
Cloud Resources Placement based on
Functional and Non-functional Requirements

Asma Guesmi1, Patrice Clemente2, Frédéric Loulergue1 and Pascal Berthomé2

1LIFO EA 4022, Université d’Orléans, - Bâtiment IIIA
Rue Léonard de Vinci, B.P. 6759, F-45067 Orléans Cedex 2, France

2LIFO EA 4022, INSA Centre-Val de Loire, 88 boulevard Lahitolle, CS 60013, 18022 Bourges cedex, France

Keywords: Broker, Cloud computing, Security, Requirements.

Abstract: It is difficult for customers to select the adequate cloud providers which fit their needs, as the number of cloud
offerings increases rapidly. Many works thus focus on the design of cloud brokers. Unfortunately, most of
them do not consider precise security requirements of customers. In this paper, we propose a methodology
defined to place services in a multi-provider cloud environment, based on functional and non-functional re-
quirements, including security requirements. To eliminate inner conflicts within customers requirements, and
to match the cloud providers offers with these customers requirements, we use a formal analysis tool: Alloy.
The broker uses a matching algorithm to place the required services in the adequate cloud providers, in a way
that fulfills all customer requirements. We finally present a prototype implementation of the proposed broker.

1 INTRODUCTION

With the rapid growth of cloud Computing, the cloud
customer now faces many choices to fit her needs.
The user now wants to deploy distributed applications
on federations of clouds. Basically, those can be sets
of virtual machines on clusters of several providers.
Cloud brokers have thus appeared, designed to match
the user’s requirements against cloud providers of-
fers, in order to establish “Service Level Agreements”
between them. There exist however very few ap-
proaches aiming at providing configurable security,
allowing the customers to express precisely their se-
curity requirements. In this work, we propose a cloud
brokering process to deeply analyze the user’s model,
including abstract needs and requirements, i.e., func-
tional requirements (services, resources) and non-
functional ones (connections, security properties and
policies). We also propose to confront these require-
ments with the providers’ offers, in order to automati-
cally generate a deployment architecture for each cus-
tomer. This architecture responds to every functional
and non-functional requirement of the user. Our solu-
tion uses formal methods to analyze the security prop-
erties and to ensure that they are well described and
will be well implemented onto the Cloud. This avoids
malformed security policies. We also use formal ver-
ification tools to check the possibility of deploying

resources and ensuring the security requirements of
the customer before the deployment in the cloud. The
resulting generated deployment architecture is then
given back to the customer, who can accept it, or ask
for the next one, if possible.

The rest of the paper is organized as follows. Sec-
tion 2 describes the various steps of the brokering
process we propose, and details the specification of
providers offers, customers models and requests, and
matching of both. Section 3 describes the current pro-
totype implementation. Section 4 compares our pro-
posal with related works. Section 5 presents perspec-
tives and concludes the paper.

2 METHODOLOGY

The general process consists of two big independent
steps. On one hand, cloud vendors describe their of-
fers and publish them. An offer contains templates of
resources such as Virtual Machines (VMs) and non-
functional offers such as security mechanisms. On the
other hand, the customer describes a system she wants
to have deployed in the cloud. In this paper we do not
detail the syntax of the specification language. But we
can use extensions of the languages presented in ex-
isting works such as (Guesmi and Clemente, 2013) or
(Bleikertz and Groß, 2011). The system specification

335Guesmi A., Clemente P., Loulergue F. and Berthomé P..
Cloud Resources Placement based on Functional and Non-functional Requirements.
DOI: 10.5220/0005552503350342
In Proceedings of the 12th International Conference on Security and Cryptography (SECRYPT-2015), pages 335-342
ISBN: 978-989-758-117-5
Copyright c 2015 SCITEPRESS (Science and Technology Publications, Lda.)

defined by the customer is sent to the cloud broker, as
a request. The requested system contains the descrip-
tion of resources (VMs for example) along with their
characteristics, location constraints and interconnec-
tion. It also describes security properties constraints.
This customer’s specification will be referred as the
CIM (Customer Initial Model).
The novelty of our approach is that the CIM has to
be formally analyzed using verification techniques. If
a property in the system is found not consistent, the
broker returns a counter example to the customer. The
latter must then modify her requirements in order to
be consistent, if possible. If the system requirements
are consistent, the broker tries to match them with
the vendors offers and find a suitable resources place-
ment. This is described in Section 2.3. The broker has
to select the providers that can host the required re-
sources and fulfill the requirements. To achieve that,
the broker also uses verification techniques to provide
some rigorous and formal cues to ensure that the auto-
matically generated placement is safe and sound. This
is described in Section 2.4.

2.1 Providers Offers

Each provider describes its offers to the broker. Of-
fers may include:
� A set of clusters: (possibly virtual) groups of

physical hosts (that host the virtual resources),
their geographic locations, and a set of VM tem-
plates: OS, CPU, storage and some basic security
assurance facilities (encryption, certification).

� A set of physical and virtual networks, ab-
stracted as information flows and guardians
that interconnect the clusters. Guardians are in-
trusion protection systems and filtering systems,
such as network firewalls, integrity checkers, etc.

� A set of conflicts or other company related rela-
tions between clusters or providers: we call con-
flicting clusters, those hosting data of different
critical domains. For example, a cluster hosting
DoD data is conflicting with any other kind of
cluster. The conflicting providers/clusters should
not participate in the same cloud federation.
In this paper, we do not analyze the providers of-

fers. We assume the existence of two types of third
party certifications: The QoS certification (Rajendran
et al., 2010) and the CSA STAR certification (Cloud
Security Alliance, 2011b).

2.2 Customer Requirements

The CIM includes the elements that we classify as the
following:

A. Functional requirements
Compute nodes (or VMs) and their characteristics
such as: the CPU power, the RAM size, the storage
size and the data transfer rate.
Storage nodes and the characteristics such as: the
storage size, the RAM size and the data transfer
rate.

B. Non-functional requirements, i.e. system con-
straints and security requirements:

(a) The security level of some nodes: some nodes
may be labelled with a given security level, e.g.
public, normal (or semi-public1), private (in-
cluding: secret, top secret, etc.). By default,
the security level is set to secret (private).

(b) High-level security relations/properties be-
tween nodes specified by the customer:
� Collaboration: the customer may need some

nodes to collaborate, i.e. to share information
and/or computing services, etc.

� Concurrency (or conflict): the customer may
need some nodes to work in concurrency, e.g.
the concurrency between all secret nodes.

� Access (read/write) privilege: For example,
the customer should express that some normal
or secret compute nodes must be able to send
information to secret storage nodes; and that
some secret compute nodes can read informa-
tion from some secret storage ones.

� Isolation: the customer may need some nodes
to be fully isolated from others, e.g. all
top secret nodes have to be isolated.

� Confidentiality/Integrity: the confidentiali-
ty/integrity of some nodes must be ensured.

These high-level relation constraints implicitly
include security properties and policies.

(c) The high-level (security) placement properties:
Grouping constraint: the customer may de-
sire to host some nodes on the same cluster or
provider, e.g, collaborating nodes (in order to
increase the bandwidth, security trust, etc).
Separation constraint: the opposite of the pre-
vious one. Physical isolation: the customer
may ask to physically isolate (groups of) nodes
from others. Those nodes should then be hosted
“alone” on a cluster or several clusters of the
same provider.

2.2.1 Derived Constraints

In our solution, the cloud broker derives these high-
level (b) relations and placement constraints (c) into

1Public means publicly available including unknown
nodes, whereas semi-public means only available from
known (owned) nodes.

SECRYPT�2015�-�International�Conference�on�Security�and�Cryptography

336

more concrete ones, such as information flow con-
straints between nodes, clusters, and providers, using
system and network security protection mechanisms
(i.e., guardians), location, etc. Some possible deriva-
tions rules are described hereafter. The user can be
given the choice of which derivation rule may be cho-
sen if available.

� Collaborating nodes: The connectivity of such
nodes must be ensured. They should be linked
by information flows2.

� Conflicting nodes: (for example) are not linked
by any information flow path (being directly or
transitively), or are separated or isolated.

� Separated/Isolated nodes: must be separated/iso-
lated physically (geographically) or virtually (us-
ing guardians).

� Node confidentiality (resp. integrity): no outgo-
ing (resp. incoming) information flow is possible
from (resp. to) this node.

2.3 Analyzing the Customer’s
Requirements – Preliminary Phase

In order to avoid functional anomalies, vulnerabili-
ties and security violations, the CIM should be con-
sistent before deploying the corresponding services
in the cloud. Indeed, the customer can make mis-
takes when describing the requirements. Thus, the
customer specifications may contain conflicts or er-
rors. The formal analysis of the designed system is a
rigorous way to detect such conflicts.

In this preliminary phase, the customer functional
and non-functional requirements are analyzed in or-
der to detect conflicts such as: various specifications
for one single resource (e.g., two different disk vol-
umes for one single VM, various locations or encryp-
tion mechanisms for the same resource), resources
defined as concurrent and collaborating at the same
time, conflicting permissions (e.g., a rule authorizing
a given node to read a specified storage node and an-
other rule to prohibit the same fact.) Every conflict is
notified to the customer who should make the neces-
sary modifications on his specifications. This phase is
repeated until the customer corrects the inconsistent
properties of the CIM.

Once the customer requirements are consistent,
the broker starts to match them with the vendors of-
fers to select the suitable ones.

2Although, guardians can appear on paths between col-
laborating nodes, in order to block unauthorized flows or
transitive flows from other nodes.

2.4 Generation of Configurations

During this step, the cloud broker tries to find
matches between the customer needs (the CIM) and
the providers offers. It tries to place the nodes on
clusters and to interconnect them in a way to fulfill
all requirements. Figure 1 summarizes the algorithm
of clusters selection, nodes placement and the gener-
ations of configurations, as explained hereafter.

Solution

found?

Notification of
what can not
be ensured

Non-

Functional req

Phase 2: Matching non-
functional requirements
(info flows, guardians)

« firstSelection »

{providers, clusters} for each node

Phase 1: Matching
functional characteristics

(cpu, os, cost)

« secondSelection » Configuration
(placement+interconnection)

{nodes, clusters, guardians, info flows}

End End

Start

Functional

req

No

No

Yes

Yes

Next Solution

Solution

found?

Figure 1: The flowchart of the placement algorithm.

2.4.1 Functional Requirements – Phase 1

This phase consists in matching the customer func-
tional requirements with the providers offers and se-
lect the compatible offers.
A node is placed on a cluster only if the required
node characteristics (e.g. CPU, RAM, Disk size, data
transfer rate) are provided by this cluster. Other crite-
ria (e.g., cost, location, encryption and authentication
mechanisms) may also be matched at this step.
The broker forms a firstSelection set containing a se-
lected cluster that satisfies the requirements for each
node. These are potential hosts of the customer re-
quired resources.
If no match is found, the broker notifies the customer
about the criteria that cause problems. For example:
there is no cluster that provides Windows OS or there
is not enough storage space in the Denmark area.

Figure 2 presents a possible and simple use-case
of the customer requirements and the providers of-
fers. Each provider offers a set of clusters with spe-

Cloud�Resources�Placement�based�on�Functional�and�Non-functional�Requirements

337

N2: cpu2N1: cpu1

Provider1

C11:
cpu3

Provider2
N3: cpu3

C12:
cpu1,
cpu4

C22:
cpu3,
cpu4

C23:
cpu2,
cpu4

C21:
cpu2

Customer Requirements Providers Offers

Figure 2: Example: The requirements and offers.

cific characteristics. The clusters C12 and C21 are
conflicting clusters, and they cannot host nodes of the
same customer. The customer requirements consist in
three nodes N1, N2 and N3 with the functional con-
straints (for reasons of simplicity and space limita-
tion, we consider only the CPU speed criterion) CPU1,
CPU2 and CPU3 respectively. These also include the
non-functional requirements:
1. Security relations: N1 and N2 are concurrent

nodes, N1 and N3 are collaborating nodes.
2. Security properties: N3 has write privilege on

node N2.
3. Derivated rules: concurrent nodes should reside in

different physical locations and should not com-
municate.
Figure 3(a) shows all the possible node-to-cluster

assignments corresponding to the use-case above.
The broker returns only one solution at a time. Fig-
ure 3(b) shows the firstSelection set returned after the
functional requirements matching by the broker. For
each node, a cluster that provides fulfills functional
requirements is selected as a possible host. For exam-
ple: cluster C21 provides the CPU speed CPU2. There-
fore, node N2 can be allocated on this cluster.

Possible assignments

N1 -> C12
N2 -> C21, C23
N3 -> C11, C22

(a) Possible assignments

firstSelection

N1 -> C12
N2 -> C21
N3 -> C11

(b) The firstSelection set
Figure 3: An example of the firstSelection set.

2.4.2 Non-functional Requirements – Phase 2

In the previous phase, the broker has selected a set of
clusters that provide the required functional charac-
teristics for all nodes.

In this second phase, the broker places the cus-
tomer’s nodes on corresponding clusters from the
firstSelection set, then tries to interconnect nodes and
clusters, in a way that the connectivity between nodes
and clusters ensures the global customer’s system to
work properly. Otherwise, The nodes and clusters
should be interconnected so that the necessary infor-
mation exchanges are possible and the undesired ones
are controlled and rejected. The broker also proposes
a placement of a set of guardians where necessary in
order to block the undesired communications.

The broker generates one placement of the nodes
and interconnections. It tests and checks the configu-
ration so as to ensure the security properties that the
customer selects from the list described in Section2.2.
The broker generates one configuration of placements
and interconnections and checks its consistency. Fi-
nally, if the configuration ensures the functional and
non-functional requirements of the customer, the bro-
ker produces a secondSelection set. This set contains
the generated configuration. It represents the place-
ment of nodes on clusters, the interconnections be-
tween nodes and clusters, the placement of guardians
between nodes and clusters.

The broker notifies the customer with the pro-
posed configuration. If the customer agrees, she con-
firms the broker that she is ready for the deployment
and to set up the contract with the selected providers.
If the broker fails to generate a placement configu-
ration that guarantees the security properties, it gen-
erates another firstSelection solution. We call it next
solution, which is different from the previous firstSe-
lection solutions already treated. If such a solution ex-
ists then the broker retries to match the non-functional
requirements. If there is no further solution, then the
broker sends a notification to the customer about the
properties that cannot be ensured. For example: the
number of clusters in the firstSelection set is not suf-
ficient to host the isolated nodes separately; the cus-
tomer prefers that information cannot flow between
concurrent nodes without using guardians, but the
only clusters that can host these nodes, are already
linked by flows.

Let us illustrate phase 2 with the previous example
(cf. Figure 3). After that the broker matches the func-
tional needs, it matches the non-functional and secu-
rity requirements with the clusters of the firstSelection
set (Figure 3(b)). In this case, cluster C12 is selected
to host node N1 because it is the only one that pro-
vides CPU1. But cluster C12 is conflicting with C21,
and conflicting clusters cannot host nodes of one cus-
tomer. Thus, node N2 cannot be allocated on cluster
C21. This solution is not possible and does not fulfill
the non-functional requirements.

SECRYPT�2015�-�International�Conference�on�Security�and�Cryptography

338

The broker then generates a next firstSelection solu-
tion. It is shown in Figure 4. Nodes N1, N2 and
N3 are allocated on clusters C12, C23 and C11 re-
spectively. The broker tries again to match the non-

firstSelection

N1 -> C12
N2 -> C23
N3 -> C11

Figure 4: Example: The firstSelection set (next solution).

functional requirements using the assignments of the
new firstSelection set. Figure 5 shows the gener-
ated configuration which fulfills all customer require-
ments. To ensure communication between nodes, the

secondSelection

 N1 -> C12
 N2 -> C23
 N3 -> C11
 Info flow: N1->N3, N3->N1, N3->N2,

C12->C11, C11->C12, C11>C23
 Guardian: (C11,C23)

Figure 5: Example: The secondSelection set.

information flows should be set up between the col-
laborating nodes N1 and N3, and a flow from node
N3 to N2. Thus the corresponding hosts should be
linked by flows.

Guardians are placed in order to block the unde-
sired flows. A guardian is placed between cluster C11
and cluster C23 to block the unauthorized flows from
node N2 to N3 and to block the transitive flows from
node N1 to node N2 via node N3 (node N1 and node
N2 are concurrent and should not communicate). This
configuration is shown in Figure 6. The process of
placement stops here and the broker notifies the cus-
tomer with this proposed configuration.

Provider2

C11:
N3

C12:
N1

C22:

C23:
N2

C21:

Provider1

Figure 6: Example: The first configuration of the secondS-
election.

2.4.3 The Formal Analysis and Matching

The broker generates a placement configuration based
on the security properties described below. Then it
checks the consistency of the generated configuration.
Therefore, it verifies the assurance of all the required
properties using the information flows that intercon-
nect the nodes.
To be able to do that, the broker transforms any non-
functional or security properties specified by the cus-
tomer (cf. Section 2.2) into a set of information flows
between nodes called the Flows.

Formal Model – The broker has a formal view
of both providers offers and customers requirements.
We describe a simplified subset of this formal model
hereafter. Formally, it consists of the following ele-
ments:

A. Sets

� Nodes: the set of nodes. Nodes are actives
and/or passive resources.
There exist subsets of Nodes:

– Isolation � Nodes: nodes that must be iso-
lated

– Con f identiality � Nodes: nodes that must
stay confidential

– Integrity � Nodes: nodes that must keep in-
tegrity

� EO: the set of Elementary (primitive) access
Operations on the system. Seen at very low
level (close to the infrastructure system level),
these elementary operations are simple write or
read access privilege from one active resource
(node) to another.

B. Relations

� Flows : Nodes�EO�Nodes: the global set of
information flows.

� DirFlows � Flows: The set of direct informa-
tion flows.
8ni;n j 2 Nodes;eok 2 EO;(ni;eok;n j) 2
DirFlows means the existence of an infor-
mation flow from ni to n j. A ‘write’ access
privilege is equivalent to a forward flow.
A ‘read’ access privilege is equivalent to a
backward flow. Such a direct flow between ni
and n j will be noted ni! n j.

� InDirFlows � Flows: the transitive closure of
the DirFlows relation.
8ni;n j 2 Nodes;eok 2 EO;(ni;eok;n j) 2
InDirFlows means there exists an indirect
(passing through other nodes) information flow
between ni and n j.

Cloud�Resources�Placement�based�on�Functional�and�Non-functional�Requirements

339

Such an indirect flow between ni and n j will be
written: ni

��! n j.

Obviously, Flows = DirFlows[InDirFlows.

� Let Concurrence, Con f licting, and Access, be
subsets of Nodes�Nodes relations, to repre-
sent the concurrent nodes, the conflicting nodes
and the write/read privileges respectively.
� Let Guardians be a set of Nodes � Nodes

relation, which represents the placement of
guardians between nodes.

Analysis – The broker generates a configuration
and check its consistency. This consists in verifying
the specifications derived or expressed using informa-
tion flows such as the following rules (i.e. predicates
in the Alloy language).

i. Conflicting nodes should not be interconnected:

8ni;n j 2Nodes;(ni;n j)2Con f licting =) (ni
��!

n j =2 Flows^n j
��! ni =2 Flows)

ii. There is no information that flows into or outside
isolated nodes:
8ni 2 Nodes;ni 2 Isolation =) @n j 2
Nodes;((ni! n j))2 Flows_(n j! ni)2 Flows)

iii. Isolated nodes can be interconnected with other
nodes but protected by guardians:
8ni 2 Nodes;ni 2 Isolation =) @n j 2
Nodes;9nk 2 Nodes;((ni ! n j 2 Flows_ n j !
ni 2 Flows) ^ ((ni;nk) 2 Guardians _ (nk;ni) 2
Guardians))

iv. Nodes confidentiality:
8ni 2 Nodes;ni 2 Con f identiality =) @n j 2
Nodes;(ni! n j 2 Flows)

v. Nodes integrity:
8ni 2 Nodes;ni 2 Integrity =) @n j 2
Nodes;(n j! ni 2 Flows)

3 IMPLEMENTATION

We have developed the cloud broker including the
previous described steps in one JAVA application.
This application uses an external formal analysis tool:
Alloy (MIT, 2004). Figure 7 presents the workflow of
the application. The providers send their offers to the
broker via a specific interface.

The customer describes its requirements on the
User Interface. This interface is designed in a way
that the customer defines easily its functional and
non-functional needs, including security properties,
as described in §2.2.

These requirements are translated automatically to
Alloy specifications via the text2Alloy module. The
Alloy specifications are then sent to the module that
is dedicating to analyzing the system requirements.
This module receives the Alloy customer specifica-
tions, analyzes them using the Alloy JAVA API at
backend. If it detects some inconsistent properties,
it sends a notification containing counterexamples to
the customer. The Alloy2text module translates the
counterexamples to visual and XML formalisms so to
be easily read by the customer. The latter is supposed
to modify its specifications to avoid the inconsisten-
cies.

The formal analysis using the Alloy API are trans-
parent to the customer. Therefore, the customer can
easily modify its requirements and consult the outputs
of the analysis and the placement without needing to
know Alloy.

When the requirements specifications are consis-
tent, they are transmitted to the placement modules.
The first module consists on matching the functional
requirements with the providers offers. This module
returns the firstSelection of node to clusters assign-
ments. The second module consists on generating the
secondSelection set. This includes the placement of
nodes across clusters, and setting the possible infor-
mation flows and guardians between nodes and clus-
ters so as to fulfill the functional and non-functional
requirements, as described in §2.4.

If a placement is found, the corresponding con-
figuration is sent to the client and visualized via the
Alloy JAVA API. If the customer agrees then she no-
tifies the broker with a deployment confirmation.
The last step consists in deploying the resources such
as compute and storage nodes. We did not develop
this step but we can draw inspiration from existing
mechanisms such as the compatibleOne broker (Yan-
gui et al., 2014).

Alloy Example – We illustrate in this paragraph an
example on how we use Alloy to specify the customer
requirements. We show also how to enforce the secu-
rity properties in the model. Consequently how these
constraints are considered in the matching phase.
The following example shows how to enforce the se-
curity property ii (cf. §2.4.3). This property is spec-
ified by the following rule: there is no information
that flows into or outside all isolated nodes(VMs in
this example).
First we define some Alloy components we use in this
example: A sig (signature) represents the basic entity
of the model and contains a set of atoms. A fact de-
fines the constraints that must be satisfied all the time
by the described model.

SECRYPT�2015�-�International�Conference�on�Security�and�Cryptography

340

Broker

Customer

Counter Example

Consistent
system req

Provider

Offers

Provider

User Interface

Placement
configurations

Visioning

Deployment
confirmation

Functional
properties

Resources

Model
description

nonFunctional
properties

Requirements

Editing

text2Alloy

Sys req

Analyzing
 the system req

Offers

Placement found

Deployment

Placement not found

Placement found

Alloy2text

Placement

Match
functional req

Match non-
functional req

Phase 1

Phase 2

Java Alloy
API

Figure 7: The workflow of the broker application.

sig Customerfvms: some VMg
sig VMfattributes: set Attributeg
sig Attributefg
sig DirFlowsfvm flow: set VM!VM g
sig Isolationfisolated: set VMg

fact fact vm flow isol f 8 vi :VM j @ vj : VM j
vi 2 Isolation . isolated ^
(vi!vj 2 DirFlows.vm flow _ vj!vi 2 DirFlows.vm flow)g

The core model of this example contains the sig-
natures Customer, VM , Attribute, DirFlows and Isola-
tion. A customer requests some VMs. A VM is char-
acterized by a set of Attributes (cpu, ram, etc. which
we do not detail here). The signature DirFlows con-
tains the set of VM � VM vm flow which gathers all
the direct flows of the model. The signature Isolation
contains a set of isolated VM.
The fact vm flow isol consists in enforcing the fact
that for any VM vi such as vi is an isolated VM, there
exists no VM vj such as (vi ! vj) or (vj ! vi) belong
to the set DirFlows.vm flow.
When the broker sets up all the flows defined in the
DirFlows.vm flow set, it also enforces all the con-
straints defined as facts. This is how our broker en-
sures that the proposed placement fulfills all the cus-
tomer requirements.

4 RELATED WORK

Brokerage & Security Requirements – Very few
brokerage works consider the non-functional require-

ments such as QoS and security. The CSA proposed a
detailed set of questions (CAIQ) (Cloud Security Al-
liance, 2011a) to assess the security capabilities of
cloud providers. A trust management system for the
cloud is proposed in (Habib et al., 2014). This system
allows to assess the trustworthiness of cloud providers
using the the CAIQ repository. Almorst et al. pro-
posed to evaluate security offers of providers based on
the confidentiality, integrity and availability metrics
(Almorsy et al., 2011) . In (Luna Garcia et al., 2012),
(Garcia et al., 2013), the authors proposed methods
for quantitative evaluation and ranking of the security
level of cloud providers. A generic algorithm is pro-
posed in (Jhawar and Piuri, 2013). It considers users
hight level requirements to allocate applications and
tries to optimize both performance and availability.
Authors in (Jhawar et al., 2012) proposed a heuristics-
based approach to consider security requirements for
the resource management in cloud.

Formal Verification – Principally, formal methods
are used to check access control policies. Several
works have described how to check the consistency of
access control policies and related security properties.
In papers (Schaad and Moffett, 2002; Schaad, 2003)
and (Toahchoodee and Ray, 2008; Toahchoodee and
Ray, 2009), the authors use the Alloy language to
specify access control policies and security specifi-
cations. They use Alloy analyzer to check that the
access control policies are well implemented.

Bleikertz et al (Bleikertz and Groß, 2011) propose
a formal language to express high-level security goals

Cloud�Resources�Placement�based�on�Functional�and�Non-functional�Requirements

341

such as the isolation management in cloud environ-
ment. They introduce in (Bleikertz et al., 2011) an
approach for analyzing static virtualized cloud infras-
tructures. They verify the correctness of the deploy-
ment in the cloud given by a configuration snapshot.

5 CONCLUSION

In this paper, we propose a cloud brokering process
based on functional and non-functional requirements.
We propose a matching algorithm which matches the
customers requirements with the providers offers and
propose a corresponding placement configuration to
the customer. We use the Alloy language and ana-
lyzer to specify the provider offers, the customer re-
quirements (and their analysis) and the matching al-
gorithm. Alloy generates a placement configuration
which is analyzed and validated in a way to fulfill the
customer requirements.
However, some elements of our global brokering pro-
cess remain to be done. In particular, the numerical
part of the non-functional matching phase is currently
under development, using a finite domain solver, be-
cause Alloy is not suited for this kind of task. This
part concerns the matching of quantities of resources
(e.g. RAM or disk size, CPU frequency, number of
VMs).

REFERENCES

Almorsy, M., Grundy, J., and Ibrahim, A. S. (2011).
Collaboration-based cloud computing security man-
agement framework. In Cloud Computing (CLOUD),
2011 IEEE International Conference on, pages 364–
371. IEEE.

Bleikertz, S. and Groß, T. (2011). A virtualization assur-
ance language for isolation and deployment. In Poli-
cies for Distributed Systems and Networks (POLICY),
2011 IEEE International Symposium on, pages 33–40.
IEEE.

Bleikertz, S., Groß, T., and Mödersheim, S. (2011). Au-
tomated verification of virtualized infrastructures. In
Proceedings of the 3rd ACM workshop on Cloud com-
puting security workshop, pages 47–58. ACM.

Cloud Security Alliance (2011a). Consen-
sus Assessments Initiative Questionnaire.
https://cloudsecurityalliance.org/research/cai/, ac-
cessed on March 15, 2013.

Cloud Security Alliance (2011b). STAR Certification.
https://cloudsecurityalliance.org/star/certification/,
accessed on January 2015.

Garcia, J. L., Vateva-Gurova, T., Suri, N., Rak, M., and Lic-
cardo, L. (2013). Negotiating and brokering cloud

resources based on security level agreements. In
CLOSER, pages 533–541.

Guesmi, A. and Clemente, P. (2013). Access control
and security properties requirements specification for
clouds’ SecLAs. In Cloud Computing Technology and
Science (CloudCom), 2013 IEEE 5th International
Conference on, volume 1, pages 723–729. IEEE.

Habib, S. M., Ries, S., Mühlhäuser, M., and Varikkattu, P.
(2014). Towards a trust management system for cloud
computing marketplaces: using CAIQ as a trust in-
formation source. Security and Communication Net-
works, 7(11):2185–2200.

Jhawar, R. and Piuri, V. (2013). Adaptive resource man-
agement for balancing availability and performance in
cloud computing. In SECRYPT, pages 254–264.

Jhawar, R., Piuri, V., and Samarati, P. (2012). Support-
ing security requirements for resource management in
cloud computing. In CSE, pages 170–177.

Luna Garcia, J., Langenberg, R., and Suri, N. (2012).
Benchmarking cloud security level agreements using
quantitative policy trees. In Proceedings of the 2012
ACM Workshop on Cloud computing security work-
shop, pages 103–112. ACM.

MIT (2004). Alloy: a language and tool for relational mod-
els.

Rajendran, T., Balasubramanie, P., and Cherian, R. (2010).
An efficient WS-QoS broker based architecture for
web services selection. International Journal of Com-
puter Applications, 1(9):79–84.

Schaad, A. (2003). A framework for organisational con-
trol principles. In PhD thesis, The University of York,
York, England.

Schaad, A. and Moffett, J. D. (2002). A lightweight ap-
proach to specification and analysis of role-based ac-
cess control extensions. In Proceedings of the seventh
ACM symposium on Access control models and tech-
nologies, pages 13–22. ACM.

Toahchoodee, M. and Ray, I. (2008). On the formal analysis
of a spatio-temporal role-based access control model.
In Data and Applications Security XXII, pages 17–32.
Springer.

Toahchoodee, M. and Ray, I. (2009). Using alloy to anal-
yse a spatio-temporal access control model supporting
delegation. IET Information Security, 3(3):75–113.

Yangui, S., Marshall, I.-J., Laisne, J.-P., and Tata, S. (2014).
Compatibleone: The open source cloud broker. Jour-
nal of Grid Computing, 12(1):93–109.

SECRYPT�2015�-�International�Conference�on�Security�and�Cryptography

342

