
Progress Report on a Proposed Theory for Software Development

Diana Kirk1 and Stephen G. MacDonell2

1Consultant, Auckland, New Zealand
2Software Engineering Laboratory (SERL), Auckland University of Technology (AUT), Auckland, New Zealand

Keywords: Software Development, Software Engineering, Theoretical Model, Software Context.

Abstract: There is growing acknowledgement within the software engineering community that a theory of software
development is needed to integrate the myriad methodologies that are currently popular, some of which are
based on opposing perspectives. We have been developing such a theory for a number of years. In this position
paper, we overview our theory along with progress made thus far. We suggest that, once fully developed,
this theory, or one similar to it, may be applied to support situated software development, by providing an
overarching model within which software initiatives might be categorised and understood. Such understanding
would inevitably lead to greater predictability with respect to outcomes.

1 INTRODUCTION

The termSoftware Engineeringwas coined in 1968
at a conference whose aim was to discuss the need
for the software development discipline to be more
strongly based on theoretical and engineering princi-
ples (Naur and Randell, 1969). TheWaterfallmodel,
a then-popular model used in manufacturing, was
adopted as the standard approach for developing com-
puter software. As time progressed, it became ap-
parent that a strict implementation of this model was
not appropriate for software. A number of modifi-
cations, for exampleSpiral (Boehm, 1988), and al-
ternative models, for exampleXP (Beck, 2000), have
emerged. The authors of the various models have dif-
ferent viewpoints on what kind of activity software
development actuallyis. Earlier models view soft-
ware development as an engineering activity and fo-
cus on control. More recent models adopt the view-
point of ‘software-as-a-service’ and focus on effective
communications. However, regardless of the huge
variation in approach, until recently, the accepted wis-
dom by all methodology architects was that, in or-
der to be fully effective, their approach must be fol-
lowed exactly, with nothing added and nothing missed
(Cusumano et al., 2003).

We have long understood from experiences in in-
dustry that this ‘wisdom’ is not based on what actually
happens in the field, and have advocated with others
the need to more deeply understand the process of de-
veloping computer software in order to support indus-

try in its need to select practices in a flexible way, ac-
cording to objectives and context (Bajec et al., 2007;
Fitzgerald, 1997; Hansson et al., 2009; Kirk and Tem-
pero, 2004; Kirk and Tempero, 2005; Kirk, 2007).
This viewpoint has now become the accepted one
(Avison and Pries-Heje, 2008; MacCormack et al.,
2012; Petersen and Wohlin, 2009; de Azevedo San-
tos et al., 2011; Turner et al., 2010). The traditional
viewpoint — that methodologies and practices should
be adopted and used as prescribed — has thus been
superseded by one of acceptance that tailoring is both
necessary and unavoidable.

If tailoring is of the essence, we clearly must strive
to fully understand the nature of the relationships be-
tween objectives, process and context. Only then will
we be in a position to advise industry on which prac-
tices might be most suitable or to predict project out-
comes based on context and practices implemented.
The sole route to this kind of general understanding
is through theory-building (Gilmore, 1990). Without
an understanding of the relationships between objec-
tives, practices, context and outcomes, we can at best
expose patterns based on data or observations. Such
patterns representcorrelationsand correlations can
not be used to predict in a general way. For consis-
tent prediction, we must create frameworks based on
causal relationships i.e. theoretical models. Indeed,
Basili et al. remind us that, when carrying out con-
trolled experiments, “... it is hard to know how to ab-
stract important knowledge without a framework for
relating the studies” (Basili et al., 1999).

161Kirk D. and MacDonell S..
Progress Report on a Proposed Theory for Software Development.
DOI: 10.5220/0005552401610167
In Proceedings of the 10th International Conference on Software Paradigm Trends (ICSOFT-PT-2015), pages 161-167
ISBN: 978-989-758-115-1
Copyright c 2015 SCITEPRESS (Science and Technology Publications, Lda.)



The role of theory in software engineering (SE)
has been investigated from a number of perspectives.
Sjøberg et al. observed that there is very little fo-
cus on theories in software engineering and remind
us of the key role played by theory-building if we
wish to accumulate knowledge that may be used in
a wide range of settings (Sjøberg et al., 2008). Han-
nay et al. conducted a review of the literature on ex-
periments in SE and found that fewer than a third of
studies applied theory to explain the cause-and-effect
relationship(s) under investigation, and that a third of
the theories applied were themselves proposed by the
article authors (Hannay et al., 2007). Gregor exam-
ined the nature of theory in Information Systems (IS)
and found multiple views on what constitutes a the-
ory (Gregor, 2006). Stol and Fitzgerald argue that
SE research does, in fact, exhibit traces of theory and
suggest that the current focus on evidence based soft-
ware engineering (EBSE) must be combined with a
theory-focussed research approach to support expla-
nation and prediction (Stol and Fitzgerald, 2013).

While there is general agreement within the re-
search community that an increased focus on theory
building would produce benefits, there remains un-
certainty about how to proceed. Wand et al. remind
us that “To employ conceptual modeling constructs
effectively, their meanings have to be defined rigor-
ously” and that achievement of this requires an artic-
ulation within the context ofontology(Wand et al.,
1999). The authors apply an ontological framework
developed by Bunge (Bunge, 1977) to analyse the re-
lationship construct in entity-relationship modelling.
A number of authors have used their approach to in-
vestigate various aspects of IS, for example, UML
(Opdahl and Henderson-Sellers, 2002) and reference
models (Fettke and Loos, 2003). A key aspect of the
approach is the ability to confirm that a model is com-
plete and without redundancy.

Our overall research objective is to apply an onto-
logical approach in the development of a conceptual
model to describe asoftware initiative. By software
initiative, we mean the software-related processes im-
plemented to achieve specified outcomes. We sug-
gest that the existence of such a model would support
the software industry in the selection of appropriate
practices, according to an organisation’s specific ob-
jectives and contexts. However, before we are in a po-
sition to formally conceptualise a software initiative,
we must gain a better understanding of the constructs
that will form the basis of our model. In this paper, we
present our progress towards this deeper understand-
ing. In section 2, we overview our progress thus far.
In section 3 we discuss other efforts towards provid-
ing a theoretical foundation for software development

and in section 4, we summarise the paper and discuss
limitations and future work.

2 THEORY OVERVIEW

Our first observation is that we must scope our model
to includeany software initiative i.e. the scope is
larger than a softwareproject. Our rationale is the
need to consider in a holistic way the entiresoftware-
in-a-system (SIAS)i.e. the software product or ser-
vice as part of a larger whole. This ‘whole’ will vary
in time as the software is first created and then used.
The larger system during creation will include the de-
velopment organisation, test environments (possibly
stand-alone) and the client. After deployment, the
software will become part of a system comprising any
of hardware, software, humans and processes. The
job is to create, deliver and sustain healthy software
systems over a lifetime of operation. The reason be-
hind our viewpoint of a need for greater holism has
its roots in the uncertainty that results from the grow-
ing complexity of software systems. This complexity
makes it impossible to categorise in a simple way the
environment during development and makes it diffi-
cult to anticipate all future conditions under which
the software will run i.e. we can no longer assume
a stable and bounded operating environment. Con-
ditions such as technology change and inappropriate
use will probably affect the in-situ efficacy of the soft-
ware. Uncertainty also characterises delivery mecha-
nisms — in the past, aproject developed a software
product and then delivered this to a known client base.
More recently, the web-based mechanism of ‘deliver
a little, solicit immediate client feedback, and deliver
the next increment’ has become popular (Stuckenberg
and Heinzl, 2010), leaving the concept of a ‘project-
to-develop-then-deliver’ no longer tenable.

As early as 1987, Basili and Rombach believed
that ”Sound tailoring requires the ability to charac-
terise ... goals ..., the environment ..., and the effect
of methods and tools on achieving these goals in a
particular environment” (Basili and Rombach, 1987).
Our efforts thus far have focused on clarifying what
this might mean when considering flexibility in soft-
ware initiatives. We thus begin with a consideration
of objectives, processandcontext. In the following
sections, we overview our efforts and comment on un-
derstandings achieved.

2.1 Objectives

We first observe the need to consider more than one
objective for an initiative (Kirk and Tempero, 2005;

ICSOFT-PT�2015�-�10th�International�Conference�on�Software�Paradigm�Trends

162



Kirk et al., 2009). The reason is that a focus on a
single outcome may lead to the identification of a lo-
cal maximum and a possible sub-optimisation of the
whole system (Kitchenham et al., 2002; Lakey, 2003;
Lehman, 1997). We next observe that there are many
possible objectives, including the common product-
related ones of minimisation of cost and maximisa-
tion of quality, but also including the people-related
ones such as ‘increase developer subject-area knowl-
edge’, ‘retain developers’ or ‘keep a specific customer
happy’. For some of these, an associated numerical
value will change throughout the initiative, for exam-
ple, when spending increases throughout a project.
For others, the goal is less definitive and a more
fuzzy measure may be appropriate, for example, de-
veloper satisfaction levels may be described as ‘Low’,
‘Medium’ and ‘High’ (Kirk and MacDonell, 2009). A
third observation is that most software initiatives are
characterised by uncertainty (Atkinson et al., 2006;
Perminova et al., 2007) and this means that values
cannot be represented in a deterministic way. A prob-
abilistic distribution is a more suitable measure for
some kinds of objective (Connor, 2007; Kitchenham
and Linkman, 1997; Rao et al., 2008). Our proposal
is that a set of objectives may be modelled by a set of
values, the type of value for each depending upon the
nature of the objective. An implementation would in-
volve representing an objective by a name, a descrip-
tion and a desired value.

Monitoring of progress, i.e. ‘current state’, will
involve a consideration of the current value for each
objective in the set. This takes into account the fact
that state values are generally not ‘empty’ at com-
mencement. For example, developers will have a cer-
tain ‘satisfaction’ level at commencement; in a prod-
uct line situation, there is an existing code base that
is characterised by a level of quality. We have as yet
taken this investigation no further i.e. the structure of
objectivesis an open research question.

2.2 Process

We view aprocessas a set ofpractices. EachPrac-
tice has the effect of moving the initiative closer to (or
further away from) itsObjectives. We observe that,
in addition to the accepted practices such as ‘design
inspection’, our definition includes anything that has
the desired effect. For example, in a small startup or-
ganisation, an informal, unplanned practice such as
‘chat over lunch’ may be crucial for supporting the
developer’s understanding of what is to be built and is
thus an acceptable ‘practice’ in our model. Accord-
ing to our model, an effective practice is one that suc-
cessfully moves the initiative in the right direction. A

‘lean’ process is one in which every practice is effec-
tive.

The space of all possible practices is huge, and
includes practices for identifying the target audience
for a proposed product and understanding what the
product should do, practices for designing, imple-
menting and delivering the product, and practices
for supporting product use in the target environ-
ment(s). We clearly need to introduce some struc-
ture, but found that the standard reference models
did not suit when attempting to elicit information
from individuals in smaller, less formal organisations
(Kirk and Tempero, 2012a). It was clear that, if we
wanted to capture practices-as-implemented-in-the-
real-world, some new perspective was required.

Our approach considers what organisationsneed
to achieveat a high level when involved in a software
initiative. Our top-level functional categories are

• Define what is to be made

• Make it

• Deliver it

We extended these categories to be what we be-
lieve are the main sub-categories for software. These
are shown in table 1.

Table 1: Categories for practices.

Define Roadmap
Scope

Make Design
Implement
Integrate

Deliver Release
Support

Because we have structured based onfunction, the
categorisation will support any practice deemed to be
relevant for meeting objectives. Informal meetings in
the lunch room that help developers understand scope
clearly fit into the ‘scope’ category. We hypothesise
that the proposed categorisation addressesall soft-
ware practices. A precondition that an objective be
met is that each category must contain one or more
effective practices. To illustrate, for a ‘Quality’ ob-
jective, including quality considerations during prod-
uct design, implementation and integration will fail to
achieve the objective if quality expectations are not
included during scoping. The identification of gaps is
straightforward.

The categorisation above doesnot imply any or-
dering of practices. Such ordering would exist at a
higher level and might be used to describe strategies
of iteration and incremental delivery. We also sub-
mit that the categorisation is ‘paradigm-agnostic’ —

Progress�Report�on�a�Proposed�Theory�for�Software�Development

163



whether an initiative is run in a traditional or agile
way, the basic functions of defining, making and de-
livering the product must be carried out. Of note is the
fact that the sub-categories ‘Roadmap’ and ‘Support’
lie outside of a traditional development project and
sub-categories ‘Scope’ and ‘Release’ relate to prac-
tices that span development organisation and client.

Our work on thepracticesaspect of the proposed
theory is embryonic. Testing thus far is limited to
a single, exploratory study in which we captured
practices in three New Zealand software organisa-
tions (Kirk and Tempero, 2012a; Kirk and Tempero,
2012b). We did expose some interesting areas for
further study. For example, all participating organ-
isations reported a dependence on practices that in-
volved having to actively search for information, pos-
sibly implying some inefficiency as individuals must
spend time. However, the study was exploratory in
nature and this is an open research area.

2.3 Context

This represents the most challenging aspect of any
theory for software development. There have been
many attempts to relate project outcomes to specific
contextual factors, for example, (Avison and Pries-
Heje, 2008; Clarke and O’Connor, 2012; Kruchten,
2013; Stuckenberg and Heinzl, 2010). Our main cri-
tique of existing approaches is that they remain fac-
tors based (Kirk and MacDonell, 2013). We suggest
that such an approach is misguided because

• there are simply too many possible factors to take
into consideration, and this number will increase
as new paradigms for software are introduced.

• it is unlikely that any two projects will be ex-
actly the same and so understanding key factors
for some is unlikely to be of use in a general way.

We believe that it is crucial that we develop an op-
erationalisation ofcontextthat will be relevant for all
software initiatives i.e. takes into account the situ-
ated nature of a software product throughtout its life-
time. It seems clear that the required model must
comprise a number of orthogonal dimensions in order
that an initiative can be plotted as a point in the dimen-
sional space. In order to remove the ‘factors-based’
aspect, it is necessary to also find suitable abstrac-
tions for each dimension, abstractions that support
a straight-forward identification of value for a given
initiative. For example, rather than define a number
of factors such as ‘developer experience’, ‘developer
subject area knowledge’, we must abstract in such a
way as to render it irrelevant if we have missed a fac-
tor out (for example, ‘developer commitment’).

Our first efforts at modelling this space involved
a consideration of the dimensionsWho, Where, What,
When, How and Why (Kirk and MacDonell, 2013).
These dimensions have been applied by others to
ensure orthogonality (Dybå et al., 2012; Zachman,
2009). Of course, the usefulness of the abstraction de-
pends upon the choices about what these dimensions
mean. Our assigned meanings are (Kirk and Mac-
Donell, 2014b):

Who associates with peoples’ability to perform.
Personal characteristics, culture and group struc-
ture are relevant, as these affect levels of under-
standing and conceptual sharing.

Where associates with peoples’availability. The de-
grees of temporal and physical separation are rel-
evant.

What associates with product characteristics.
Standards expectations, product interfaces and
achieved quality are relevant.

When associates withproduct life cycle. Examples
are in-development, recently deployed, near re-
tirement (MacDonell et al., 2008).

How associates with engagement expectations.
Client and developer expectations for the mecha-
nisms for product specification and delivery will
affect which practices are most appropriate.

Why associates withestablishing objectives.

We carried out some ‘proof-of-concept’ studies
on this model, each involving categorising contex-
tual factors from a small number of studies from the
software engineering literature (Kirk and MacDonell,
2014b; Kirk and MacDonell, 2014a). These studies
caused us to refine our understanding of context in
the following ways. In the first instance, it became
clear that the dimensionwhyaddressesobjectivesand
is thus not part of a model forcontext. We also found
that many contextual factors mentioned in the litera-
ture are vague or ambiguous, and so must be clarified
prior to categorising. For example, when considering
the commonly-mentioned factor ‘Company size’, we
suggest that it is not size itself that affects practice se-
lection and/or outcomes, but rather what this means in
terms of culture and physical and temporal separation.
We labelled such factors as ‘Secondary’. Some fac-
tors, such as ‘requirements uncertainty’, may be the
result of one of a number of possible scenarios. For
example, perhaps the client is not clear about what
the product exactly is; perhaps (s)he is simply weak
on decision-making; perhaps (s)he is unable to state
what is wanted because of client-internal processes
i.e. (s)he is waiting for a decision from someone else.

ICSOFT-PT�2015�-�10th�International�Conference�on�Software�Paradigm�Trends

164



We cannot know which practices will be effective un-
til we understand which meaning is relevant. A prac-
tice of ‘regular client meetings with prototypes’ will
not help if the client is waiting for someone else. We
labelled this kind of factor as ‘ambiguous’. Finally,
we noticed that some factors were more ‘high level’ in
that they could be more usefully viewed as affecting
strategy. For example, ‘lack of funds’ would likely
force some consideration about strategy, and the re-
sulting decision may, in turn, affect objectives and/or
context. It might be decided that the project should be
abandoned, that some developers should be removed,
or that a minimal product only should be delivered.
We recognise these factors asStrategic factorsand re-
move from our discussion ofcontext.

Our current status is that, with our refined defi-
nition of context, we are well into a study to cate-
gorise contextual factors from the literature into our
dimensional model. Thus far, we have met no obsta-
cles. However, we have as yet included only litera-
ture from thesoftware engineeringdomain and have
constrained the study to thedevelopment project. Al-
though we are optimistic, there clearly is much scope
for research in this area, research that must be carried
out before we can be confident in our proposed struc-
ture forcontext.

3 RELATED WORK

As far as we are aware, the only initiative to cre-
ate a theory for software is the SEMAT initiative,
launched in 2009 by Ivar Jacobson, Bertrand Meyer
and Richard Soley (Jacobson et al., 2013a). The ap-
proach proposes aSEMAT kernelcomprising three
parts. The first is a means of measuring project
progress and health, the second categorises the ac-
tivities required to effect progress, and the third de-
fines the competencies required to effect the activities
(Jacobson and Seidewitz, 2014). There are seven top-
level ‘alphas’ -Requirements, Software System, Work,
Team, Way of Working, OpportunityandStakeholders.
It is claimed that these concepts support determina-
tion of a project’s health and facilitate selection of a
suitable set of practices.

Although the authors of the SEMAT approach
state that the initiative promotes a “non-prescriptive,
value-based” philosophy that encourages selection of
practices according to context, we suggest that the ap-
proach is, in fact, prescriptive in intent. Each of the
SEMAT elements has a number of states “which may
be used to measure progress and health” (Jacobson
et al., 2013b), and this implies that the health of every
software project can be measured in a common way.

We do not believe this to be the case, because of the
vast number of possible objectives and contexts. In
addition, the SEMAT model appears to offer no guid-
ance onhow to choose activities. Other than men-
tioning competencies required for activities, there is
no link between activities and objectives or context.
How do we know if an activity is suitable when the
developers are in different countries or when the team
comprises multiple cultures? The authors state that
gaps and overlaps in activities can be easily identi-
fied, but it is not clear how this can be achieved in
an objective way. We also note that the theory re-
lates to a softwareproject, a scope we have iden-
tified as being too narrow. For the above reasons,
we have issue with the claim that a general theory is
being developed. We cannot see how the approach
will help researchers better understand practice limi-
tations. Weiringa, discussing the field of requirements
engineering, reminds us of the dangers of confusing
solution design with research (Wieringa, 2005). We
suggest that SEMAT, at this point, represents a design
initiative rather than a theory building exercise.

4 DISCUSSION

One characteristic of a successful theory is that op-
posing viewpoints can be more deeply understood and
can be seen to be part of a larger picture. Our concep-
tualisation must address the traditional versus agile
dichotomy. It is not difficult to see that, as apractice
is defined simply as a transformation of current state,
many different practices will exist that implement the
same kind of transformation. For example, in relation
to table 1, the practices ‘Formally document require-
ments’ and XP’s ‘Planning Game’ both result in an in-
creased understanding of what is to be built. However,
if we consider the objectives ‘Reliability’ and ‘In-
crease developer subject area knowledge’, it is likely
that the formal documentation approach will address
the former (as non-functional requirements are an in-
herent part of formal requirements documents) while
‘Planning Game’ will not. The XP approach may re-
quire additional practices to address quality expecta-
tions.

Thus far, we have aimed to gain a better under-
standing of what appear to be the key constructs re-
quired i.e.objectives, processandcontext. From the
perspective of the Bunge model, we suspect thatob-
jectivesand contextrepresent basic ‘things’. How-
ever, a number of aspects are less clear, for example,
the role ofprocess. One possibility is that it may be
represented as a basic ‘thing’. It is more likely that the
constituentpracticesandcontextmutually affect each

Progress�Report�on�a�Proposed�Theory�for�Software�Development

165



other and this situation is represented as a ‘mutual
property’ in the Bunge scheme. Our analysis above
also exposed the need for a new idea, that ofStrate-
gic factor and we do not yet understand what this is
from an ontological perspective. We do not under-
stand how to represent the dimensions we propose for
context— are thesepropertiesor constituent compo-
nentsof context? What are the repercussions of the
decisions made? This is an exciting step on our jour-
ney, one which we now feel ready to address.

In this paper, we have presented an overview of
the theoretical approach we have been pursuing for
several years. Our work is in-embryo. Our contribu-
tion is that we are making an honest attempt to tackle
an extremely difficult problem, and believe we have
made pockets of progress in some areas. Our hope is
that the efforts we have made thus far will be used as
a starting point for other researchers. We submit that,
if the community does not take the theory-building
initiative seriously, we are doomed to endless cycles
of ‘new’ process paradigms and architectures, each of
which has some merit and many shortfalls.

REFERENCES

Atkinson, R., Crawford, L., and Ward, S. (2006). Fun-
damental uncertainties in projects and the scope of
project management.International Journal of Project
Management, 24:687–698.

Avison, D. and Pries-Heje, J. (2008). Flexible informa-
tion systems development: Designing an appropriate
methodology for different situations. In Filipe, J.,
Cordeiro, J., and Cardoso, J., editors,Enterprise infor-
mation systems : 9th International Conference, ICEIS
2007, pages 212–224, Berlin, Heidelberg. Springer.

Bajec, M., Vavpotic, D., and Krisper, M. (2007). Practice-
driven approach for creating project-specific software
development methods. Information and Software
Technology, 49:345–365.

Basili, V. R. and Rombach, H. D. (1987). Tailoring the Soft-
ware Process to Project Goals and Environments. In
Proceedings of the Ninth International Conference on
Software Engineering. IEEE, IEEE Computer Society
Press.

Basili, V. R., Shull, F., and Lanubile, F. (1999). Building
Knowledge through Families of Experiments.IEEE
Transactions on Software Engineering, 25(4):456–
473.

Beck, K. (2000). eXtreme Programming eXplained - Em-
brace Change. Addison-Wesley, United States of
America.

Boehm, B. W. (1988). A Spiral Model of Software Devel-
opment and Enhancement.IEEE Computer, May(11).

Bunge, M. A. (1977).Treatise on Basic Philosophy 3. On-
tology 1: The Furniture of the World. D.Reidel Pub-
lishing Company, Dordrecht, Holland.

Clarke, P. and O’Connor, R. V. (2012). The situational fac-
tors that affect the software development process: To-
wards a comprehensive reference framework.Infor-
mation and Software Technology, 54:433–447.

Connor, A. (2007). Probabilistic estimation of software
project duration. New Zealand Journal of Applied
Computing and Information Technology, 11(1):11–22.

Cusumano, M., MacCormack, A., Kemerer, C., and Cran-
dall, B. (2003). Software development worldwide:
The state of the practice.IEEE Software, 20(6):28–
34.

de Azevedo Santos, M., de Souza Bermejo, P. H.,
de Oliveira, M. S., and Tonelli, A. O. (2011). Ag-
ile practices: An assessment of perception of value of
professionals on the quality criteria in performance of
projects.Journal of Software Engineering and Appli-
cations, 4:700–709.

Dybå, T., Sjøberg, D. I., and Cruzes, D. S. (2012). What
Works for Whom, Where, When and Why? On the
Role of Context in Empirical Software Engineering.
In Proceedings of the 6th International Symposium
on Empirical Software Engineering and Measurement
(ESEM 2012), pages 19–28, Lund, Sweden.

Fettke, P. and Loos, P. (2003). Ontological Evaluation
of Reference Models using the Bunge-Wand-Weber
Model. In Proceedings of the Ninth Americas Con-
ference on Information Systems (AMCIS 2003), pages
2944–2955. Association for Information Systems.

Fitzgerald, B. (1997). The use of systems development
methodologies in practice: a field study.Information
Systems Journal, pages 201–212.

Gilmore, D. J. (1990). Methodological Issues in the Study
of Programming. In Hoc, J.-M., Green, T., Samur-
cay, R., and Gilmore, D., editors,Psychology of Pro-
gramming, pages 83–98. Academic Press Ltd., Lon-
don, U.K.

Gregor, S. (2006). The nature of theory in Information Sys-
tems. MIS Quarterly: Management Information Sys-
tems, 30(3):611–642.

Hannay, J. E., Sjøberg, D. I. K., and Dybå, T. (2007). A sys-
tematic review of theory use in software engineering
experiments. IEEE Transactions on Software Engi-
neering, 33(2):87–107.

Hansson, C., Dittrich, Y., Gustafsson, B., and Zarnak, S.
(2009). How agile are software development prac-
tices? Journal of Systems and Software, 79:1295–
1311.

Jacobson, I., Meyer, B., and Soley, R. (2013a). Software
Engineering Method and Theory.

Jacobson, I. and Seidewitz, E. (2014). A New Software En-
gineering. Communications of the ACM, 57(12):49–
54.

Jacobson, I., Spence, I., and Ng, P.-W. (2013b). Agile and
SEMAT - Perfect Partners.Communications of the
ACM, 56(11):53–59.

Kirk, D. (2007). A Flexible Software Process Model.
PhD thesis, University of Auckland, Auckland, New
Zealand.

Kirk, D. and MacDonell, S. (2009). A Simulation
Framework to Support Software Project (Re)Planning.

ICSOFT-PT�2015�-�10th�International�Conference�on�Software�Paradigm�Trends

166



In Proceedings of the 35th Euromicro Conference
on Software Engineering Advanced Applications
(SEAA)), pages 285–292. IEEE Computer Society
Press.

Kirk, D. and MacDonell, S. (2013). A model for soft-
ware contexts. InProceedings of the Eighth Interna-
tional Conference on Evaluation of Novel Approaches
in Software Engineering (ENASE 2013), pages 197–
204.

Kirk, D., MacDonell, S., and Tempero, E. (2009). Mod-
elling software processes - a focus on objectives. In
Proceedings of the 24th ACM SIGPLAN conference
companion on Object oriented programming systems
languages and applications (OOPSLA), Session: On-
ward short papers session 2., pages 941–948, Or-
lando, Florida, USA. ACM Press.

Kirk, D. and MacDonell, S. G. (2014a). Categorising soft-
ware contexts. InProceedings of 20th Americas Con-
ference on Information Systems, AMCIS 2014.

Kirk, D. and MacDonell, S. G. (2014b). Investigating a con-
ceptual construct for software context. InProceedings
of the Conference on Empirical Assessment in Soft-
ware Engineering (EASE), number 27.

Kirk, D. and Tempero, E. (2004). Proposal for a Flexible
Software Process Model. InProceedings of the 5th
International Workshop on Software Process Simula-
tion and Modeling (ProSim’04), Edinburgh, Scotland.

Kirk, D. and Tempero, E. (2005). A Conceptual Model of
the Software Development Process. InProceedings
of the 6th International Workshop on Software Pro-
cess Simulation and Modeling (ProSim’05), St. Louis,
Missouri. Fraunhofer IRB.

Kirk, D. and Tempero, E. (2012a). A lightweight frame-
work for describing software practices.Journal of
Systems and Software, 85(3):581–594.

Kirk, D. and Tempero, E. (2012b). Software development
practices in New Zealand. InProceedings of the Nine-
teenth Asia-Pacific Software Engineering Conference
(APSEC 2012), pages 386–395, Hong Kong.

Kitchenham, B. and Linkman, S. (1997). Estimates, Uncer-
tainty and Risk.IEEE Software, 14(3):69–74.

Kitchenham, B. A., Pfleeger, S. L., Hoaglin, D. C., El
Emam, K., and Rosenberg, J. (2002). Preliminary
Guidelines for Empirical Research in Software Engi-
neering.IEEE Transactions on Software Engineering,
28(8):721–734.

Kruchten, P. (2013). Contextualizing agile software devel-
opment.Journal of Software: Evolution and Process,
25(4):351–361.

Lakey, P. B. (2003). A Hybrid Software Process Simula-
tion Model for Project Management. InProceedings
of the 2003 International Workshop on Software Pro-
cess Simulation and Modeling (ProSim’03), Portland,
Oregan, U.S.A.

Lehman, M. (1997). Process Modelling - Where Next. In
Proceedings of the 1997 Conference on Software En-
gineering. IEEE Computer Society Press.

MacCormack, A., Crandall, W., Henderson, P., and
Toft, P. (2012). Do you need a new product-

development strategy?Research Technology Man-
agement, 55(1):34–43.

MacDonell, S., Kirk, D., and McLeod, L. (2008). Rais-
ing Healthy Software Systems. InThe 4th Interna-
tional ERCIM Workshop on Software Evolution and
Evolvability (Evol’08), pages 21–24, L’Aquila, Italy.
The European Research Consortium for Informatics
and Mathematics (ERCIM), IEEE Computer Society
Press.

Naur, P. and Randell, B. (1969). NATO Software Engi-
neering Conference 1968. Conference report, NATO
Science Committee. Report on a conference spon-
sored by the NATO SCIENCE COMMITTEE held in
Garmisch, Germany, in October 1968.

Opdahl, A. L. and Henderson-Sellers, B. (2002). Ontolog-
ical Evaluation of the UML Using the Bunge-Wand-
Weber Model.Software and Systems Modeling, 1(1).

Perminova, O., Gustaffson, M., and Wikstrom, K. (2007).
Defining uncertainty in projects a new perspective.
International Journal of Project Management, 26:73–
79.

Petersen, K. and Wohlin, C. (2009). A comparison of issues
and advantages in agile and incremental development
between state of the art and an industrial case.Journal
of Systems and Software, 82:1479–1490.

Rao, U. S., Kestur, S., and Pradhan, C. (2008). Stochastic
Optimization and Modeling and Quantitative Project
Management.IEEE Software, May/June:29–36.

Sjøberg, D. I., Dybå, T., Anda, B. C., and Hannay, J. E.
(2008). Building Theories in Software Engineering,
pages 312–336. Springer-Verlag.

Stol, K. and Fitzgerald, B. (2013). Uncovering Theories
in Software Engineering. InProceedings of the 2nd
Workshop on Grand Theory in Software Engineering
(GTSE 2013), colocated with ICSE 2013, pages 5–14,
San Francisco, USA.

Stuckenberg, S. and Heinzl, A. (2010). The Impact of
the Software-as-a-Service concept on the Underlying
Software and Service Development Processes. InPro-
ceedings of the 2010 Pacific Asia Conference on Infor-
mation Systems (PACIS 2010), pages 1297–1308.

Turner, R., Ledwith, A., and Kelly, J. (2010). Project
management in small to medium-sized enterprises:
Matching processes to the nature of the firm.Interna-
tional Journal of Project Management, 28:744–755.

Wand, Y., Storey, V. C., and Weber, R. (1999). An Ontolog-
ical Analysis of the Relationship Construct in Con-
ceptual Modeling. ACM Transactions on Database
Systems, 24(4):494–528.

Wieringa, R. (2005). Requirements researchers: are we
really doing research? Requirements Engineering,
10:304–306.

Zachman, J. A. (2009). Engineering the Enterprise: The
Zachman Framework for Enterprise Architecture.

Progress�Report�on�a�Proposed�Theory�for�Software�Development

167


