On A-posteriori Integration of Ecore Models and Hand-written Java
Code

Thomas Buchmann and Felix Schwagerl
Chair of Applied Computer Science I, University of Bayreuth, Universitatsstrasse 30, 95440 Bayreuth, Germany

Keywords:

Abstract:

Model-Driven Development, Ecore, Code Generation, Java, Reverse Engineering, Model Transformation.

Model-driven software engineering emphasizes using models as primary development artefacts. In many

cases, the static structure of a software system can be automatically generated from static models such as
class diagrams. However, hand-written source code is still necessary, either for specifying method bodies or
for integrating the generated code with already existing artefacts or frameworks. In this paper, we present a
concept and the corresponding technical solution, which allow to lift up hand-written code for method bodies
to the model level and tightly integrate it with the Ecore model. Furthermore, we demonstrate the feasibility
of our approach with the help of a concrete use case.

1 INTRODUCTION

Model-Driven Software Engineering (MDSE) (Volter
et al., 2006) is a discipline which receives increasing
attention in both research and practice. It puts strong
emphasis on the development of high-level models
rather than on the source code. Models are not con-
sidered as documentation or as informal guidelines
how to program the actual system. In contrast, mod-
els have a well-defined syntax and semantics. More-
over, MDSE aims at the development of executable
models. The resulting models are then transformed in
a series of subsequent transformation steps (Frankel,
2003) into source code which can be compiled and
executed on the respective target platform.

Ideally, software engineers operate only on the
level of executable models such that there is no need
to inspect or edit the actual source code (if any). In
this sense, models are the code (now written in a high-
level modeling language). However, practical experi-
ences have shown that language-specific adaptations
to the generated source code are frequently necessary.

Object-oriented modeling is centered around class
diagrams, which constitute the core model for the
structure of a software system. From class dia-
grams, parts of the application code may be gener-
ated, including method bodies for elementary oper-
ations such as creation/deletion of objects and links,
and modifications of attribute values. However, for
user-defined operations only methods with empty
bodies may be generated which have to be filled in

Buchmann T. and Schwégerl F..

On A-posteriori Integration of Ecore Models and Hand-written Java Code.

DOI: 10.5220/0005552200950102

by the programmer.

The Eclipse Modeling Framework (EMF) (Stein-
berg et al., 2009) has been established as an extensible
platform for the development of MDSE applications.
It is based on the Ecore metamodel which is compati-
ble with the OMG Meta Object Facility (MOF) spec-
ification (OMG, 2011).

In EMF, for instance, only structure is modeled
by means of class diagrams, whereas behavior is de-
scribed by modifications to the generated source code.
However, EMF is already tuned for efficient program-
ming, as it demands for hand-written Java code for
method bodies. Users are able to annotate the respec-
tive parts and the Eclipse Modeling Framework uses
a code-merging generator to preserve these fragments
on subsequent code generation steps.

We apply our approach to a specific problem sce-
nario — the derivation of products in model-driven
software product lines. Nevertheless, the approach
can also be used in single system development.

This paper is structured as follows: In Section 2,
we discuss our contribution. A detailed example
showing a use case for our approach is described in
Section 3. Related work is discussed in Section 4 be-
fore Section 5 concludes the paper.

2 EMF - JAVA INTEGRATION

In this section, we describe our approach to unify
EMF modeling and Java programming. After giving a

95

In Proceedings of the 10th International Conference on Software Paradigm Trends (ICSOFT-PT-2015), pages 95-102

ISBN: 978-989-758-115-1

Copyright ¢ 2015 SCITEPRESS (Science and Technology Publications, Lda.)

ICSOFT-PT 2015 - 10th International Conference on Software Paradigm Trends

brief overview about EMF and MoDisco (Bruneliere
etal., 2010), we discuss our solution in detail.

2.1 EMF Overview

The Eclipse Modeling Framework (EMF) with its
metamodel Ecore is the standard platform for model-
driven software development in Eclipse, and it is es-
pecially wide-spread in the academic community. It
follows a minimalistic and pragmatic modeling ap-
proach. Ecore only comprises the core concepts
of object-oriented modeling and thus allows for a
straightforward mapping to Java code.

Figure 1 depicts the development process imposed
by EMF. Typically, modelers use Ecore class dia-
grams to describe the static structure of the software
system. The code generator provided with EMF maps
the class model to a set of corresponding Java inter-
faces and implementation classes. Furthermore, the
correct semantics of references between the classifiers
is ensured.

However, for user-defined operations only the
headers of the corresponding Java methods are gen-
erated. Body implementations have to be specified
directly in Java afterwards. EMF uses a code-merging
generator in order to deal with these additions to the
generated code supplied by the user. Corresponding
Javadoc-tags mark regions in the source code which
should be preserved on subsequent EMF code gen-
eration runs. Unfortunately, these Javadoc-tags have
to be specified before the corresponding method dec-
laration. Thus, if a method declaration is annotated
with such a Javadoc-tag because it contains a user-
defined body, it will never be modified by the EMF
code generator. In particular the following operations
may cause problems:

Deletion. In case the corresponding EOperation is
deleted from the class model, the resulting Java
code will still be present in the source code after
subsequent generation steps.

Modification. If the EOperation is modified in the
Ecore class diagram (e.g., renaming, changing pa-
rameters or return type), these changes cannot be
propagated to the generated code, since the corre-
sponding code fragments are protected. Instead, a
new method declaration with empty body is gen-
erated.

2.2 Integration of Method Bodies

To avoid the problems described above, integrating
the hand-written method bodies in the Ecore model is
a possible solution. If the bodies are already present

96

Java Code

T

creates / updates method bodies

}
W W

Figure 1: The typical MDSE Process in EMF.

Ecore Model generate

creates / updates

when the EMF code generator starts its work, there is
no need to protect certain methods with correspond-
ing Javadoc-tags. As a consequence, changes in the
Ecore class diagram are propagated to the generated
code correctly:

Deletion. If an EOperation is deleted from the class
model, its corresponding body is deleted as well.

Modification. All changes to the definition of an
EOperation (i.e. ~ return types, parameters, or
name) are propagated to the generated code.

In the following, we describe how this integration
can be achieved automatically.

The EMF code generator is always invoked on a so
called generator model. The generator model wraps
the Ecore model and adds some generation-specific
meta information, e.g. target directories, code style,
and so forth.

Ecore models may be annotated with so called
EAnnotations for a number of different purposes.
These annotations are used to store information which
is not explicitly supported in the Ecore metamodel
(Steinberg et al., 2009). EMF’s standard annotations
may be classified into different categories based on
the source it uses for each kind:

Ecore. Annotations of this kind are attached to
EModelElements in order to specify additional in-
formation which is relevant at both runtime and
code generation.

GenModel. GenModel-sourced annotations are used
to attach information that is only relevant when
generating code to respective EModelElements.

Extended Metadata. Annotations of this kind are
used in models that were created from XML
Schema.

EMOFTags. Tags in EMOF are used for the same
purpose as EAnnotations are used in Ecore. Since
EMF provides an interchange between Ecore and
EMOF, EMOFTags are required to map EAnnota-
tions to corresponding tags.

Since the Ecore metamodel does not cover method
bodies, annotations are required to make them part of

On A-posteriori Integration of Ecore Models and Hand-written Java Code

a model. Since this information is required only dur-
ing code generation, GenModel annotations have to
be used. EMF already provides a pre-defined anno-
tation for this purpose: A GenModel-sourced annota-
tion for the type EOperation exists. It allows to spec-
ify a key value pair. The key body indicates that the
corresponding value field contains Java code that im-
plements the operation. However, iterating through
the model and adding corresponding annotations for
each user-defined methods is a cumbersome and time-
consuming task. Thus, we strived for a complete au-
tomation of this process.

To this end, we use the MoDisco! framework.
Originally, MoDisco is dedicated to software mod-
ernization projects. It provides a set of discoverers
for different types of artefacts, e.g. a discoverer for
Java source code. Thus, it allows to parse existing
Java source code into an Ecore-based model, which
resembles the abstract syntax tree (AST) of the Java
language (c.f. Fig. 2).

MoDisco also provides a code generator based on
Acceleo?, which allows to generate Java code from
the Ecore-based AST model.

In order to integrate hand-written method bodies
into the Ecore model automatically, first the complete
Java code is discovered using MoDisco, resulting in
a Java AST model (based on Ecore). Then the proce-
dure iterates over the Ecore model and checks for each
EOperation if a corresponding body implementation
is present in the AST model. If this is the case, a cor-
responding GenModel-EAnnotation is created. The
EAnnotation uses a key-value pair to specify the pur-
pose. The value contains the Java code that realizes
the corresponding method implementation. In order
to obtain this Java code from the AST model, the code
generator is invoked only for the desired fragment (in
this case the Block which is contained in the corre-
sponding MethodDeclaration) and the resulting string
is stored in the value field of the newly created EAn-
notation. Using our approach, the user has the full
benefits of his preferred modeling environment (e.g.
the Ecore class diagram editor) and his preferred pro-
gramming environment (e.g. the Eclipse JDT Java ed-
itor). Furthermore, code completion and syntax high-
lighting are available when the hand-written body im-
plementations are created, which is not the case if the
standard EMF annotation editor is used.

The resulting Ecore model now contains the
static structure of the software system as well as all
hand-written body implementations for correspond-
ing EOperations. All subsequent changes to the struc-
tural model may now be propagated correctly to the

Lhttps://eclipse.org/MoDisco/
Zhttp:/Avww.eclipse.org/acceleo

generated code, as there is no need to protect these
hand-written parts any longer.

3 EXAMPLE

In this section, we present a use case for our solution
in the context of model-driven software product line
engineering (MDPLE). Please note that the problem
is specific to MDPLE. However, the solution which is
presented here can be used in general for every model-
driven software project which is realized with the help
of EMF.

3.1 Problem Description

One area of our research is dedicated to model-
driven software product line engineering (SPLE).
SPLE (Clements and Northrop, 2001) addresses the
organized reuse of software artifacts. Feature models
(Kang et al., 1990) are used to capture the common-
alities-and differences of members of a product line,
while feature configurations describe the characteris-
tics of a specific member thereof. Software product
line engineering is divided into two levels. (1) Do-
main engineering is used to analyze the domain and
capture the commonalities and variabilities in a fea-
ture model. Furthermore, the features are realized in a
corresponding implementation. In model-driven soft-
ware product lines, models represent the implementa-
tion at a higher level of abstraction. (2) Application
engineering deals with binding the variability defined
in the feature model and deriving concrete products.

In SPLE, basically two different approaches ex-
ist to realize variability in the corresponding feature
implementation: (1) In approaches based on positive
variability, product-specific artifacts are built around
a common core. During application engineering,
composition techniques are used to assemble the final
product using these artifacts. (2) In approaches based
on negative variability, a superimposition of all vari-
ants is created. The derivation of products is achieved
by removing all fragments of artifacts implementing
features which are not contained in the specific fea-
ture configuration for the desired product.

Several approaches exist to associate elements
of the feature model with artifacts part of the do-
main model; in previous publications (Buchmann
and Schwagerl, 2012) FAMILE has been presented,
an EMF-based tool chain for model-driven software
product line development using negative variability.
All common approaches for model-driven software
product line engineering only support homogeneous
artefacts. In (Buchmann and Schwagerl, 2014) an

97

ICSOFT-PT 2015 - 10th International Conference on Software Paradigm Trends

1 package de.ubt.ail.example;

3 public class MoDiscoExample {

private int counter;
private String name;

public void setCounter(int value) {

4|(® [ClassDeclaration] MoDiscoExample
ie /eContainer
© name = MoDiscoExample
o proxy = false
1, comments ((
L, originalCompilationUnit (1)

10 counter = value;

13 public int getCounter() { return counter; }

g3 88

public void setName(String value) {
16 name = value;

}

public String getName() { return name; }

Java Code

parse /

EREEY T

odifier (1)

4 Y bodyDeclarations (6)

24 [FieldDeclaration] private int counter

84 [FieldDeclaration] private String name
[MethodDeclaration] public setCounter(int value)
[MethodDeclaration] public getCounter()
[MethodDeclaration] public setName(String value)
[MethodDeclaration] public getName()

Java Model
(Ecore-based)

000

Figure 2: Using MoDisco to parse Java code into an Ecore-based model.

GraphProductine

O O
e ¥

Search
Colored Weighted Directed BFS DFs. Min. Span, Tree Shortest Path Transpose ‘ Tree ‘ Diagram
Figure 3: Feature model for the graph product line.
1 graph
B algorithm Sigorhm [y H Graph n E search
= egraph Search @ et 5
@ gycle) @ getNode(EString) : Node o dfs(Node) : Node
@ shortestPath(Node Node) : Edge @ getEdge(Estring) : Edge "1 @ bfs(Node) : Node
minspanningTree() & bu\\dﬁ\djl:\stlhl) N @ clear()
@ transpose() =
findPath(Mode) : Edge

0.

“Cydle edgesl e EString
0.'S weight : EInt 0"

0.7 . List
edges 0.*| edges .
cycles a ¢ g npdes |nodes 0”,arkgd0

Edge 0.
EIET lincdges 22 F Node

~ | Hadjacency |
I

sow(g" = name : EString

Todes

outEdges

0.1

jolor

? Color

Figure 4: Ecore model for the graph product line.

extension to FAMILE allowing for heterogeneous
projects is described. In this case, the platform of
the product line may consist of models and hand-
written source code. However, when deriving prod-
ucts, the variability information needs to be kept con-
sistent across all artefacts.

A prominent example in literature on software
product lines is a product line for graphs. The cor-
responding feature model is shown in Fig. 3. A graph
always consists of nodes and edges (filled dots) an op-
tionally (unfilled dots) one (unfilled arc) search strat-

98

egy (bfs or dfs) and an arbitrary number (filled arc) of
algorithms. Furthermore, edges may have a weight or
they may be directed.

Figure 4 depicts the multi-variant domain model
of the graph product line. Following the model-driven
approach, an object-oriented decomposition of the
underlying data structure is applied: A Graph con-
tains Nodes and Edges. Furthermore it may contain a
Search strategy and Algorithms operating on the graph
data structure. For performance reasons, the data
structure may be converted into an Adjacency list, to

On A-posteriori Integration of Ecore Models and Hand-written Java Code

speed up certain algorithms. As the model depicted
in Fig. 4 is the superimposition of all variants, the re-
lation between nodes and edges is expressed in mul-
tiple ways: (1) In case of undirected graphs, an edge
is used to simply connect two nodes, expressed by
the reference nodes. (2) Directed graphs on the other
hand demand for a distinction of the respective start
and end nodes of an edge. This fact is expressed by
two single-valued references named source and tar-
get, respectively.

* ¢l-- begin-user-doc -->
* gl-- end-user-doc --»
* [generated NOT

public EList<Noder dfs(Node node) {
if (getMarked().contains(node))
return getMarked();
getMarked().add (node);

/f undirected graphs
for (Edge e : node.getEdges()) {
for (Node n : e.getModes()) {
if (n != node)
dfs(n);

}

// directed graphs

for (Edge = : node.getOutEdges()) {
dfs(e.getTarget());

3

return getMarked();

1

Figure 5: Example for a multi-variant method body written
in Java.

As stated above, Ecore only allows for structural
modeling, i.e., it does not provide support to model
method bodies. Thus, the standard EMF development
process (Steinberg et al., 2009) demands for a man-
ual specification of an EOperation’s body by com-
pleting the generated source code. In the example,
hand-written Java source code for all operations con-
tained in the class diagram shown in Figure 4 has
been supplied. A small cut-out of a method imple-
mentation for the class Search is shown in Figure
5. In the corresponding Ecore model (cf. Fig. 4),
the Search class defines three EOperations. While
the EMF code generation only creates Java code for
the method header, the body implementation depicted
in Figure 5 was supplied manually. In this case,
the method implementation also contains variability
as the corresponding references between nodes and
edges are different depending on the presence or ab-
sence of the feature Directed in the current feature
configuration. Please note that the level of granularity
supported by FAMILE’s variability annotations is ar-

bitrary, ranging from single Java fragments over state-
ments, blocks, methods, or even classes and packages.

As mentioned earlier, FAMILE supports the de-
velopment of software product lines based on nega-
tive variability. Thus, when deriving specific products
based on a concrete feature configuration, all frag-
ments and artefacts which implement unselected fea-
tures have to be removed. Figure 6 depicts the situa-
tion that would occur if only standard EMF technol-
ogy without the mechanism described in this paper
would have been used.

During Domain Engineering, the platform con-
taining all variants is created. This can be done in
a model-driven way using Ecore models to describe
the static structure of the software. Then the Ecore
code generator is invoked (cf. step 1 in Fig. 6) and
hand-written Java code is used to supply the method
bodies. The hand-written code is added to the gener-
ated one and then discovered into an Ecore-compliant
AST model in order to be able to use FAMILE for
variability management on the source code fragments.
The user_now may annoate. the respective artefacts
with variability information. Annotations concerning
the structure are performed on the level of the Ecore
model. For example, class Search shown in Fig. 4,
contains the operations dfs(Node) and bfs(Node) re-
spectively, which represent the different search strate-
gies which are used in graphs and which are anno-
tated with the corresponding features from the feature
model (cf. Fig. 3). Feature annotations in the Ecore
model can be used on any level of granularity. E.g.
classes, attributes, methods, parameters or references
may be annotated.

As the variability information (for the static struc-
ture) that has been added to the Ecore model in do-
main engineering is not present in the generated code,
the discovered Java AST model also does not contain
it. Furthermore, annotating for example an EAttribute
in the Ecore class diagram would require the user to
annotate the corresponding field declaration and the
respective accessor methods in the generated source
code. Of course this is not feasible, since one of the
goals of the FAMILE tool chain is to keep the anno-
tation effort for the user as small as possible. Fur-
thermore, in order to consistently annotate the Ecore
model and the generated parts in the Java model, the
user would require knowledge about the Ecore code
generator. However, the hand-written body imple-
mentations may also require variability. E.g. the im-
plementation of the method dfs(Node) contains differ-
ent fragments which are used for directed and undi-
rected graphs respectively. The user may annotate
these blocks with corresponding feature annotations.
Please note that these annotations are performed di-

99

ICSOFT-PT 2015 - 10th International Conference on Software Paradigm Trends

o0
£ EMF Model Java Model
2 discover
|
w I generate @ I
3
g @ | Java Code | @
o del;ive de;'\ve
| |
1 1
H ' b
3
g
Ea EMF Model* —generate (Z)Tgeneratell)— Java Model"
w
=
2
S
S
5 Java Code’
-
<

Figure 6: The interplay between model and hand-written code in (heterogeneous) model-driven software product lines.

rectly from the Eclipse JDT editor. The FAMILE
tool chain maps these annotations to the discovered
MoDisco Java model as FAMILE operates on Ecore-
based models only (cf. step 2 in Fig. 6).

During Application Engineering, when unused
fragments are filtered from the multi-variant -mod-
els, the corresponding target models are derived (EMF
Model’ and Java Model’ respectively, cf. step 3.in 6).
In an ideal world, i.e. if both models are in sync in
terms of variability information, the user could invoke
the code generation for the Java model and afterwards
the code generation of the EMF model in order to
obtain the final source code for the desired product.
However, reality is different: The EMF code merging
generator does not remove files. For example, an an-
notated class of the Ecore model has been filtered dur-
ing the derivation process, but it is still present in the
Java model. If the code generation for the Java model
is invoked first, corresponding Java code for this class
is generated which is not deleted on a subsequent run
of the EMF code generation. The same holds for oper-
ations: The EMF code generation requires that hand-
written code is marked in order to preserve it during
subsequent generation steps. In case an EOperation
that has been extended with a hand-written body is
filtered in the Ecore model, this mechanism prevents
it from being deleted.

A possible solution would be to add informa-
tion about the conceptual links between Ecore mod-
els and the corresponding generated Java code to the
FAMILE tool chain. However, due to the following
reasons, this is not feasible: (1) FAMILE is as gen-
eral as possible, as the only requirement is that the
domain models are based on Ecore. No assumptions
about certain concepts are made and thus FAMILE
may be used for a vast variety of artefacts. (2) The
EMF code generation could be modified by the EMF
developers which would then require modifications of

100

FAMILE.
Thus, the approach as described in this paper of-
fers a tool-independent solution for this problem.

3.2 Solution

Figure 7 shows how the approach discussed in this
paper solves the problem shown above and related
problems of the same class. The domain engineer-
ing phase is carried out as described earlier. Once
both models are derived in application engineering,
there is no need to invoke two different code genera-
tion steps. In detail, our automated solution performs
the following tasks on both models:

Traverse Ecore Model. First, the Ecore model is tra-
versed and for each EOperation the following
tasks are performed:

Locate Method Implementation. In the Java
model, the corresponding MethodDeclaration is
located. We make sure, that it really contains a re-
spective body implementation and the appropriate
Javadoc tag.

Invoke Code Generation Template. If this is the
case, we need to invoke MoDisco’s Java code
generation only for this model fragment (i.e. the
block containing the body implementation).

Add EAnnotation. Finally, the EOperation from the
Ecore model is extended by an appropriate EAn-
notation: A GenModel-source annotation with
key body is created. The corresponding value is
the result of the code generation run in the previ-
ous task described above (cf. Fig. 8).

After the Ecore model has been traversed and the
above steps have been excuted for all user-defined
EOperations, the models are in sync and the user only
needs to invoke the EMF code generator (just as in a

On A-posteriori Integration of Ecore Models and Hand-written Java Code

oo
c
s EMF Model Java Model
.E discover:
&
w | generate. |
c
E | Java Code |
o
a e v
t i
| |
1 1
g ' '
=
]
c
) EMF Model” integrate bodi Java Model”
w
c
2
=]
©
& L
3 generate— Java Code’
Qo
<

Figure 7: Our solution applied for model-driven software product line engineering.

regular EMF project) in order to obtain the final and
consistent Java source code for the desired product.

4 &) platform:/resource/de.ubt ail famile.example.graph.config2/modelfgraph.ecore
4 @ graph
£ Graph
> [Mode

4 & dfs(Node) : Node
4 (im GenModel
= body > ..

getMarked(.add(node);
for (Edge & node.getEdges() {
for (Node n: e.getNodes() {
if (nl=nocle)
dfs(n);
H

b
return getMarked(;

Figure 8: The final Ecore model, after applying our solu-
tion.

Please note that the proposed solution is the only
feasible way to achieve consistency and to allow vari-
ability on arbitrary levels of granularity. E.g. a solu-
tion which would not use the Java model, but would
integrate the method bodies into the Ecore model di-
rectly in domain engineering does not allow to specify
variability in body implementations as shown above.

4 RELATED WORK

During the last few years, several approaches have
been published which extend EMF with capabilities
for behavioral modeling. Graph rewriting techniques
are used in Henshin (Arendt et al., 2010), MDELab
(Giese et al., 2009), or ModGraph (Buchmann et al.,
2011). While the first ones are based on an interpreter,

i.e. there is no generated code, ModGraph on the
other hand generates method bodies for user-defined
operations out of graph transformation rules.

However, while graph transformation rules pro-
vide a benefit for some complex operations, they even
reduce the level of abstraction in terms of control flow
or in case the problem which has to be solved de-
mands for an imperative solution rather than a declar-
ative one (Buchmann et al., 2012). Thus, hand-
written Java code is still required for large parts of
a software system.

Xcore® is a textual DSL which allows to define
both the static structure and the behavior of Ecore
models. It provides a code generator that allows
to generate Java code from the Xcore specification.
However, although Xcore has a Java-like syntax, it is
another new language which users have to learn.

The problem described in this paper could also be
solved using an incremental bi-directional Model-to-
Text transformation. So far there is no tool which
meets these requirements. There are incremental code
generators (e.g. JET, Xpand or Acceleo) in the EMF
context, but they only operate in one direction.

To the best of our knowledge, our approach is
the only one which offers the possibility to combine
Ecore modeling and standard Java programming on
the modeling level.

5 CONCLUSIONS

In this paper, we presented an innovative approach
for bridging the gap between the model level and the
source code level. Furthermore, as a proof of con-
cept, we presented an implementation for the Eclipse
Modeling Framework. EMF requires hand-written

3https://wiki.eclipse.org/Xcore

101

ICSOFT-PT 2015 - 10th International Conference on Software Paradigm Trends

method bodies, since it only allows for structural
modeling. The EMF code generation engine is able to
preserve these user-supplied code fragments on sub-
sequent generation steps. However, using this mecha-
nism, modifications and deletions in the Ecore model
are no longer propagated to the corresponding code
fragments.

We presented an approach that makes use of so
called GenModel-Annotations, allowing to specify in-
formation which is not originally supported by the
Ecore metamodel. In advance, we use MoDisco to
automatically parse the Java source code into a cor-
responding AST model. Model transformations are
applied to extract the required information from the
AST model and to add it to the Ecore model using
EAnnotations.

Furthermore, we explained in detail how this ap-
proach provides a significant improvement in model-
driven software product line engineering (MDPLE):
Since we use a generic tool chain for MDPLE, con-
ceptual links between different models, e.g. an Ecore
model and a corresponding Java model containing
body implementations cannot be hardcoded in the
tool. In order to provide consistency between these
types of models, the information stored in both of
them has to be integrated using the approach dis-
cussed in this paper.

ACKNOWLEDGEMENTS

The authors want to thank Bernhard Westfechtel for
his valuable and much appreciated comments on the
draft of this paper.

REFERENCES

Arendt, T., Biermann, E., Jurack, S., Krause, C., and
Taentzer, G. (2010). Henshin: Advanced concepts
and tools for in-place EMF model transformations. In
Petriu, D. C., Rouquette, N., and Haugen, @., editors,
Proceedings 13th International Conference on Model
Driven Engineering Languages and Systems (MOD-
ELS 2010), Part I, volume 6394, pages 121-135, Oslo,
Norway. Springer Verlag.

Bruneliere, H., Cabot, J., Jouault, F., and Madiot, F. (2010).
MoDisco: a generic and extensible framework for
model driven reverse engineering. In Proceedings
of the IEEE/ACM international conference on Auto-
mated software engineering, ASE ’10, pages 173-
174, New York, NY, USA. ACM.

Buchmann, T. and Schwégerl, F. (2012). FAMILE: tool
support for evolving model-driven product lines. In
Storrle, H., Botterweck, G., Bourdells, M., Kolovos,
D., Paige, R., Roubtsova, E., Rubin, J., and Tolvanen,

102

J.-P., editors, Joint Proceedings of co-located Events
at the 8th European Conference on Modelling Foun-
dations and Applications, CEUR WS, pages 59-62,
Building 321, DK-2800 Kongens Lyngby. Technical
University of Denmark (DTU).

Buchmann, T. and Schwégerl, F. (2014). A model-driven
approach to the development of heterogeneous soft-
ware product lines. In Mannaert, H., Lavazza, L.,
Oberhauser, R., Kajko-Mattsson, M., and Gebhart,
M., editors, Proceedings of the Ninth International
Conference on Software Engineering Advances (IC-
SEA 2014), pages 300-308, Nice, France. ICSEA.

Buchmann, T., Westfechtel, B., and Winetzhammer, S.
(2011). MODGRAPH - A Transformation Engine for
EMF Model Transformations. In Proceedings of the
6th International Conference on Software and Data
Technologies, pages 212 — 219.

Buchmann, T., Westfechtel, B., and Winetzhammer, S.
(2012). The added value of programmed graph trans-
formations — a case study from software configura-
tion management. In Schiirr, A., Varro, D., and Varro,
G., editors, Applications of Graph Transformations
with Industrial Relevance (AGTIVE 2011), Budapest,
Hungary. Presented at AGTIVE 2011, currently under
review for publication in the post-proceedings.

Clements, P. and Northrop, L. (2001). Software Product
Lines: Practices and Patterns. Boston, MA.

Frankel, D. S. (2003). Model Driven Architecture: Apply-
ing MDA to Enterprise Computing. Wiley Publishing,
Indianapolis, IN.

Giese, H., Hildebrandt, S., and Seibel, A. (2009). Im-
proved flexibility and scalability by interpreting story
diagrams. ECEASST, 18.

Kang, K. C., Cohen, S. G., Hess, J. A., Novak, W. E.,
and Peterson, A. S. (1990). Feature-oriented do-
main analysis (FODA) feasibility study. Technical Re-
port CMU/SEI-90-TR-21, Carnegie-Mellon Univer-
sity, Software Engineering Institute.

OMG (2011). Meta Object Facility (MOF) Core. Object
Management Group, Needham, MA, formal/2011-08-
07 edition.

Steinberg, D., Budinsky, F., Paternostro, M., and Merks,
E. (2009). EMF Eclipse Modeling Framework. The
Eclipse Series. Boston, MA, 2nd edition.

Volter, M., Stahl, T., Bettin, J., Haase, A., and Helsen, S.
(2006). Model-Driven Software Development: Tech-
nology, Engineering, Management. John Wiley &
Sons.

