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Abstract: Cloud storage allows users to outsource their data to a storage server. For general security and privacy con-
cerns, users prefer storing encrypted data to pure ones so that servers do not learn anything about privacy.
However, there is a natural issue that servers have worked some analyses (i.e. statistics) or routines for en-
crypted data without losing privacy. In this paper, we address the basic functionality, equality test, over
encrypted data, which at least can be applied to specific analyses like private information retrieval. We in-
troduce a new system, called filtered equality test, which is an additional functionality for existing public key
encryption schemes. It satisfies the following scenario: a ciphertext-receiver selects several messages as a set
and produces its related warrant; then, on receiving this warrant, an user is able to perform equality test on
the receiver’s ciphertext without decryption when the hidden message belongs to that message set. Similar
to the attribute based encryption, ABE. In ABE schemes, those ones who match the settled conditions could
get the privilege of decryption. In FET schemes, those ‘messages inside selected set’ can be equality tested.
Combining PKE schemes and filtered equality test, we propose a framework of public key encryption scheme
with filtered equality test, abbreviated as PKE-FET. Then, taking ElGamal for example, we propose a concrete
PKE-FET scheme based on secret sharing and bilinear map. Finally, we prove our proposition with semantic
security in the standard model.

1 INTRODUCTION

With the development of cloud computing, users can
carry on devices with weak computational abilities in-
stead of powerful ones, since computational resource
and power come from the cloud server. In particu-
lar, cloud storage (an application of cloud services)
provides space which users can store data on cloud
and retrieve their data when they need. For example,
Dropbox, Google Drive, and iCloud, are well-known
cloud storage services, but these systems only allow
users to access their own data. In this case, users
must trust the server without doubt. Straightly, there
is a natural privacy issue � the server can see data in
the clear. For privacy, data encryption is employed
to overcome this issue. Finally, servers receive large
amount of encrypted data everyday, but they cannot
do any statistical analysis because data is encrypted.

Complicated data analysis may not be realized for
encrypted data, but it is plausible to obtain data equal-
ity which is the easiest analysis to check whether two

encrypted data are the same or not. For this purpose,
encrypted data with equality test extracts significant
attention in cloud storage applications. In the origi-
nal equality testable setting like (Peng et al., 2005),
it allows the storage server to play the tester role who
has the ability to work equality test on two ciphertexts
of the same receiver. To make PKE-ET more flex-
ible, Yang et al. add the multi-user setting (Bellare
et al., 2000)(Fouque et al., 2014) to propose the pub-
lic key encryption with equality test, PKE-ET (Yang
et al., 2010), which the tester can check ciphertexts
of different receivers. However, PKE-ET (both in the
multi-user setting or single-user setting) has a draw-
back that all users including adversaries can play the
tester role to arbitrarily test ciphertexts, since this is
the main goal of PKE-ET. Public key encryption with
authenticated equality test, PKE-AET, (Huang et al.,
2015) is presented to overcome above issue by lim-
iting the availability of being a tester. In PKE-AET,
an user becomes a tester after obtaining the warrant
from the corresponding ciphertext-receiver. The war-
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Figure 1: Public key encryptions with filtered equality test.

rant is referred to an authority that allows the tester to
perform equality test.

1.1 Related Works

In the literature, the notion of PKE-ET was first in-
troduced by Yang et al. (Yang et al., 2010). Based
on bilinear map, they constructed the framework in
which everyone is able to perform equality test on
two ciphertexts encrypted under different public keys.
Generally speaking, it is impossible to achieve stan-
dard semantic security or IND-CPA security due to
equality testability. However, Tang partially fixed
the above security issue by adding the authority of
equality testability (Tang, 2012b)(Tang, 2012a). The
receiver gives warrants to trusted testers, and these
testers can perform equality test on ciphertexts of this
receiver. Therefore, Tang’s method provides IND-
CCA security against outsider attacker (not the tester)
and one-way security against the testers. Tang de-
fined Type-I/II adversary as the party with/without the
warrant. Later, Ma et al. propose an efficient pub-
lic key encryption with delegated equality test in a
multi-user setting, PKE-DET (Ma et al., 2014). Both
of Tang and Ma et al.’s schemes make testers able to
perform equality test on all ciphertexts of the receiver
who gives the warrant. Recently, Huang et al. intro-
duced a new PKE-ET with ciphertext-binded author-
ities (Huang et al., 2014) which makes testers only
able to work equality test on a specific ciphertext. The
receiver takes ciphertexts as input to generate war-
rants, and the functionality of warrants is rigorously
restricted.

1.2 Contributions

In this paper, we present a new notion called filtered
equality test, it provides additional functionality to ex-
isting public key encryption schemes: in a selected
message set, it makes equality tests work. There
are three entities, sender, equality tester (server), and

Figure 2: Flow chart of filtered equality test.

receiver. The sender uses the receiver’s public key
to produce encrypted data, and delivers them to the
tester (server). The receiver designates a set of mes-
sages to generate its warrant, and delivers to the tester.
Once the tester holds warrants and ciphertexts, it does
the check in Figure 1 without decryption; the detail
data flow is described in Figure 2. To help under-
standing, we take attribute-based encryption (ABE)
schemes for example. In ABE schemes, those quanti-
fied users who match settled conditions can decrypt
the ciphertexts. In FET schemes, those quantified
‘messages’ can be equality tested.

We construct the framework of PKE-FET , and its
security model. Taking ElGamal (Gamal, 1985) for
instance, we propose an efficient PKE-FET scheme
based on the properties of secret sharing and bilinear
map, and then prove the its semantic security in the
standard model.

The rest of paper is organized as follows. In Sec-
tion 2, some preliminaries are briefly introduced, i.e.
bilinear map, secret sharing, and hardness assump-
tions. In Section 3, we show the notion of PKE-FET
in details. We present our PKE-FET scheme in Sec-
tion 4 and its security proof in Section 5. Finally, the
conclusions of this paper are given in Section 6.

2 PRELIMINARIES

Now we will introduce some preliminaries, including
the bilinear map, a well-defined primitive, and then
review the concept of secret sharing. Moreover, we
attach some hardness assumptions which will be used
to analyze the security of the proposed scheme.

2.1 Bilinear Map (A.K.A Pairing)

The bilinear map (Chatterjee and Menezes, 2011)
works as follows. Let G1, G2 and GT be three mul-
tiplicative cyclic groups with the same prime order
q. Define the mapping as a function e : G1�G2 !
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GT . If G1 = G2, it is called Type-I pairing in (Gal-
braith et al., 2008). Otherwise, it is called asym-
metric pairing while G1 6= G2. In asymmetric pair-
ing setting, if there is an efficiently-computable iso-
morphism y : G2 ! G1, it is called Type-II pairing.
However, if it is in asymmetric setting without an
efficiently-computable isomorphism y : G2 ! G1, it
is called Type-III pairing.

Let g1 2 G1 and g2 2 G2 be generators respec-
tively. e : G1�G2!GT holds the following proper-
ties.
1. Bilinear: for all x;y 2 Z�q, we have

e(gx
1;g

y
2) = e(g1;g2)

xy

2. Non-degenerate: let I be the identity of group GT ;
for all generators g1 and g2, we have

e(g1;g2) 6= I

3. Computable: e(g1;g2) can be computed in poly-
nomial run-time.

2.2 Secret Sharing

The notion of secret sharing (Shamir, 1979) is intro-
duced to share a secret data D to n users. In secret
sharing, sufficient k (1� k � n) users can reconstruct
the secret D on receiving their sharing fragments; on
the other hand, any less than k�1 pieces reveal no in-
formation about D . In the following, there is a simple
k-out-of-n secret sharing scheme provided in (Shamir,
1979).

For sharing a secret D to n users, a dealer (trusted
party who holds the secret) first picks k � 1 ran-
dom numbers, r1 to rk�1, to form k points on a 2-
dimensional plane, which are f(0;D);(1;r1); :::;(k�
1;rk�1)g. Then, along with these points, there should
be one and only one polynomial function y with
k� 1 degree determined. Next, he computes follow-
ing points (i;y(i)) for user i 2 [k;n]. Now there are
total n points which all of them satisfy y = y(x). By
distributing these points, it formalizes a k-out-of-n se-
cret sharing scheme. As a result, k users are able to
rebuild the polynomial function y by linear combi-
nation, and then compute D = y(0) to acquire the
secret. However, if there are less than k users, they
cannot recover y so that the secret D is perfectly pro-
tected. Hence, secret sharing is perfect secure.

2.3 Hardness Assumptions

In this section, some hardness assumptions will be in-
troduced since we will use them to argue the security
of the proposed PKE-FET scheme. In general, we as-
sume the probability of breaking these assumptions is

negligible. We describe the universal one-way hash
function (Diffie and Hellman, 1976)(Naor and Yung,
1989) as follows.

Universal One-way Hash Function. A function
F is one-way if a random input x, given F(x), it is hard
to compute x. In other words, a one-way hash func-
tion F is easy to find F(x) given an input x, but it is
computational difficult to extract x from F(x). Based
on one-way hash function, an universal one-way hash
function is proposed by Naor and Yung (Naor and
Yung, 1989). It address on the problem that find
x;y in the domain such that y 6= x and F(x) = F(y).
Let A be an polynomial-time adversary to solve the
one-way hash function. We define A’s advantage as
AdvOW

A ;F = Pr[x A(F(x))].
Besides, there are a series of computationally

hardness assumptions.

� Discrete Logarithm Problem (DLP). given
g;y 2 G it is hard to output an integer x such that
y = gx where G can be G1 or G2. Let A be an
polynomial-time adversary to solve DLP. We de-
fine A’s advantage as AdvDLP

A ;G = Pr[x A(g;gx)].

� Computational Diffie-Hellman (CDH) Prob-
lem. given gx 2 G and gy 2 G it is hard to out-
put gxy. Let A be an polynomial-time adversary to
solve the CDH problem. We define A’s advantage
as AdvCDH

A ;G = Pr[gxy  A(gx;gy)]. According to
(Sakurai and Shizuya, 1995), the only known so-
lution to solve CDH problem is to solve DL prob-
lem.

� Decisional Diffie-Hellman (DDH) Problem.
given gx 2 G, gy 2 G, and Z 2 G, it is hard to
decide whether Z = gxy or not. Let c 2 f0;1g be
a fair coin, both c = 1 and c = 0 appear with half
probability; if c = 1, Z = gxy; otherwise, Z is a
random number. Let A be an polynomial-time
adversary to break the DDH problem. We define
A’s advantage as AdvDDH

A ;G = Pr[c� A(gx;gy;Z) :
c� = c]� 1

2 .

� Symmetric External Diffie-Hellman (SXDH).
By the definition of (Ghadafi et al., 2010), the
DDH problem in G1 or G2 in the type-III pairing
environment is called SXDH problem; and SXDH
problem is as hard as DDH problem.

3 MODELS OF PKE-FET

PKE-FET is composed of a PKE scheme and FET
functionality, which FET denotes the following sce-
nario: the receiver picks n messages (denoted as a set
M = fm1; � � �mng) from message space M; then she
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generates a warrant w using these n messages and her
private key. Following, she can delegate the equal-
ity testability to someone by delivering the warrant w.
When one user gets the warrant, he can run equality
tests on the receiver’s ciphertexts if the messages in-
side the ciphertexts belong M . For security issues,
we have to limit n << jMj. The formal description of
PKE-FET is listed below:

3.1 Framework

Let PKE-FET be a public key encryption with filtered
equality test. Formally, PKE-FET is composed of fol-
lowing polynomial-time algorithms:

� Setup: on input a secure parameter l, it generates
a series of public parameters pp.

� Key generation: on input the public key pp, it re-
turns the receiver’s key pair (sk; pk).

� Encryption: on input a public key pk and a mes-
sage m, the encryption algorithm, run by the
sender, generates a probabilistic ciphertext c =
Enc(pk;m).

� Decryption: on input a ciphertext c and the se-
cret key sk, the decryption algorithm, run by the
receiver, outputs the message m hidden in the ci-
phertext.

� Authorization: on input the secret key sk and a
set of n messages, m1; :::;mn 2 M , it generates
a warrant w for the message set M . Let w =
Aut(sk;M ). The receiver will give the warrant w
to a trusted tester, and thus the tester is able to per-
form the filtered equality test on those ciphertext
encrypted under the receiver’s public key.

� Filtered equality test: (see Figure 2) on in-
put two ciphertexts c = Enc(pk;m) and c0 =
Enc(pk0;m0) and two warrants w = Aut(sk;M )
and w0 = Aut(sk0;M 0), this algorithm returns 1 
FET (c;c0;w;w0) if and only if all of the following
three conditions hold:

m 2M , m0 2M 0, and m = m0

Otherwise, it returns 0.

3.2 Properties of PKE-FET

Define e(l) as a negligible probability based on
the secure parameter l. Referring to (Yang et al.,
2010)(Huang et al., 2014)(Huang et al., 2015), a
PKE-FET scheme is considered to be valid if and
only if it satisfies correctness, perfect consistency, and
computational soundness.

� Correctness: PKE-FET is a public key encryption
scheme in which the receiver can recover the cor-
rect message m. That is, for all m,

Pr[Dec(sk;Enc(pk;m)) = m] = 1

� Perfect consistency: for three true conditions, m2
M , m0 2M 0, and m = m0, FET (c;c0;w;w0) must
return 1.

� Computational soundness: with at least
one false condition, the probability
Pr[1  FET (c;c0;w;w0)] is bounded at most
e(l).

3.3 Semantic Security

To discuss about security issues of PKE-FET , first we
recall the definition of semantic security, or so called
indistinguishability (IND) style of security, which
composed of an adversary A and a challenger.

On input a public key pk selected by the chal-
lenger, the probabilistic polynomial time (PPT) ad-
versary A is allowed to access decryption oracle D1
for polynomial times, then it outputs two messages
m0 and m1. The challenger randomly picks one of
them (mb, b 2 f0;1g) and encrypts it as a challenge
cb = Enc(pk;mb). A is still allowed to access decryp-
tion oracle D2, then it has to output a guess of b. If it
successfully guesses with a non-negligible probabil-
ity in advance, then A breaks this game; otherwise,
this encryption scheme achieves semantic security, or
called indistinguishability styles of security.

Decryption oracle D1 and D2 differ from differ-
ent attack models, where: in the chosen-plaintext at-
tack (CPA) model, neither D1 nor D2 works; in the
chosen-ciphertext attack (CCA) model, D1 works, but
D2 does not; and in the adaptive chosen-ciphertext
attack (CCA2) model, they both work, but the chal-
lenge cb = Enc(pk;mb) is forbidden to be requested
to D2. Along with the IND game, semantic secure is
classified into IND-CPA, IND-CCA and IND-CCA2
secure.

3.4 Semantic Security for PKE-FET
Schemes

Extending from above section, we define semantic se-
curity for PKE-FET schemes. In the beginning, the
challenger generates a legal key pair (sk; pk) and a
warrant w Aut(sk;M ) which M is randomly se-
lected from message space M; and meanwhile, M
is unknown to A . Then, pk and w are delivered to
A to start a semantic secure game. With the aid of
decryption oracle D1, A outputs his two messages
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m0 and m1 selected in M. The challenger picks one
of them (mb, b 2 f0;1g) and encrypts it into a chal-
lenge cb = Enc(pk;mb). Along with the help of de-
cryption oracle D2, A outputs a guess b� to terminate
this game. Let AdvIND

A ;FET be the probability of A wins
the game in advance (more than universally guessing).
If AdvIND

A ;FET is non-negligible, then we say A breaks
this game; otherwise, we say a PKE-FET scheme is
semantic secure. We say a PKE-FET scheme is se-
mantic secure if AdvIND

A ;FET is negligible, where it is
defined as follows:

Pr

266664
(sk; pk) KeyGen(l);M  R M;
w Aut(sk;M );
(m0;m1) AD1(pk;w);
b R f0;1g;cb Enc(pk;mb);
b� AD2(pk;w;cb) : b� = b

377775� 1
2
� e(l)

4 PROPOSED PKE-FET SCHEME

In this section, we will describe the proposed
PKE-FET scheme from secret sharing to realize fil-
tered equality test over encrypted data. Taking ElGa-
mal as a building block, we construct our PKE-FET
scheme below.

4.1 Construction

� Setup: Let e : G1�G2 ! GT be a Type-III bi-
linear map operation which are mentioned in Sec-
tion 2.1. Then, G1, G2, and GT are three multi-
plicative cyclic group with the same prime order
q. Randomly choose g 2R G1 and g2 2R G2 as
two generators respectively. The message space
M is set to be a subgroup of G1; i.e., M � G1.
H1 : M!GT and H2 : f0;1g�! Z�q are two uni-
versal one-way hash functions. Here, the auxiliary
information n = n(l) is needed, and we empha-
size that n << jMj. The public parameter is com-
posed of pp = fG1;G2;GT ;e;q;g;g2;H1;H2;ng.

� Key generation: Sample (u;v;s0;s1; :::;sn) R Z�q
as sk. Compute U = gu, V = e(g;g2)

uv and
Si = gsi for all i 2 [0;n]; then publish pk =
(U;V;S0;S1; :::Sn).

� Encryption: Taking a message m 2M, the sender
first randomly selects r R Z�q, then computes h=
H2(m) and c = (A;B;C;D) where

A = gr;B = m �U r;C =V r �H1(m)

D = ((S0)
r;(S1)

rh;(S2)
rh2

; :::;(Sn)
rhn

) (1)

� Decryption: The receiver computes m = B=Au.
Let D = (D0;D1; :::;Dn) and h = H2(m), he ver-
ifies both C = e(A;g2)

uv �H1(m) and Di = Asihi

for all i 2 [0;n]. If they both hold, it returns m;
otherwise, it returns ? as decryption failed.

� Authorization: on input M = fm1; :::;mng and the
secret key sk = (u;v;s0;s1; :::;sn), the authoriza-
tion algorithm computes a n-degree polynomial
function f (x) following:

f (x) =
n

Õ
i=1

(x�H2(mi))+uv =
n

å
i=0

aixi: (2)

Furthermore, the receiver computes wi = gai=si
2 for

all i 2 [0;n]; and then, he destroys (a0; :::;an) and
sends the warrant w = (w0;w1; :::;wn).
Note that the message set M is hidden in the gen-
erated warrant, which is unknown for all users
even he or she gets the warrant.

� Filtered equality test: upon receiving two ci-
phertexts c = Enc(pk;m) and c0 = Enc(pk0;m0)
and two warrants w = Aut(sk;M ) and w0 =
Aut(sk0;M 0), the filtered equality test algorithm
works the following steps.

1. Parse c = (A;B;C;D), D = (D0;D1; :::;Dn) and
w = (w0;w1; :::;wn).

2. Compute

z =C=
n

Õ
i=0

e(Di;wi) (3)

3. Compute z0 from (c0;w0) following Steps 1 and
2.

4. Check whether z = z0 or not. If z = z0, then it
returns 1, which means m 2M , m0 2M 0, and
m = m0. If not, it returns 0 instead.

4.2 Analysis

We now verify our scheme to satisfy three significant
properties mentioned in Section 3.2.
� Correctness: The decryption algorithm computes

B=Au = mgur=gur = m

Then, let h = H2(m), it checks both

e(A;g2)
uv �H1(m) = e(gr;g2)

uv �H1(m)

= e(g;g2)
uvr �H1(m)

=V r �H1(m) =C

and

8i 2 [1;n];Di = (Si)
rhi

= gsirhi
= Asihi

It is straightforward that the correctness holds
along with the decryption algorithm.
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Table 1: Comparison with previous works.

(Yang et al., 2010) (Ma et al., 2014) (Huang et al., 2014) Proposed
Efficiency KeyGen O(1) O(1) O(1) O(n)

Enc O(1) O(1) O(1) O(n)
Dec O(1) O(1) O(1) O(n)
Aut - O(1) O(1) O(n)
Test O(1) O(1) O(1) O(n)

Storage Key O(1) O(1) O(1) O(n)
Cipher O(1) O(1) O(1) O(n)
Warrant - O(1) O(1) O(n)

Testable messages M M 1 n
Security With Aut - OW-CCA OW-CCA IND-CCA

W/O Aut OW-CCA IND-CCA IND-CCA IND-CCA

� Perfect consistency: On input (c;w) and (c0;w0),
the filtered equality test algorithm obtains z by
computing equation (3).

z =C=P
n
i=0e(Di;wi)

=C=P
n
i=0e(gsirH2(m)i

;gai=si
2 )

=C=P
n
i=0e(g;g2)

raiH2(m)i

=C=e(g;g2)
r å

n
i=0 aiH2(m)i

=C=e(g;g2)
r f (H2(m))

If m 62M , z will be a random number locates sta-
tistically random in GT because f (H2(m)) is sta-
tistically random in Z�q. Otherwise, in case that m
is in the message set M , then we have

f (H2(m)) =
n

å
i=0

aiH2(m)i = uv (4)

Therefore, equation (3) will be

z =C=e(g;g2)
uvr

=V r �H1(m)=V r = H1(m)

Analogously, it returns z0 = H1(m0) if m0 2 M 0

through the same computations. Finally, it veri-
fies whether z = z0 or not. It returns 1 if and only
if the m 2M , m0 2M 0 and m = m0, and therefore
the perfect consistency holds.

� Computational soundness: We consider the fol-
lowing two conditions.

1. m 2M and m0 2M 0: By the inference of con-
sistency, z and z0 will be computed as z=H1(m)
and z0 = H1(m0) respectively. We can reduce
computational soundness to the universal prop-
erty of hash function H1. If collision happens
with negligible probability, then the probability
of 1 FET (c;c0;w;w0) in this condition is also
negligible.

2. m 62 M or m0 62 M 0: At least one of z and z0

will be close to a uniformly random number in

GT , so the probability of 1 FET (c;c0;w;w0)
in this condition is definitely 1=q (negligible).

The computational soundness holds due to the
negligible probability.

We compare PKE-FET to some existing protocols
and record them on Table 1. It is clear that PKE-FET
performs not good on considering the efficiency and
storage space. Nevertheless, it provides the ‘filtered
equality test’ functionality; and meanwhile, it is se-
mantic secure against those adversaries who own war-
rants. The security analysis will be discussed in the
next section.

5 SECURITY PROOF

In this section, we are going to prove the security
of our PKE-FET scheme through a series of hybrid
games in the standard model. We claim that if there is
a polynomial time adversary can break our PKE-FET
with non-negligible probability, then the challenger is
able to take advantage of A to break SXDH problem
with non-negligible probability. First, we define game
0 which is equal to our PKE-FET scheme, and then it
will be inferred step by step.
Game 0:

The challenger works key generation and autho-
rization algorithms to generate a key pair (sk; pk) =
KeyGen(l) and a warrant w = Aut(sk;M ), which M
is randomly selected from message space M. Then,
he delivers pk and w to the adversary A . With the
aid of decryption oracle D1, A outputs m0 and m1 af-
ter polynomial times of decryption requests. Then,
the challenger picks one of two messages (mb, b 2
f0;1g), encrypts it into cb = Enc(pk;mb), and then
returns cb to A . With polynomial times requests to
decryption oracle D2, A finally outputs a guess b�.
Decryption oracles D1 and D2 are defined as follows:
on receiving a decryption query Dec(sk;c), the chal-
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lenger returns m = Dec(sk;c) to A . Only cb is forbid-
den to be requested. Let Pr[game0] be the probability
to break the semantic security in game 0, it is oblivi-
ous that AdvIND

A ;FET = Pr[game0]� 1
2 .

Game 1:
All settings in game 1 is identical to those in game

0 except for the following condition. If m0 2 M
or m1 2 M , the challenger terminates and claims
fail; otherwise, game 1 works as game 0 does. Ac-
cording to difference lemma (Shoup, 2004), we have
Pr[game0]� Pr[game1]+

2n
jMj ; where 2n

jMj is negligible
in Pr[game1] since n << jMj.
Game 2:

Extends from game 1, we import the SXDH prob-
lem defined in section 2 to help proof. The challenger
runs (sk; pk) = KeyGen(l) and w = Aut(sk;M ) (M
is randomly picked from M). Following, he replaces
S0 = gy and

V = e(g;g2)
uv�a0 � e(gy;g2)

a0=s0

= e(g;g2)
uv�a0+a0y=s0

Then, pk = (U;V;S0;S1; :::;Sn) and w are sent to A .
After polynomial times of decryption queries to D1,
A returns two messages m0 and m1. After that, the
challenger randomly picks message mb, b 2R f0;1g,
then he computes h = H2(mb) and cb = (A;B;C;D),
where

A = gx, C = (e(gx;g2)
uv�a0 � e(Z;g2)

a0=s0)�H1(mb);

B = mbgux, D = (Z;gxs1h;gxs2h2
; :::gxsnhn

)

After receiving cb and polynomial times of decryption
queries to D2, A outputs a guess b�. If b� = b, the
challenger guesses c= 1; otherwise, he guesses c= 0.
Theorem 1. Game 2 is indistinguishable from game
1.

Proof. There are two major differences between
game 1 and game 2: the first one comes from the sub-
stitution of S0 and V ; and the second one is Z in part
C or D of challenge cb. S0 is originally gs0 , and it
becomes gy. It is oblivious that S0 is still in the cor-
rect form, but y becomes unknown to the challenger;
moreover, since secret key v is unknown in A’s view-
point, any V belongs to GT is considered as a regular
parameter. On the hand, both two substitutions of Z
in cb are distinguishable because of the intractable of
SXDH problem. The probability that A can distin-
guish game 2 from game 1 is estimated as AdvSXDH

A ;G1
.

Theorem 2. Pr[game2] can be polynomially reduced
to the SXDH problem.

Proof. Let A has a non-negligible probability e in
advance to break PKE-FET scheme (total 1

2 + e prob-
ability). We discuss game 2 on considering whether

Z = gxy or not. The first case, when c = 1, scenario
in game 2 is actually a PKE-FET scheme so that A
has 1

2 + e probability to break PKE-FET scheme. The
second case, c = 0, scenario in game 2 is different
from PKE-FET scheme; the probability that A break
game 2 is estimated as 1

2 . After plenty of games,
considering on those games that A has won, first
case must be more than second case; and their rate
will be (1=2+ e) : 1=2. It means when A wins the
game, the challenger has more probability on answer-
ing Z = gxy. The accurate advanced probability of
breaking SXDH problem is estimated as:

AdvSXDH
A ;G1

=
1=2+ e

1=2+ e+1=2
� 1

2
=

e

2+2e

In other words, if A has non-negligible advanced
probability e to break PKE-FET scheme; then, the
challenger can take advantage of A to break SXDH
problem with non-negligible advanced probability

e

2+2e
, which is a little smaller than e

2 , but it is still
non-negligible. Therefore, we can say Pr[game2] is
close to but a little bigger than 2AdvSXDH

A ;G1
+ 1

2 . Then,
AdvIND

A ;FET is inferred as follows:

AdvIND
A ;FET = Pr[game0]�

1
2

� Pr[game1]+
2n
jMj
� 1

2

� Pr[game2]+AdvSXDH
A ;G1

+
2n
jMj
� 1

2

Combining Pr[game2], AdvIND
A ;FET is esti-

mated bounded by a real number d, which
d � 3AdvSXDH

A ;G1
+ 2n
jMj is negligible in l. We say

PKE-FET is semantic secure or IND-CCA2 secure
based on the intractability of SXDH problem.

6 CONCLUSIONS

Computations over ciphertext has extracted research
attention. In this paper, a new notion of filtered equal-
ity test has been presented. We show a framework
and some security requirements of filtered equality
test as an additional functionality to existing encryp-
tion protocols; and then propose an instantiation, the
PKE-FET scheme, from secret sharing and bilinear
map. In addition, we prove its semantic security in the
standard model. Finally, the efficiency of PKE-FET is
not well due to massive bilinear mapping operations.
We keep the efficiency improvement as an open prob-
lem.
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