
Using Aspect-Oriented Approach for Software Product Line
Development

Lei Tan and Yuqing Lin
School of Electrical Engineering and Computer Science, University of Newcastle, Callaghan, NSW, Australia

Keywords: Software Quality, Software Product Line, Aspect-Oriented, Crosscutting Concern.

Abstract: Software Product Line Engineering (SPLE) is a software development paradigm to improve systematic soft-
ware reuse. SPLE is intended to develop a set of similar software systems which share great commonalities
within a particular application domain. There are two key assets underpin Software Product Line (SPL) devel-
opment: feature model and reference architecture. To deal with complex crosscutting behaviors in SPL and
also manage the impact of Non-Functional Requirements (NFRs), we propose an aspect-oriented framework
in this paper. The proposed framework is able to improve the modeling of interrelationships between design
factors and representation of the variabilities in product families. We introduce a small case study to illustrate
our approach at the end.

1 INTRODUCTION

In software engineering, reusing software and its
components becomes a practical solution towards
cost-effective and quality-oriented software develop-
ment. Software Product Line Engineering (SPLE)
(Bosch, 2000) is one of software engineering ap-
proaches that focuses on providing systematic soft-
ware reuse on software families, where a product fam-
ily is a collection of software systems that share great
commonalities in a particular application domain.

Different from other software reuse techniques,
SPLE keeps design with reuse in mind. All assets
developed will be reused to produce member prod-
ucts based on different requirements. So SPLE con-
tains various reusable assets and artifacts, such as sys-
tem requirements, source code, architecture and docu-
mentation. When developing a member product of the
family, these reusable artifacts will be refined, modi-
fied and configured. SPLE saves the efforts of de-
veloping every single software system from scratch.
SPLE also provides systematic mapping and trace-
ability to ensure that requirements will be realized by
final products. Once the reusable artifacts are defined
and successfully implemented, the individual member
products can be produced through a very organised
customization.

The remainder of the paper is organised as fol-
lows. In section 2, we will introduce background of
SPLE and some open problems. In section 3, we pro-

pose a comprehensive framework that dealing with
these problems by using aspect-oriented techniques.
In sections 4, we present a case study to demonstrate
how we develop the framework and achieve aspect
identifications and mappings. Section 5 concludes the
paper and discusses future works.

2 BACKGROUND

2.1 Software Product Line Engineering
(SPLE)

SPLE consists of two processes, domain engineering
and application engineering. The tasks of establish-
ing a Software Product Line (SPL) belong to domain
engineering and the processes developing a particular
member product from an SPL are included in appli-
cation engineering. For SPLE, it is very important to
understand where the variations are among the mem-
ber products, and also potential changes to a prod-
uct family in the future. This information should be
well represented and managed to provide the specific
scope of a domain-based product family.

In domain engineering, there are two key reusable
artifacts: feature model and reference architecture.
These two artifacts are significant in SPL as they are
the basis for SPL establishment and products deriva-
tion.

387Tan L. and Lin Y..
Using Aspect-Oriented Approach for Software Product Line Development.
DOI: 10.5220/0005554203870392
In Proceedings of the 10th International Conference on Software Engineering and Applications (ICSOFT-EA-2015), pages 387-392
ISBN: 978-989-758-114-4
Copyright c
 2015 SCITEPRESS (Science and Technology Publications, Lda.)



2.1.1 Feature Model

A feature model represents all the possible member
products of an SPL in terms of features and the rela-
tionships among features. In a feature model, features
are prominent and distinctive system requirements or
characteristics in an SPL (Lee et al., 2002). Features
are not existing independently, there are different re-
lationships between features. For example, “requires”
and “excludes” are two kinds of common feature rela-
tionships. Feature model is used to configure member
products by selecting desired features based on cus-
tomers’ requirements and feature relationships.

2.1.2 Reference Architecture

Another important artifact derived based on feature
modeling is called reference architecture. A refer-
ence architecture (Eixelsberger et al., 1998) is a soft-
ware architecture that provides the common struc-
tures, components and their relationships to the ex-
isting systems in a particular domain or an SPL. In
SPL, a reference architecture describes the structures
and respective elements and relations for the whole
product family, i.e. for multiple products in the prod-
uct line. So it stresses the commonalities of the ar-
chitecture and also describes the planned variabilities.
An important character of the reference architecture is
that it is configurable. Based on the requirements on
the product, the reference architecture provides tem-
plates for developing concrete architectures for the
members in the product line.

2.1.3 Open Problems

Some open problems of current SPLE have been iden-
tified in both feature modeling and reference architec-
ture development.

• Some Complex Feature Relationships Are
Hard to Manage. One-to-one relationships are
modeled effectively in feature model. The more
complex feature relationships are hard to han-
dle by current approaches. For example, vari-
ous feature groups, which represent different lev-
els of product quality, are hardly modeled by “re-
quires” and “excludes” relationships. As a result,
feature selections in configuration become error-
prone and the quality of configured product is
barely preserved.

• Quality Attributes Are Not Modeled System-
atically in Feature Model. Feature model is
produced from requirement engineering based on
requirements documents from the software fam-
ily. However, the relationships between quality

attributes and features are not modeled in a sys-
tematic way. The impact of quality attributes on
features should be identified to demonstrate the
transformation from NFRs to quality attributes
and how NFRs are achieved by final products.

• Transformation from Feature Model to Refer-
ence Architecture Is Not Straightforward. Fea-
ture model is a foundation for reference architec-
ture development. However, in most of current
approaches, the mechanisms of systematic fea-
ture mappings to components are not clearly es-
tablished. This information should be represented
explicitly to enhance SPLE in terms of efficient
product derivation.

• Variability Representation Is Not Adequate. A
well-defined variability representation is needed
in both feature model and reference architecture,
as it is critical to product development. All the de-
sired features for products and the possible varia-
tions to reference architecture should be described
in an easy understandable way. Furthermore, the
impact of NFRs on feature selections and archi-
tecture should also be explicitly represented to fa-
cilitate product derivation.

Aspect-oriented approaches have the ability to
model the crosscutting relationships among multiple
features and components. This is an ideal solution to
address mentioned problems in SPLE.

2.2 Aspect-Oriented Software
Development (AOSD)

Aspect-Oriented Software Development (AOSD)
(Brichau et al., 2008) is to modularize crosscutting
concerns in order to provide advanced implementa-
tion structures. In software development, crosscut-
ting concerns are those broadly-scoped features or
properties that often crosscut several other modules in
software systems. By representing crosscutting con-
cerns (or aspects) as first-class abstractions, Aspect-
Oriented (AO) approaches are able to address mod-
ularity problems that are not well handled by other
approaches.

For example, products in an SPL might have dif-
ferent levels of security and performance, i.e. differ-
ent NFRs, which normally have impact on multiple
features and the way the features are implemented.
So, the impact of NFRs on features should be man-
aged to improve SPLE. As the nature of AOSD is to
modularize aspects and provide better representations
of complex relationships, it is appropriate to adapt this
idea to deal with existing messy relationships between
features and NFRs. Aspect-oriented modeling ap-

ICSOFT-EA�2015�-�10th�International�Conference�on�Software�Engineering�and�Applications

388



proach will further facilitate mappings from require-
ment level to architecture level.

Currently, there are some AO methods focusing
on feature modeling and architecture development
in SPL. For example, the framework (Conejero and
Hernandez, 2008) proposed is to identify crosscut-
ting features at early stages to reduce the difficulty of
products evolution and derivation in the latter stages.
This framework is based on a crosscutting pattern and
uses traceability matrices to perform the analysis of
crosscutting. To identify crosscutting features, the
crosscutting features analysis need to be conducted
and both common and variable assets of product lines
need to be acquired. In this approach, NFRs are able
to be inserted into a crosscutting matrix. However,
the focus of this approach remains on early aspect of
requirement level and it does not specify how to use
these information for implementation.

Aspect-Oriented Generative Approach (AOGA)
(Kulesza et al., 2004) is an architecture-centric ap-
proach that has been implemented to support con-
cern modularization. The main consideration of
the approach is to improve the domain modeling
and architecture specification of crosscutting features
from early development phases. In the problem
space, feature model is extended and described by a
new domain specific language to collect both non-
crosscutting and crosscutting features. In the solu-
tion space, software architecture is designed by us-
ing aspect-oriented abstractions to model features and
using programming languages to implement compo-
nents of the architecture. However, this approach is
specifically dealing with multi-agent systems and the
capacity of the approach is limited.

3 PROPOSED FRAMEWORK

We propose an AO-based framework to better model
crosscutting features and NFRs in domain engineer-
ing. Compare to other AO approaches, our framework
contains a particular significance. Our approach starts
from feature model at requirement level and provides
traceability to NFRs and crosscutting concerns. It
specifies the impact of NFRs onto systems and mem-
ber products, so quality of member products is better
modeled. We also expect to have appropriate mecha-
nisms to achieve systematic mapping and transforma-
tion from requirements to architectures.

The proposed framework is composed into two
parts: AO feature model and AO reference archi-
tecture development. The main expectation of AO
feature modeling is to convert conventional feature
model into four elements, i.e. NFRs, concrete fea-

tures, aspectual features and aspectual concerns. We
also expect to define impact of aspectual concerns on
both concrete and aspectual features. The goal of
AO reference architecture is to specify the mappings
from AO feature model onto reference architecture.
The crosscutting concerns at architecture level will be
identified and the impact on the reference architecture
will be presented.

3.1 Aspect-Oriented Feature Model

To develop AO feature modeling, we first model
NFRs and quality attributes, and specify the relation-
ships between features and related quality attributes
by using NFR Framework (Chung et al., 1999). Then
we moves to functional requirement modeling by us-
ing use case diagrams and activity diagrams. In our
approach, we extent conventional use case and de-
compose it into business flows and sub-processes. We
are interested in systems’ internal processes and re-
sponsibilities. To apply use case models in product
line, the branch lines that under different conditions
should be considered and investigated. If a particular
system behavior existing in multi-business processes
interacts with many other user visible functionalities
of the system, this would be a candidate of aspectual
feature.

To better understand AO feature model, we divide
features into several categories as following:

• Concrete Feature. Concrete feature repre-
sents concrete functionalities of a product family.
These features represent the fundamental services
the systems provide. In AO context, these features
are crosscut by concerns.

• Aspectual Feature. Aspectual features also rep-
resent the functionality of a product line, and these
features have various relationships and crosscut
other features.

• Aspectual Concerns. Aspectual concerns are
the key requirements and system considerations
crosscutting the concrete features and aspectual
features. The aspectual concerns map the NFRs
and requirements on qualities to the features in the
feature model. The concerns describe the impact
of NFRs and quality requirements on the system
composition and the way features interact to each
other.

According to these feature categories, the tasks of
AO feature modeling include developing related mod-
els to treat crosscutting features (functional) and con-
cerns (non-functional) in a systematic way. The steps
are roughly described as follows:

Using�Aspect-Oriented�Approach�for�Software�Product�Line�Development

389



• The first step is to model concrete features, which
is relatively easy as concrete features correspond
to the user visible functionalities of the system.
Current use case modeling and scenarios based
approaches are able to address the functional re-
quirements of the software systems. The output
of this step is a model which is able to clearly
represent the concrete features and relationships
between these concrete features.

• The second step is to identify and modularize as-
pectual concerns, which is one of the major con-
tributions of our framework. Aspectual concerns
could be identified in NFR modeling process in
order to describe the impact of NFRs onto the
functional features. In the framework, the contri-
bution of each concrete feature to satisfy the NFRs
will be examined so that the related quality levels
can be specified by these options.

• The last step of AO feature modeling is to identify
aspectual features and map aspectual concerns to
concrete features and aspectual features. An as-
pectual feature is a feature that crosscutting other
concrete features, i.e. impact the behaviors of
other features. They are additional responsibili-
ties that do not affect the main business flow.

By the end, we will convert feature model into
quality attributes and other three components, i.e.
concrete features, aspectual features and aspectual
concerns. The impact of aspectual concerns on both
types of features will be identified as well. Moreover,
the complex feature relationships will be decomposed
into relationships among these three components and
NFRs.

3.2 Aspect-Oriented Reference
Architecture

Aspect-oriented reference architecture framework is
to specify how features and aspectual concerns from
AO feature modeling are mapped onto reference ar-
chitecture. The key point is to identify crosscutting
concerns caused at architecture level and how refer-
ence architecture is affected and composed.

• The first task is to model functional requirements
by developing components and subsystems to im-
plement concrete features. Conventional SPL
approaches can be used to transform concrete
features into components or subsystems to meet
functional requirements. The output of this task
will be components and connectors to link these
components.

• The next step is to develop a set of architecture
scenarios (Rommes and America, 2006) to de-

scribe systems. From use case and business pro-
cesses identified, we are able to work out a set
of scenarios describing the internal behaviors of
systems. Since the requirements are from multi-
ple products, it is common that we have multiple
alternative flows, which suggest alternative inter-
nal workflow of the system and will be mapped to
parallel scenarios.

• The following step is to identify variabilities of
components and possibly pointcut on the archi-
tecture components. Components of architectural
model from the first step are involved, so it is
possible to specify the responsibilities of these
components and their interactions. Here we need
to examine how the aspectual concerns are ad-
dressed in the architecture. These aspectual con-
cerns suggest how the components interact and
possibly ways the component crosscutting each
other for satisfying functional and non-functional
requirements at different levels.

• The final step is to assess scenario interactions
to refine possible bigger scope crosscutting con-
cerns. Scenarios could be combined together to
implement more complex functionalities, so ex-
amining the interactions between scenarios could
address some complex aspectual concerns. Af-
ter this step, all the identified concerns should be
properly address in the reference architecture in
terms of components crosscutting relationships.

4 CASE STUDY

In this section, we will present a small case study
to illustrate how to identify aspects from requirement
level and map them to architecture level in our frame-
work. The case study used is a crisis management
system product line (Kienzle et al., 2010). To better
demonstrate our approach, we also did some adapta-
tions to fit this case into our framework, e.g. adding
some features, expanding use case mapping diagrams,
developing alternative flows of some use cases, etc.

First, we will identify all the features of the sys-
tem, which includes concert feature and aspect fea-
tures. Table 1 below shows a list of features with their
responsibilities. By relating these features to use case
mappings, some features exist in multiple business
flows. These features should be considered as can-
didates of aspectual features in this step. Fig. 1 shows
a trivial part of use case mapping. As mentioned, we
decompose use case into business flows and observe
systems’ internal processes and behaviors. Fig. 1
shows a business flow of “Capture a Crisis Report”.

ICSOFT-EA�2015�-�10th�International�Conference�on�Software�Engineering�and�Applications

390



Figure 1: “rerankingCrisisPriority” in use case mapping.

From the figure, we can see that “rerankingCrisisPri-
ority” (marked as♦), which is a functional behavior
of the system, exists in multiple parts of use case pro-
cesses. This functional behavior has interactions with
multiple system functions, so the corresponding fea-
ture could be looked as a potential candidate of aspec-
tual feature.

Table 1: Features and responsibilities.

Features Responsibility

Crisis receive
when system receives a new crisis report, this
information will be sent to center management

Position detection
to confirm a crisis report, the location

has to be identified by various approaches

Communication
which provides support for communication and
information transmission among all resources

Task assignment
system assigns rescue tasks to mobile units

according to current resources and crisis priorities

rerankingCrisisPriority
once a crisis been received or a rescue task

been completed, system will automatically re-rank
the rest crisis based on their critical levels

The next step is to identify aspectual concerns. To
identify aspectual concerns in AO feature model, we
need to find out the related quality attributes and how
they are decomposed into concerns. In this case, we
know that several quality attributes, such as “Perfor-
mance”, “Security” and “Mobility”, are affected by
multiple features (concrete and aspectual). These fea-
tures are crosscut by quality attributes in terms of var-
ious aspectual concerns. Table 2 lists the crosscutting
relationships between aspectual concerns and related
quality attributes by “X”.

Note that these aspectual concerns are not func-
tional requirements, they represent system’s non-
functional properties. For example, “Constant cache
management” is an identified aspectual concern that
has impact on systems’ “Performance” and “Secu-

Table 2: Aspectual concerns and related quality attributes.

Aspectual Concerns Performance Security Mobility
Constant cache management X X
Instant message exchange X X
Fast logging verification X X

rity”. This concern could contain various represen-
tations to meet particular levels of related quality at-
tributes. For a high level of system security, “Con-
stant cache management” could be achieved by en-
crypted data storage in cache that only can be ac-
cessed through appropriate authorization. For a sys-
tem with low security requirement, this concern could
be achieved by a direct-mapped cache. However it is
able to enhance systems’ performance in term of fast
memory transmission.

To identify aspectual features, only candidates
that contribute to achievement of aspectual concerns
should be considered as aspectual features. For exam-
ple, for features in Table 1, “rerankingCrisisPriority”
is considered as an aspectual feature as it contributes
to aspectual concerns such as “Constant cache man-
agement” and “Instant message exchange”. “Com-
munication” does not contribute to any of identified
aspectual concern, so it is considered as a concrete
feature although it exists in multiple business flows
and crosscut other features in different system pro-
cesses.

To dig further, the crosscutting relationships be-
tween aspectual concerns and features also need to be
addressed. Table 3 below represents these relation-
ships. For example, for the feature of “Task assign-
ment”, it is affected by “Instant message exchange”
for system to explore and examine current crisis situ-
ations and available resources to arrange rescue tasks.
Similarly, related users need log into system to check

Using�Aspect-Oriented�Approach�for�Software�Product�Line�Development

391



and receive rescue orders, so system has to provide
fast and secure logging through “Fast logging verifi-
cation”.

Table 3: Relationships between concerns and features.

Features
Constant cacheInstant messageFast logging
management exchange verification

Crisis receive X X
Position detection X X
Task assignment X X

rerankingCrisisPriority X X

Down to architectural level, we develop a set of
architecture scenarios to describe system architecture,
which includes branching lines and alternative flows
to address architectural variabilities. Fig. 2 shows a
partial example of architecture. Here we have adapted
the representation of AOGA (Kulesza et al., 2004)
to represent aspectual components and aspectual in-
terfaces. In the figure, identified aspectual feature
“rerankingCrisisPriority” is mapped as a component
called “reranking” on architecture and variable design
options are achieved by aspect crosscutting in differ-
ent ways. For example, “reranking” crosscuts com-
ponents “Report” and “Task management” through
interface “data transferring” to transmit data for sys-
tems’ report generation and live task management. It
also crosscuts “Communication” and “Execute mis-
sion” through “information collecting” to provide se-
cure/instant communication and information update
among available resources.

Figure 2: “reranking” crosscuts other components.

5 CONCLUSION AND FUTURE
WORKS

In this paper, we introduce Software Product Line En-
gineering (SPLE) and discuss existing problems. To
deal with these issues, we propose a new comprehen-
sive framework by using aspect-oriented techniques
and approaches to simplify complex features relation-
ships and NFRs impacts. Our approach starts from

feature modeling and provides mappings onto archi-
tecture development. The advantage of the framework
is that it enhances the modularity of system as an AO
approach. The transformation between requirement
and architecture is more efficient. The software ar-
chitecture development will be more accurate because
NFRs and qualities are treated as part of architectural
elements.

For the future work, we need further investigate
how to enhance the systematic mappings from re-
quirement to architecture. We have developed a City
Evolution product line and we would like to apply the
framework on this real-case to evaluate our approach.

REFERENCES

Bosch, J. (2000).Design and Use of Software Architec-
tures: Adopting and Evolving a Product-Line Ap-
proach. Addison-Wesley.

Brichau, J., Chitchyan, R., Rashid, A., and D’Hondt, T.
(2008). Aspect-oriented software development: An
introduction. Wiley Encyclopedia of Computer Sci-
ence and Engineering.

Chung, L., Nixon, B. A., Yu, E., and Mylopoulos, J. (1999).
Non-Functional Requirements in Software Engineer-
ing. Kluwer Academic Publishers, Boston.

Conejero, J. M. and Hernandez, J. (2008). Analysis of
crosscutting features in software product lines. InPro-
ceedings of the 13th International Workshop on Early
Aspects, pages 3–10.

Eixelsberger, W., Ogris, M., Gall, H., and Bellay, B. (1998).
Software architecture recovery of a program family. In
Proceedings of the 20th International Conference on
Software Engineering, pages 508–511.

Kienzle, J., Guelfi, N., and Mustafiz, S. (2010). Crisis man-
agement systems: A case study for aspect-oriented
modeling. Transactions on Aspect-Oriented Software
Development, pages 1–22.

Kulesza, U., Garcia, A., and Lucena, C. (2004). Generating
aspect-oriented agent architectures. InProceedings
of Early Aspects AspectOriented Requirements Engi-
neering and Architecture Design.

Lee, K., Kang, K., and Lee, J. (2002). Concepts and guide-
lines of feature modeling for product line software
engineering. InProceedings of the 7th International
Conference on Software Reuse: Methods, Techniques,
and Tools, pages 62–77.

Rommes, E. and America, P. (2006). A scenario-based
method for software product line architecting. InSoft-
ware Product Lines, pages 3–52. Springer Berlin Hei-
delberg.

ICSOFT-EA�2015�-�10th�International�Conference�on�Software�Engineering�and�Applications

392


