical
Management, the subject must belong to the cate-
gory cm doctor and have a work experience greater
or equal to 5 years.

In case of a transitive call, we need to deter-
mine if a service is required to invoke another ser-
vice to satisfy a request or not. For that, we have de-
fined the fact depends on(service1, service2). When
service1 6= service2, this means that service1 uses
service2 to answer to the initial request, otherwise
service1 is independent. Moreover, we use the
fact belong to(service;organization) to determine to
which organization a service belongs to. To answer
the transitive request that we consider in Figure 2,
the careOrders service located in Clinical Manage-
ment needs to invoke testOrders service that belongs
to Laboratory. This corresponds to the Datalog code
below:
depends_on(careOrders_service,
testOrders_service).

belong(careOrders_service, cm).
belong(testOrders_service, la).

We may have invocations that need only local
evaluation and invocations that are global (inter-
domain). In the last case we have to take into account
transitive dependencies. This is done using recursion
to compute the delegation chain. We have two main
cases:
1. Service 1 invokes service 2 from another organi-

zation and service 2 is independent. Here, one
step of delegation is required.

2. The transitive invocation chain is longer than 2 in-
vocations, that is at least 2 steps of delegation are
required. As an example, consider a service 1 that
invokes a service 2 which in turn invokes an inde-
pendent service 3, the three services being from
different organizations. We need to consider this
case because service 2 invokes service 3 on behalf
of service 1 and not on behalf of itself, which is
different from the first case.

We show below an example of access request eval-
uation where Bob from Web Portal tries to access a
Care Orders Service file located in Clinical Manage-
ment. Firstly the system determines Bob’s organiza-
tion and evaluates his attributes in order to resolve
a category for Bob. Then, it checks the organiza-
tion that owns the requested resource. If the subject’s
organization is different from the resource organiza-
tion, a delegation step is needed in order to deter-
mine her/his permissions. If transitive dependencies
are present, as it is the case in this example with Care
Orders Service depending from Test Orders Service,
the delegation chain is computed (see point 2: above).
The query returns True if access rights are correctly
propagated through the chain. It returns False if a
denial of access is found somewhere in the path of
involved services.

>>> request = is_permitted(’bob’,’read’,
’careOrders_service’)
>>> print(len(request) > 0)
New fact : org(’bob’,’wp’)
New fact : role(’bob’,’doctor’)
New fact : cat(’wp’,’bob’,’wp_doctor’)
New fact : empower(’wp’,’bob’,’wp_doctor’)
New fact : depends_on(’careOrders_service’,
’testOrders_service’)
New fact : belong(’careOrders_service’,’cm’)
New fact : !=(’wp’,’cm’) is True
New fact : delegate(’cm’,’cm_doctor’,’wp’,
’wp_doctor’)
New fact : permission(’cm’,’cm_doctor’,’read’,
’careOrders_service’)
...
New fact : is_permitted(’bob’,’read’,
’careOrders_service’)
New fact : _pyD_query1()
True

Termination and Complexity. Since in our model,
authorization queries are mapped to Datalog queries,
we can study the problem of answering authoriza-
tion queries by reusing well-known results (Ceri et al.,
1989) about Datalog.

A first simple albeit desirable property of au-
thorization queries is their finiteness, i.e. any au-
thorization query admits finitely many answers. A
well-known result in (Ceri et al., 1989) says that all
the relations defined in a Datalog program are fi-

Modeling�Authorization�Policies�for�Web�Services�in�Presence�of�Transitive�Dependencies

297



nite if the following conditions hold: (i) unit clauses
(i.e. clauses composed of a single literal) are always
ground; (ii) every variable that appears in the head
of a rule also appears in a positive literal in the body
of the rule, and (iii) no negative literal appears in the
body of a rule. By construction, the Datalog programs
specifying our models satisfy all these conditions.
Proposition 1. In our model, authorization queries
admit only finitely many answers.

Termination of the process of answering queries is
guaranteed by using a tabled logic programming algo-
rithm (Chen and Warren, 1996), used by the pyData-
log (Carbonnelle, 2014) engine that we have used in
our experiments.
Proposition 2. In our model, answering authoriza-
tion queries always terminates.

Concerning complexity, recall that there are three
types of complexity characterizations of answering
Datalog queries (Ceri et al., 1989): data complexity
(when rules are fixed, whereas facts and goal are an
input); expression complexity (facts are fixed, rules
and goal are an input); and combined complexity
(rules, facts, and goal are an input). The rules in our
Datalog program are all fixed since the topology of
the system (together with the delegations) is fixed, the
authorization policies are also given as they are not al-
lowed to change during the operation of the system.
What may change are the assignment of subjects-
category and the assignment of subject-attributes that
depend on the user’s profile. This means that, in our
context, the right complexity characterization to con-
sider is data complexity. As a consequence, we can
state the following result as a corollary of the polyno-
mial time data complexity in (Dantsin et al., 2001).
Theorem 1. In our model, answering authorization
queries takes polynomial time.

5 ARCHITECTURE AND
IMPLEMENTATION OF THE
ENFORCEMENT MECHANISM

So far, we have considered the modeling and analysis
of authorization requests in web service applications
at design time. In this section, we discuss the run-time
enforcement of our access control model by extending
the standard XACML architecture. We also discuss an
implementation of the proposed enforcement mecha-
nism on top of the WSO2 Identity Server,4 which is
part of an open source middleware platform support-
ing the development of SOA applications. The WSO2

4http://wso2.com/products/identity-server

Identity Server features, among many other things, at-
tribute based access control via XACML. The devel-
opment has been guided by the Datalog model pre-
sented above.
Architecture. Figure 4 shows the modules of the ar-
chitecture interacting as follows. (1) The user’s ac-
cess request is intercepted by the Policy Enforcement
Point (PEP); (2) the request and user’s attributes are
forwarded to the Policy Decision Point (PDP) which
asks the Policy Information Point (PIP) for additional
information about the subject. If the PDP determines
from the policy and request that the user’s organiza-
tion is different from the resource organization, a del-
egation step is needed. In this case, (3) the PIP asks
the delegation module, which contains the delegation
graph and the history of previous delegations, to com-
pute a category for the user in the new organization.
The delegation module first checks the history of dele-
gations of the user u making the request. If a category
has been previously delegated to u in this organiza-
tion, the module returns it to the PDP. Otherwise, it
checks the delegation graph for the mapping of the
user’s category in the resource organization and re-
turns it to PDP (4-5). The PDP loads the XACML pol-
icy of the organization owning the resource from the
Policy Administration Point (PAP) (6-8). The PDP
makes a decision and returns it to the PEP (9). If the
answer is positive, the PEP forwards the request to the
invoked service, otherwise the PEP throws an access
denied exception (10).
Implementation. To implement the architecture in
Figure 4, we have used the WSO2 Identity Server
since it offers support for administering and enforc-
ing XACML policies. In particular, it permits the cus-
tomization of PAPs, PEPs, and PDPs. Policy admin-
istrators can specify access control policies by using
an XML file or a graphic UI. All the modules and the
interactions depicted in Figure 4 were already sup-
ported by the WSO2 Identity Server except for the ad-
ditional module in the PIP for handling the delegation
graph. We have implemented it in Java exploiting the
JDBC API to maintain subjects and their attributes.
This new module consists of 2 Java classes for a total
of 350 lines of code.
Experience with the Case Study. The implementa-
tion described above have been used to animate the
medical clinic portal described in Section 2. For this,
we have implemented all services following the web
service standard, i.e. UDDI for services discovery,
WSDL for interface definitions and SOAP for invoca-
tions, XML as the format for exchanging messages.
We have also implemented the PEP using the Java
Servlet Filter for intercepting authorization requests,
forward them to the PDP, wait for its decisions, and fi-

SECRYPT�2015�-�International�Conference�on�Security�and�Cryptography

298



Figure 4: XACML Architecture with Delegation Graph Handling.

nally enforce them. We have then configured the PAP
by specifying access control policies for all services
via the WSO2 Identity Server interface.

We now describe how our implementation com-
pute an answer to the (transitive) authorization request
depicted in red in Figure 2. A user connects to Web
portal and requests an access to Care order service.
The Clinical Management’s PEP intercepts the mes-
sage and forwards it to the PDP on WSO2 Identity
Server. The PDP computes an access decision and
returns it to the PEP of the Clinical Management ser-
vice. It may call the delegation module to obtain the
delegation mapping from the Web portal to the Clin-
ical Management service. If the request is accepted,
the user can access to the Care order service hosted
in Clinical Management. In the considered request,
the Care Order service needs to invoke the Test order
service in Laboratory to finish its task. Therefore, the
Care Order service sends a request on behalf of the
initial user to Laboratory and the Laboratory’s PEP
intercepts the request and sends it to the PDP. The
PDP computes a decision as in point 3 and returns
an answer to the Laboratory’s PEP. If the access re-
quest is accepted, the user can access the Test order
service and the invocation chain is finished. Other-
wise, a security message is displayed to the user and
the invocation chain is aborted.

All the process above, on a standard laptop, takes
much less than a second to terminate. Indeed, the time
for answering authorization requests increase with the
length of the chain of service invocations. The WSO2

Identity Server features a caching mechanism for both
attribute values and authorization decisions that per-
mits to avoid repeating the same operation several
times, thereby helping to improve the performances
with long chains of service invocations.

6 RELATED WORK

The transitive access problem occurs frequently in
Web Service based collaborative systems since each
organization provides various services that are pro-
tected by its own security policy. As pointed out
in (Li and Karp, 2007), the use of Federated Iden-
tity Management systems to solve transitive depen-
dency is problematic. A solution to overcome this
has been proposed in (Karp and Li, 2010) where the
client needs to dialog directly with the policy engine.
We choose instead to adopt the standard architecture
where the user communicates directly with the ser-
vice. This model is well suited to be implemented
by using the available Identity Management Systems,
such as WSO2. In (Chadwick et al., 2006) multiple
policy domains and dynamic delegation of authority
are considered. However, the authors do not specifi-
cally consider the problem of access request evalua-
tion and access decision making in the case of tran-
sitive calls. The work in (Srivatsa et al., 2007) ad-
dresses the problem of access control for web ser-
vice composition. The access policies are specified
in Pure-Past Linear Temporal Logic (PPLTL) that al-

Modeling�Authorization�Policies�for�Web�Services�in�Presence�of�Transitive�Dependencies

299



lows to exploit the history of service invocations to
make access control decisions. Unfortunately in prac-
tice the specification of policies in PPLTL is not very
friendly for security designers. (She et al., 2013)
and (Mecella et al., 2006) also discuss access control
in web service composition. Nevertheless, their ap-
proach is different from ours. They consider the issue
of service unavailability along a pathway to a target
service, and they solve it by invoking dynamically al-
ternative services belonging to different domains.

Several extensions of the OrBAC model have been
proposed recently in order to specify security rules
for intra- as well as inter-organizations. For instance
(Y. Deswarte, 2009) have proposed a new access con-
trol framework for inter-Organizational Web services
(PolyOrBAC). The authors model permissions, pro-
hibitions and obligations in timed automata to verify
properties such as reachability and correctness. They
consider the case of a service requested remotely from
a different organization. In this case, in order to au-
thorize a user from a different domain to access a ser-
vice, a particular role is associated to a virtual user,
then a specific rule defined as a circumstance (context
relation in OrBAC) is applied. However, they do not
address the transitive access problem for dependent
services, nor use requesters’ credentials for comput-
ing the rights of access.

7 CONCLUSION

We have proposed a solution to the challenging prob-
lem of transitive dependencies in web service invoca-
tions by extending the OrBAC model with a cross-
domain delegation graph (relation). Our model is
flexible and dynamic since permissions are computed
according to the value of users’ credentials at the mo-
ment of the request, while in standard OrBAC, per-
missions are pre-assigned to users when the security
policy is defined. By using Datalog as the specifica-
tion language, the extended OrBAC model supports
an automated analysis technique for executing scenar-
ios before applications are deployed. We have also
shown how access control policies can be enforced
by extending the standard XACML architecture with
a module handling the delegation graph.

REFERENCES

Abiteboul, S., Hull, R., and Vianu, V. (1995). Foundations
of Databases. Addison-Wesley.

Armando, A., Carbone, R., Compagna, L., and Pellegrino,

G. (2012). Automatic Security Analysis of SAML-
Based Single Sign-On Protocols.

Bertolissi, C. and Fernández, M. (2014). A metamodel of
access control for distributed environments: Applica-
tions and properties. Inf. Comput., 238:187–207.

Brown, P. (2008). Implementing SOA: Total Architecture in
Practice. TIBCO Press Series. Addison-Wesley.

Carbonnelle, P. (2014). pyDatalog. https://sites.
google.com/site/pydatalog/.

Ceri, S., Gottlob, G., and Tanca, L. (1989). What you al-
ways wanted to know about datalog (and never dared
to ask). Knowledge and Data Engineering, IEEE
Transactions on, 1(1):146–166.

Chadwick, D., Otenko, S., and Nguyen, T. A. (2006).
Adding support to xacml for dynamic delegation of
authority in multiple domains. In Communications
and Multimedia Security.

Chen, W. and Warren, D. S. (1996). Tabled evaluation with
delaying for general logic programs. Journal of the
ACM, 43:43–1.

Dantsin, E., Eiter, T., Gottlob, G., and Voronkov, A. (2001).
Complexity and expressive power of logic program-
ming. ACM Comput. Surv., 33(3):374–425.

Fischer, J. and Majumdar, R. (2008). A theory of role com-
position. In IEEE Int. Conf. on Web Services, pages
320–328.

Kalam, A., Baida, R., Balbiani, P., Benferhat, S., Cuppens,
F., Deswarte, Y., Miege, A., Saurel, C., and Trouessin,
G. (2003). Organization based access control. In 4th
Int. Ws. POLICY, pages 120–131.

Karp, A. and Li, J. (2010). Solving the transitive access
problem for the services oriented architecture. In In-
ternational Conference ARES, pages 46–53.

Li, J. and Karp, A. H. (2007). Access control for the ser-
vices oriented architecture. In Proceedings of the 2007
ACM Workshop on Secure Web Services, SWS ’07,
pages 9–17. ACM.

Li, N. and Mitchell, J. C. (2003). Datalog with constraints:
a foundation for trust management languages. In
PADL’03, pages 58–73.

Mecella, M., Ouzzani, M., Paci, F., and Bertino, E. (2006).
Access control enforcement for conversation-based
web services. In 15th Int. Conf. on WWW, pages 257–
266, USA. ACM.

She, W., Yen, I.-L., Thuraisingham, B., and Bertino, E.
(2013). Security-aware service composition with fine-
grained information flow control. Services Comput-
ing, IEEE Transactions on, 6(3):330–343.

Srivatsa, M., Iyengar, A., Mikalsen, T., Rouvellou, I., and
Yin, J. (2007). An access control system for web ser-
vice compositions. In IEEE Int. Conf. on Web Ser-
vices, pages 1–8.

Y. Deswarte, A. A. E. K. (2009). Poly-OrBAC: An access
control model fior inter-organizational web services.
IGI-Global.

SECRYPT�2015�-�International�Conference�on�Security�and�Cryptography

300


