
DBMS for Business Systems

Evgeniy Grigoriev
RxO project LTD (www.RxO-project.com), Moscow, Russian Federation

Keywords: Relational DBMS, Object-oriented Paradigm, Informational Business System, Business Modelling,
Heterogeneous Data Schema, Persistent Object, Encapsulation, Group Operation, Nested Structures,
Algorithm Transformation.

Abstract: Many problems of traditional business systems (SAP, Microsoft Dynamics, etc.) are largely caused by their
architecture where a tier that implements the business model and data processing (application server or thick
client) is separated from the DBMS where the data is stored. A new approach to extend the relational
DBMS with a means for creating expressive heterogeneous business models according to principles well-
known to users of existing business systems is discussed. With it the business system architecture can be
simplified fundamentally because of transferring all data modelling and processing directly to the place of
their storage. Principles of a creation and a use of complex business models and data access in these models
are discussed. Some questions related to system performance are reviewed.

1 INTRODUCTION

With the advent of the first relational DBMS, it
became clear that "that they are inadequate for a
broader class of applications" that business data
processing applications (Stonebraker et al., 1990).
Moreover when we say about necessity to build and
use expressive complex business models, the
relational DBMSs are not good enough even for the
business application (Fowler et al., 2003). This
problem was tried to be solved in two ways.

DBMS experts solved it by changing capabilities
of the DBMS; in fact, they suggested changes of
DBMS technology or even of base DBMS logic, up
to a full refusal of relational systems (Atkinson et
al., 1990). In the context of this article we will
consider only those proposals that involve the
evolutionary development of a relational DBMS
(e.g. SQL99, Oracle, PostgreSQL). We will denote
this group as solutions "inside DBMS".

Application programmers, who answer practical
challenges, developed business applications on the
basis of traditional principles and technologies of
using a relational DBMS. Well-known and
successful business systems like SAP, MS
Dynamics, etc. are examples of such solutions. We
will denote this group as solutions "outside DBMS".
Let's note that the way of solutions "outside DBMS"
in itself causes significant problems which are
inherent in modern business systems.

 Like any multi-tier system, they are very
complex and hard to create, modify, and
maintain.

 The need to process the data outside of the
DBMS leads to catastrophic performance
degradation because of non-optimal (and
hardly optimized) data exchange between the
tiers.

 There are obvious difficulties of integration
with third-part programs (e.g. Excel) using
standard means of access to data in a DBMS
(e.g. ODBC). The DB schema generated by an
outer tier is usually incomprehensible to the
business users or/and inaccessible because of
security reasons. On other hand, the business
model existing on the outer tier is inaccessible
because this tier usually does not support the
standard data access protocols and interfaces.

Both groups showed a rare unanimity,
considering the object-oriented approach as a kind of
panacea to meet requirements of business modelling.
However, there is a fundamental logical difference
of how they have implemented this approach with
respect to modified/used RDBMS.

Analysis of the solutions "inside the DBMS"
shows that all they, one way or another, implement
the two principles (many DBMS implement both of
these two principles simultaneously).
 An object corresponds to a row of the

database table ("object = string"). For

103Grigoriev E..
DBMS for Business Systems.
DOI: 10.5220/0005554301030108
In Proceedings of the 10th International Conference on Software Paradigm Trends (ICSOFT-PT-2015), pages 103-108
ISBN: 978-989-758-115-1
Copyright c 2015 SCITEPRESS (Science and Technology Publications, Lda.)

example, in object-relational DBMS (i.e.
Oracle since v.8, PostgreSQL) instances of the
object types are stored in a typed table, where
each instance corresponds to a single line.

 Object corresponds to a single field in the row
of the database table ("object = field"). This
principle has been expressed logically in
hypothetical "D language"(Date and
Darwen,2000). It has got also many
technological implementations, when object
data are stored in BLOB, JSON, etc. field.

Solutions "outside of DBMS", i.e. the traditional
business system, successfully implement other third
principle: the business object corresponds to a set of
rows from different tables of a relational database.
For example, the business object "an invoice"
typically corresponds to one row from a table
"headers" and few rows from a table "items". This
principle is evident and clear for users; it has been
being used in successful business systems to build a
vast majority of objects for decades. We can assume
that it closely matches the needs of the business and
that it should be primarily implemented in the
DBMS which are adequate for modern business
systems. However, attempts to create such DBMS is
still absent. Moreover, it seems that this possibility
is not even considered theoretically (Date and
Darwen, 2000, 2013).

We denote this principle with a logical equation
"object = relational database". In this equation we
assume that any subset of tuples of relations can be
considered as a relation. The object corresponds to
the "multiple rows of different tables", i.e. to the set
of such relations. In turn, the phrase "a set of
relations" is a key element of the formal definition
of the relational database.

Further, we will consider our approach on how
this principle can be implemented in a relational
DBMS. The result is a DBMS, which we will call
RxO DBMS. Some of the offered ideas were
implemented by us in the prototype "RxO system"
(Grigoriev,2013a); its input commands we will use
for demonstration.

2 OBJECT-ORIENTED
MANAGEMENT SYSTEM FOR
RELATIONAL DATA

RxO DBMS implements a new approach to the
connection object-oriented and relational ways of
managing of data if form of complex objects
corresponding to the principle of "object = relational

database". Based on the properties of the classical
relational data model (Codd, 1970), it is shown by us
that all descriptions of such objects and operations
on them can be translated into descriptions of
relational structures and operations on the last ones
(Grigoriev, 2013b).

As a result, it's not necessary to "assemble" such
objects from the rows of different tables outside the
DBMS to work with them. Instead, it's possible to
translate all commands on these objects in actions on
the tables (system hides these tables from the user).
The user, who uses these commands, keeps a full
illusion that he works with complex objects which
are formed with the principle that is native for
business systems. Thus we offer a sophisticated way
to manage traditional relational data, which
implements well-known object-oriented principles
(Booch, 1991).

3 COMPLEX HETEROGENEOUS
DATA SCHEMA

RxO DBMS maintains all usual abilities for working
with traditional tables created by the user explicitly.
Because of this, in RxO database both relational
tables and complex unique objects of different
classes can coexist simultaneously (Fig.1); the tables
and the classes can be connected by foreign keys.

Figure 1: RxO database consists of both tables T and
object o of classes C.

The possibility to create such heterogeneous data
schemes corresponds well to realities of traditional
business systems, where the business objects are
combined with tables used, for example, for
accounting journals, logs, etc.

It also demonstrates that RxO DBMS is an
evolutionary extension of existing relational DBMS.
Thereby full continuity of existing customer
databases and solutions is ensured.

ICSOFT-PT�2015�-�10th�International�Conference�on�Software�Paradigm�Trends

104

4 CLASSES

Classes of RxO DBMS are an all-sufficient concept
for both data modelling and data persistence. This is
the fundamental difference from object-relational
DBMS (e.g. Oracle), where typed tables must be
evidently used to make instances of user-defined
type (UDT) persistent.

A set of commands extending the traditional
SQL is implemented to describe classes and manage
user objects in the prototype "RxO system". Let's
review these commands.

The class interface is separated from its
implementation. The state of any object is described
as a set of values that are native for relational
database, namely, scalar values and relation values.
Accordingly, the interface of objects is described as
set of both scalar and table-valued attributes which
represent the state of the object, and methods used to
change this state. Relational integrity constraints
(keys and foreign keys) can be specified in classes,
but the keys are not mandatory for classes, because
all objects are unique in database by default.

Classes are created by the CREATE CLASS
command.

CREATE CLASS GOODS{
 GoodsID STRING; //Scalar attr.
 Turnover SET OF //Table attr.
 { Buyer STRING;
 Qty INTEGER;
 }KEY unB (Bayer);//Table field key
}KEY unID (ID)//Class key

CREATE CLASS SALES{
 DocN STRING; //Scalar attr.
 Buyer STRING;// Scalar attr.
 ...
 Items SET OF //Table attr.
 { Art GOODS; //Reference
 Qty INTEGER;
 }KEY uArt (Art); //Table field key
 PostIt(inDate DATETIME); //Method
}KEY uniqDocN (DocN)//Class key

The implementation must be defined for each
class interface element, both for attributes and for
methods. The implementation is defined by the
ALTER ... CLASS IMPLEMENT... command.

The attributes can be implemented in two ways.
 Values of stored attributes are persistent in a

system like they are persistent in tables.

ALTER CLASS SHIPMENTS
IMPLEMENT DocN, Items AS STORED;

 Calculated attributes are described in a way
similar to descriptions of views or user-
defined functions.

ALTER CLASS GOODS
IMPLEMENT Turnover AS
BEGIN
 RETURN SELECT
 Buyer, SUM(Items.Qty)
 FROM SHIPMENTS
 WHERE Items.Art = this
 GROUP BY Buyer
END;

Both stored and calculated attributes can exist in
the class simultaneously.

The method implementation expressions look
similar to user-defined functions.

ALTER CLASS SHIPMENTS
IMPLEMENT PostIt(inDate DATETIME) AS
BEGIN ... END;

The ALTER CLASS ... IMPLEMENT ...
command allows us to change the implementations
of the class interface elements freely in non-empty
classes without rebuilding the system. Multiple class
inheritance is possible. The class implementation
may be changed during the inheritance.

Thus, objects in RxO DBMS unite the properties
of tables, views and stored functions, what also
corresponds to the principle "object = relational
database". The property of data persistence (most
important for DBMS) is associated with the
implementation of individual attributes and
completely separated from the classes interface; it's
possible to say that the persistence encapsulated in
classes. This feature gives a new way of using and
combining stored and calculated data to create
expressive business models. Also it gives a new look
on some important principles of effective data
storages. For example, if the data scheme meant
only stored data, then the table attribute Turnover
of class GOODS would be redundant against of the
class SHIPMENTS. In RxO scheme such redundance
is avoided due to the possibility to implement the
attribute Turnover as calculated from the class
GOODS data. In this way RxO DBMS allows user to
focus on expressive business model first of all,
without hard compromises between the
expressiveness and an optimization of stored data.

5 OBJECTS

All objects in RxО DBMS are persistent and exist
from the moment of creation till moment of explicit
destruction. Objects are created with NEW command.

NEW SHIPMENTS WITH BEGIN
 DocN := "Doc01";
END;

DBMS�for�Business�Systems

105

Let's note that a reference to the created object is
not saved in this example. RxO DBMS implements
the principle "a class is a named set of persistent
objects". Any object is available as a member of the
class, even if there is no reference on it. Because of
this, there is no need to explicitly create any
additional structures to access the persistent objects
("class extent" of the ODBMS model is an example
of such additional structure (Cattel, 2000)).

This feature is a basis for non-procedural objects
access with database management commands. The
command FOR is used to manipulate objects. It
operates with objects attributes and other variables
visible in class and includes known operations
corresponding to types of these attributes and
variables. For example, this is a command to change
the value of stored table attribute of object created
by the previous command (here, the ART attribute is
initialized with a reference to an object of class
GOODS).

FOR SHIPMENTS[.DocN = "Doc01"]
INSERT INTO Items (Art, Qty)
VALUES(FIRST GOODS[ID = "Tie"], 10);

The FOR command can be used to execute a
sequence of action in objects (batch) or class
method.

FOR SHIPMENTS[...] BEGIN ... END;
FOR SHIPMENTS[...] EXEC DoShip(...);

This command also can be used to manipulate
with groups of objects, including whole class.

FOR SHIPMENTS[.DocN LIKE ...] ...;
FOR SHIPMENTS EXEC ...;

6 ACCESS TO OBJECT DATA

Objects joined with references form a nested data
structures (Fig.2). At that, the same objects can form
different nested structures through different
references.

Figure 2: Nested data structure formed by two classes
(shown in rectangles).

The data describing the object state can be
accessed with traditional relational SELECT queries
where the dot-separated path expressions are used.
Here are two examples of the queries:

SELECT DocN,
 Items.Art.GoodsID,
 Items.Qty
FROM SALES;

SELECT Art.CoodsID,
 Qty
FROM SALES[.DocN = "Doc01"].Items;

RxO DBMS analyse these path expressions and
automatically transforms the data specified by them
to normalized relational view, which processed
further in the relational query. We name such a
relational view on objects data as "objects views"
(O-views). Many O-views can be built from
different subsets of the complex structures as on
Fig.2.

Name sequences used in queries (for example
"Sales" is the name of the O-view, "DocN",
"Items.Art.GoodsID", "Items.Qty" - the names of its
scalar attributes) unambiguously denote the O-
views. Simultaneously, they are processed by the
system as a special recording of relational operations
required for the calculation this O-view from hidden
tables that correspond to objects.

During the calculations, the system performs the
late binding of different implementations of the
stored and computed attributes of classes. The only
requirement is a compliance total sequence of the
names used to denote the O-type and each of its
attributes; their combination has to give the full path
expressions from the root of structure to one of its
scalar sheets. Obviously, queries can combine data
from classes and tables.

With this, the system can represent all data
described in terms of heterogeneous data model
including the object data as a set of normalized
relations (O-views). These relations are denoted by
name sequences, which keep the semantics of
original complex structures. Due to this, the
automatic transition from the description of complex
business models to relational representation of the
business model data is imperceptibly for user. This
is an important difference from traditional relational
and object-relational systems where the only way to
represent data in relational way is to evidently
describe the data as tables or inside the tables.

For business user it means that traditional
reporting on complex business model is possible as
soon as the model has been created.

ICSOFT-PT�2015�-�10th�International�Conference�on�Software�Paradigm�Trends

106

7 COMMENTS ON THE SYSTEM
PERFORMANCE

Considering the DBMS used to create an expressive
business models, it has a sense to compare its
performance not with DBMS, but with existing
business system where similar models are possible.
Unfortunately, the current prototype does not allow
evaluating the performance because it was created to
prove the correctness of formal logic and to
demonstrate the input OO-commands. However, we
afford to make a few comments about it.

Obviously, the main factor that gives a hope of a
significant increase of whole system productivity is
a transfer of data processing into DBMS, to the
place where the data are stored. A practice of
manual optimization of business systems shows that
the transfer of some operations in the DBMS can
speed up these operations tens and even hundreds
times (author's practical experience bears out this
fact). These dramatic figures are a result of the
extremely inefficient organization of data exchange
between tiers. The transfer of data processing to the
server side removes any issues caused by the data
exchange.

Full transfer of the business logic into the
database lets us to think about new possibilities to
optimize the data processing in multi-user
environments.
 An opportunity to perform a preliminary

analysis of complex transactions algorithms
appears. This analysis can be used, for
example, to predict and prevent possible
deadlocks.

 A business logic execution on the server side
can minimize long transactions; the principle
"one command = one transaction" looks like
an ideal.

 It is possible to serialize transactions on
business-objects level. For example, instead of
locking many rows composing some object,
the only ID of this object can be locked. With
this, the DBMS load because of exact data
locking can be reduced.

Another factor, which can improve performance
during processing groups of objects, is a possibility
to transform algorithms of processing data in objects
built on the principle "an object = a relational
DB"(Grigoriev, 2013b). In traditional business
systems, the only way to process the groups of
object is a cycling over the objects; an action on the
objects (e.g. some method) is performed again and
again for each object of the group (Fig.3).

Figure 3: Traditionally, a group of complex objects is
processed in a cycle or by means of an iterator, when the
each object is processed separately.

If objects consist of rows of different tables, such
way of processing leads to repeated access
operations to many tables simultaneously to read and
write short pieces of data during a long transaction,
what is very hard for DBMS.

In RxO DBMS any algorithm used in a
calculated attribute or method implementation, can
be converted into such algorithm applied to the
database tables, that each its step performs an action
on all objects of a given group in one relational
operation.

Figure 4: In RxO DBMS operations on a set of objects can
be executed in "logical concurrency" mode, when each
step of algorithm is executed for all objects inside
relational operations rO.

Thus object data can be processed in vector
mode (we call it "logical concurrency"). The
simplest example is a query that accesses computed
table attribute Turnover.

SELECT GoodsID,
 Turnover.Buyer,
 Turnover.Qty
FROM GOODS

This query on the objects data after translation is
executed as a single query over the corresponding
hidden tables, without any iterators regardless of the
number of objects in the GOODS class. The described
earlier FOR command is performed in the same way.

DBMS�for�Business�Systems

107

FOR SHIPMENTS[.DocN LIKE ...]
BEGIN
 ...
END;

Regardless of the number of objects matching
the condition given in square brackets, the actions on
the object data are performed without cycling over
the objects, just by a single call of a stored procedure
generated by system after translation code between
BEGIN and END. A technical consequence of this
feature is an ability to re-organize and minimize the
number of disk access operations data for complex
processing of sets of objects.

8 CONCLUSIONS

In the paper an approach is proposed and generally
described, which allows relational DBMS to be
extended with an ability to create expressive
business models inside the DBMS according to
principles well-known by existing business systems
and clear for business users.

Many important questions are left uncovered, for
example language details or the thorough
comparison with approaches implemented in
existing DBMS. Nevertheless the material presented
should be adequate to experienced programmers to
visualize the offered approach.

Thinking about possible implementations we
understand that many of its features and abilities
(including late binding of multiply class
implementations, "logical concurrency" mode,
preliminary algorithm analysis, object level
transaction serialisation) cannot be effectively
implemented as a simple "syntax sugar" over
existing DBMS and need some modification inside
their cores. However we believe that these changes
make a sense because they cover most important
parts of offered approach and can vastly simplify the
business system as a whole, make them faster, and
ease access to business models from external
programs with standard data access methods.

REFERENCES

Stonebraker, M., Rowe, L., Lindsay, B., Gray, J., Carey,
M., Brodie, M., Bernstein, Ph., Beech, D. 1990, Third-
Generation Data Base System Manifesto, Proc. IFIP
WG 2.6 Conf. on Object-Oriented Databases.

Fowler. M., Rice. D, Foemmel, M., Hieatt, E., Mee, R.,
Stafford, R. 2003, Patterns of Enterprise Application
Architecture, Addison-Wesley Publishing Company.

Atkinson, M., Bancilhon, F., De Witt, D., Dittrich, K.,
Maier, D., Zdonik, S., 1990, The Object-Oriented
Database System Manifesto, Proc. 1st International
Conference on Deductive and Object-Oriented
Databases, Kyoto, Japan (1989). Elsevier Science,
New-York.

Date, C. J., Darwen. H, 2000, Foundation for Future
Database Systems, Addison-Wesley Publishing
Company.

Date, C. J., Darwen. H, 2013, The Third Manifesto
(version dated February 7th, 2013, superseding all
previous versions), available on
www.TheThirdManifesto.com,
http://www.dcs.warwick.ac.uk/~hugh/TTM/TTM-
2013-02-07.pdf.

Codd, E. F., 1970., A Relational Model of Data for Large
Shared Data Banks, CACM 13(6).

Booch, G., 1991. Object Oriented Design with
Applications. the Behjamin/Cummings Publishing
Company, Inc.,

Cattel, R. G. G., Douglas K. B., Berler, M., Eastman, J.,
2000 The Object Data Standard: ODMG 3.0. Morgan
Kauffmann Publishers.

Grigoriev, E. 2013a RxO DBMS prototype, on-line video,
available on www.youtube.com,
http://youtu.be/K9opP7-vh18.

Grigoriev, E. 2013b Object-Oriented Translation for
Programmable Relational System, available on
Arxiv.org, http://arxiv.org/abs/1304.2184.

ICSOFT-PT�2015�-�10th�International�Conference�on�Software�Paradigm�Trends

108

