
Resiliency-aware Data Compression for In-memory Database Systems

Till Kolditz1, Dirk Habich1, Patrick Damme1, Wolfgang Lehner1, Dmitrii Kuvaiskii2,
Oleksii Oleksenko2 and Christof Fetzer2

1Database Systems Group, Technische Universität Dresden, Dresden, Germany
2Systems Engineering Group, Technische Universität Dresden, Dresden, Germany

Keywords: In-memory Database Systems, Data Integrity, Lightweight Data Compression, AN Encoding.

Abstract: Nowadays, database systems pursuit a main memory-centric architecture, where the entire business-related
data is stored and processed in a compressed form in main memory. In this case, the performance gain is
massive because database operations can benefit from its higher bandwidth and lower latency. However,
current main memory-centric database systems utilize general-purpose error detection and correction solutions
to address the emerging problem of increasing dynamic error rate of main memory. The costs of these general-
purpose methods dramatically increases with increasing error rates. To reduce these costs, we have to exploit
context knowledge of database systems for resiliency. Therefore, we introduce our vision of resiliency-aware
data compression in this paper, where we want to exploit the benefits of both fields in an integrated approach
with low performance and memory overhead. In detail, we present and evaluate a first approach using AN
encoding and two different compression schemes to show the potentials and challenges of our vision.

1 MOTIVATION

Increased memory density, decreased transistor fea-
ture sizes and more are major drivers in the area of
hardware development. On the one hand, this leads to
performance improvements in each hardware genera-
tion. On the other hand, the hardware becomes more
and more vulnerable to external influences. As sev-
eral researches have already stated, especially main
memory becomes a severe cause for hardware based
failures (Hwang et al., 2012; Italiano, 2010). These
errors can be classified into static or hard errors as
permanently corrupted bits and dynamic or soft er-
rors as transiently corrupted bits. In particular, dy-
namic errors are produced, e.g., by cosmic rays, elec-
tromagnetic radiation, low voltage and increased heat
dissipation.

While the dynamic error rate is still quite low, it
is predicted to increase substantially in the near fu-
ture (Hwang et al., 2012; Italiano, 2010). Moreover,
dynamic errors already have a significant impact on
large-scale application on massive data sets. The field
of fault tolerance against dynamic memory errors is
not new and several techniques are well-known. A
general applicable approach is executing the same
computation multiple times. In this case, any dy-
namic error can be detected by comparing the final

results. The most well-known technique in this class
is Triple Modular Redundancy. Error detection and
error correction codes represent a second class. In
this case, the coding schemes introduce redundancy
to the data (Moon, 2005). Regarding DRAM bit
flips, the most commonly used approach is hardware-
based (72,64)-Hamming ECC (Moon, 2005). It re-
alizes single-error correction and double-error detec-
tion. Many other general coding algorithms are avail-
able, whereas the enhanced coding schemes are more
robust, however their coding results in higher redun-
dancy overhead and higher computational costs. Gen-
erally, the major problem of ensuring a low dynamic
error probability by employing generally applicable
techniques is dramatically increasing costs for mem-
ory and computational power.

Based on the significant developments in the hard-
ware sector, database systems have initiated a major
shift from disk-centric to main memory-centric archi-
tectures. Servers with terabytes of main memory are
available for a reasonable price, where the entire data
pool can be kept completely in main memory. As
shown in different papers (Abadi et al., ; Chen et al.,
2001; Lemire and Boytsov, 2012), the performance
gain is massive because database operations benefit
from its higher bandwidth and lower latency (Garcia-
Molina and Salem, 1992). However, current database

326 Kolditz T., Habich D., Damme P., Lehner W., Kuvaiskii D., Oleksenko O. and Fetzer C..
Resiliency-aware Data Compression for In-memory Database Systems.
DOI: 10.5220/0005557303260331
In Proceedings of 4th International Conference on Data Management Technologies and Applications (DATA-2015), pages 326-331
ISBN: 978-989-758-103-8
Copyright c
 2015 SCITEPRESS (Science and Technology Publications, Lda.)

systems do not efficiently address the emerging prob-
lem of random dynamic faults.

In order to tackle this issue, we propose to tightly
combine existing techniques form the field of error
detecting codes and data compression in an appro-
priate way: resiliency-aware data compression tech-
niques. Data compression techniques play an impor-
tant role in main memory-centric database systems.
These techniques are employed to enable keeping and
processing all business-related data in main memory.
As can be imagined, compressed data is very sensitive
to dynamic errors and an increased dynamic error rate
as described above has a high impact on systems re-
lying on compressed data. Therefore, we focus on the
resilience aspect of compressed data. In our vision,
the benefits of compression should not be completely
neutralized by error detection mechanisms. To reduce
the overall overhead, query processing on resiliency-
aware compressed data should be possible directly
without explicitly decompressing and re-encoding the
data. Finally, error detection should be possible in an
online fashion, so that wrong results can be excluded
to a well-defined degree. To summarize, we want to
replace data compression techniques with resiliency-
aware data compression techniques to retain as many
positive effects of data compression as possible, but
extend it with specific resiliency aspects to efficiently
handle an increasing dynamic error rate.

To show the potentials and challenges of our vi-
sion, we present our first research results in this pa-
per. From the field of error correcting codes, we
have chosen the family of arithmetic AN codes as
a very promising alternative (or complementary) to
ECC DRAM, since its very nature allows to do arith-
metic operations—including comparisons—without
the need of decoding. Consequently, arithmetic AN
codes are suitable for both transactional and analytical
workloads. From the data compression domain, we
decided to use two prominent lightweight techniques:
Null Suppression (Abadi et al., ; Roth and Van Horn,
1993), and Run Length Compression (Abadi et al.,).
As we are going to show, the combination approach
differs and depends on various factors. Furthermore,
we provide an analysis on how the basic parameter
A of AN encoding can be chosen to detect various
amounts of bit flips with very low performance penal-
ties and low memory overhead.

The remainder of the paper is structured as fol-
lows: In Section 2, we give a detailed insight into
AN encoding. Based on this description, we intro-
duce our AN-encoded extension for Null Suppression
and Run-Length Compression in Section 3. Next,
we present our evaluation in Section 4, where we
discuss the parameterization of AN encoding and

provide throughput comparisons of our AN-encoded
compression schemes. Finally, we conclude the paper
with related work in Section 5 as well as a conclusion
and future work in Section 6.

2 AN-ENCODING TECHNIQUE

To tackle our vision of resiliency-aware data com-
pression techniques, we decided to utilize AN encod-
ing as our resilience technique in a first step. AN en-
coding is a technique to detect data corruption caused
by transient (e.g., dynamic bit flips) and permanent
(e.g., stuck-at-1) hardware faults (Schiffel, 2011).
Furthermore, AN encoding offers some features that
we assume beneficial for database system, in particu-
lar for efficient query processing as described later.

Basic Idea of AN Encoding

The underlying idea of AN encoding is simple: multi-
ply each data word n by a predefined constant A, i.e.,
the code word n̂ is computed as:

n̂ = n �A

As a result of this multiplication (encoding), the do-
main of values expands such that only the multiples of
A become valid code words, and all other values are
considered non-code. As an example, if one wants to
encode a set of 2-bit numbers f0;1;2;3g with A = 11,
then the set of code words is f0;11;22;33g, while
1;10;34 are all examples of non-code words.

If a bit flip affects an encoded value, the cor-
rupted value becomes non-code with a probability of
(A�1)=A. If n̂ = 11 and the least significant bit is
flipped, then the new value n̂er = 10 and is non-code.
To detect this fault, we have to check if the value is
still a multiple of A:

n̂ mod A = 0

Finally, to decode the value, we have to divide the
code word n̂ by A:

n = n̂=A

Beneficial Features of AN Encoding

One of the features of AN encoding is the ability to
directly process encoded data, i.e., there is no need
to decode values before working on them. Most
database-related operations can be performed on en-
coded values; these operations include addition, sub-
traction, negation, comparisons, etc. For example, the
addition of two valid code words 11+ 22 = 33 pro-
duces an expected code word, and 11 is less than 22

Resiliency-aware�Data�Compression�for�In-memory�Database�Systems

327

just like their original counterparts. Encoded multipli-
cation and division are also possible, but require some
adjustments.

This “encoded processing” feature is beneficial
for in-memory database systems. AN-encoded data
words can be read from main memory, processed us-
ing complex queries and stored back without the need
for intermediate decoding, which reduces the over-
head for resiliency mechanism. Examples of database
operations on encoded data include scans, projec-
tions, aggregate computations, joins, etc.

Application Challenge

AN encoding is an arithmetic encoding scheme, al-
lowing certain arithmetic operations directly on en-
coded data with relatively little overhead as well
as multiplication and division with higher overhead.
However, AN encoding does not pose any restrictions
on a value of A. This constant must be carefully
chosen to suit the needs of a particular application.
The choice of A affects three parameters: fault cov-
erage, memory footprint, and encoding/decoding per-
formance. As a rule of thumb, greater values of A re-
sult in higher fault coverage, higher memory footprint
and worse performance. The challenge is to find an A
providing sufficiently high fault detection rate at a low
cost of memory blow-up and performance slowdown.

In general, some “good” A’s with the best trade-
offs can be found. In terms of fault coverage, there
is no known formula to find the best A, so the re-
searchers resort to experimental results (Hoffmann
et al., 2014). Memory blow-up depends on the size
of A in bits; for example, encoding one 22-bit inte-
ger with a 10-bit A requires 22+ 10 = 32 bits, i.e.,
an increase of 45%. Finally, performance slowdown
is negligible during encoding (since multiplication re-
quires only 2�3 CPU cycles), but can be a bottleneck
during checks and decoding (since division is an ex-
pensive CPU instruction). To alleviate this decoding
impact, A must be chosen such that the division oper-
ation is substituted by a sequence of shifts, adds, and
multiplies (Warren, 2002).

3 RESILIENCY-AWARE DATA
COMPRESSION

Lightweight data compression techniques like dictio-
nary or run-length compression play an important role
in main memory database systems. These techniques
are employed to enable holding and processing all
business-related data in main memory, whereas all

compression techniques in database systems are loss-
less. The general approach of data compression is
to encode data using fewer bits than the original rep-
resentation. In contrast to heavyweight compression
techniques like Huffmann, lightweight techniques are
less compute-intensive, whereas they utilize context
knowledge to achieve a good compression rate.

To best of our knowledge, nowadays no additional
information is added to detect bit flip corruption of
compressed data in main memory database systems.
In order to tackle an increasing bit flip error rate, in
particular for dynamic errors, we want to tightly com-
bine techniques from both fields of lightweight data
compression and resilience techniques like AN en-
coding. One the one hand, lightweight data compres-
sion eliminate data redundancy to represent data using
fewer bits. On the other hand, resilience techniques
introduces data redundancy to detect bit flips. There-
fore, both fields have opposed aims and the combina-
tion approach have to carefully designed, so that the
benefits of both fields remains. As we are going to
show later, based on a well-defined and specific ap-
proach, the overhead of resiliency-aware data com-
pression is less compared to uncompressed data, so
that the approach is beneficial for database systems.

As next, we are going to present two specific AN-
encoded compression scheme extensions: (i) AN-
encoded Null Suppression in Section 4:1 and (ii) AN-
encoded Run-Length Compression in Section 4:2.

3.1 AN-encoded Null Suppression

Null Suppression (NS) is the most well-studied kind
of lightweight compression. Its basic idea to the omis-
sion of leading zeros in small integers. This technique
further distinguishes between bit-wise and byte-wise
null suppression where either all leading zero bits
or leading zero bytes containing only zero bits are
stripped of. Usually, some kind of compression mask
denotes how many bits or bytes were omitted from
the original value. Decompression works by adding
the leading zeros back.

In recent years, research in the field of lightweight
data compression has mainly focussed on the efficient
implementation of the techniques on modern hard-
ware e.g., using vectorization capabilities of mod-
ern CPUs (SSE or AVX extensions). Schlegel et al.
(Schlegel et al., 2010) presented 4-Wise Null Sup-
pression as vectorized version. 4-Wise NS eliminates
leading zeros at byte level and processes blocks of
four integer values at a time. During compression the
number of leading zero bytes of each of the four val-
ues is determined. This yields four 2-bit descriptors,
which are combined to an 8-bit compression mask.

DATA�2015�-�4th�International�Conference�on�Data�Management�Technologies�and�Applications

328

The compression of the values is done by a SIMD
byte permutation bringing the required lower bytes
of the values together. This requires a permutation
mask, which is looked up in an offline-created table
using the compression mask as a key. After the per-
mutation, the code words have a horizontal layout, i.e.
code words of subsequent values are stored in subse-
quent memory locations. The compressed data is thus
a sequence of compressed blocks. The decompression
simply reads the compression mask, looks up the ap-
propriate permutation mask which reinserts the lead-
ing zeros bytes and applies the permutation.

Based on that principle, we are able to introduce
our resiliency-aware extension of 4-Wise NS. For bit-
wise or byte-wise NS, the only reasonable way to
tightly combine NS and AN encoding is to encode
the original value first and to compress afterwards.
Since the information about eliminated bits or bytes
is stored in the compression mask, we would compute
the leading zero bits/bytes twice in any other combi-
nation approach. This incurs unnecessary additional
computational overhead, which we avoid in our ap-
proach.

3.1.1 Encoding and Compression

Encoded compression for NS works as follows. List-
ing 1 shows the pseudo code for a 4-Wise encoded NS
scheme (processing four 32-bit integers at once in a
vectorized version). There are input and output arrays
to function compress, where elements stores original
data and buffer receives the compressed and encoded
data. Four data items are processed in each loop itera-
tion (line 3). First, each item is multiplied by A (lines
5-7) and afterwards the leading zero bytes are counted
(lines 8-10). This can be done by counting the leading
zero bits using compiler intrinsics (__builtin_clz()
for g++) and then dividing by 8. The bit compres-
sion mask contains the number of leading zeros. It is
computed by ORing the lower 2 bits of the zero byte
counts together (lines 11 and 12). Finally, the mask
and the compressed encoded words are stored in the
output buffer (lines 13-16). Assuming a little endian
system, the leading zero bytes of a compressed value
are inherently overwritten by the next appended data
item, by advancing the write pointer by the number of
non-zero bytes of the item just written.

3.1.2 Decompression and Decoding

Decompression and decoding is also straightforward.
In this case, a loop iterates over the input buffer of
AN-encoded and compressed data. First, the com-
pression mask is loaded. Then, the number of non-
zero bytes – denoted by the mask’s lowest 2 bits – of

1 compress (i n e l e m e n t s [] , o u t b u f f e r [])
2 f
3 f o r (i = 0 ; i < j e l e m e n t s j ; i = i + 4)
4 f
5 n1 = e l e m e n t s [i] � A;
6 : : :
7 n4 = e l e m e n t s [i +3] � A;
8 z1 = c o u n t z e r o b y t e s (n1) ;
9 : : :

10 z4 = c o u n t z e r o b y t e s (n4) ;
11 mask = (z4 << 6) j (z3 << 4) -
12 j (z2 << 2) j z1 ;
13 b u f f e r mask ;
14 b u f f e r n1 ;
15 : : :
16 b u f f e r n4 ;
17 g
18 g

Listing 1: Pseudo code for AN encoded 4-wise Null
Suppression. elements is the input array while buffer is
the output array. jelements j denotes the array’s number
of elements.

the first data item is stored and the according bytes are
stored. The restored item is checked against A and er-
rors may be handled. Then, the decoded data item is
stored in the output array and the read position of the
input buffer is advanced by the number of non-zero
bytes. Finally, the mask is shifted right, so that the
same steps can be repeated for the next three items,
since always 4 items are represented by a single-byte
compression mask.

3.2 AN-encoded Run-Length
Compression

The basic idea of Run-Length Compression (RLE) is
to compress consecutive sequences of a same value –
the runs. For compression, the distinct original value
is stored together with the number of uninterrupted
appearances – the run length. For decompression,
these values are rolled out again.

In contrast to our AN-encoded Null Suppression
compression scheme, our AN-encoded RLE approach
compresses first and encodes afterwards, since runs
are condensed to the value and its run length, there-
fore encoding only 2 values instead of long runs of
values. That means, we reduce the necessary work for
encoding using compression. In detail, AN-encoded
RLE compression works as follows: Consecutive ap-
pearances of values are counted – the run lengths.
Whenever a new value is encountered, the previous
value and its run length are encoded and written to
the output buffer. Decompression is done by read-
ing in pairs of encoded values and their encoded run
lengths. After checking both of them against A the de-
coded value is written “run length” times to the output
buffer. The SIMD variant works analogously by com-

Resiliency-aware�Data�Compression�for�In-memory�Database�Systems

329

Table 1: Choice of constant A with its number of effective bits jAj. p1 : : : p6 are the respective probabilities of not detecting
1 : : :6 bit flips, cyc – CPU cycles for 4-wise SIMD decoding on Ivy Bridge architecture (taken from Intel Intrinsics Guide:
https://software.intel.com/sites/landingpage/IntrinsicsGuide/), comp. rate – NS compression rate for 16-bit random integers –
memory overhead of AN-encoded compression.

A jAj p1 p2 p3 p4 p5 p6 cyc Null Sup.
comp. rate

AN-encoded
mem. overhead

compr. - - - - - - - - 0.561 -
3 4 0.0 14.2 3.74 2.73 1.124 0.567 8 0.729 29.94%
26 5 0.0 2.2 1.72 0.93 0.515 0.282 8 0.803 43.14%
118 7 0.0 0.0 0.51 0.34 0.210 0.130 8 0.810 44.39%
250 8 0.0 0.0 0.25 0.19 0.133 0.088 8 0.811 44.56%
507 9 0.0 0.0 0.08 0.07 0.046 0.040 8 0.936 66.84%
641 10 0.0 0.0 0.08 0.06 0.040 0.030 3 0.962 71.48%
7567 13 0.0 0.0 0.00 0.00 0.007 0.007 8 1.054 87.88%
58659 16 0.0 0.0 0.00 0.00 0.000 0.001 8 1.061 89,13%

paring against and writing out multiple values at once
for compression and decompression, respectively.

4 EVALUATION

In this section, we discuss first the choice of the con-
stant A and what trade-offs it introduces. Then, we
show experimental results of our AN-encoded exten-
sions of Null Suppression and Run-Length Compres-
sion. Our evaluation is based on a set of 100 mil-
lion 32-bit random integers with only 16 effective bits
to guarantee compressibility and to have no overflow
when encoding. The experiments were run on a ma-
chine with an ASUS P9X79 Pro mainboard running
a 12-core Intel i7-3960X CPU and 8x4 GiB (32GiB)
DRAM. The compression speed results are averages
of 10 runs; the relative standard error does not exceed
0:05%. Due to space constraints, we only report our
evaluation results of our AN-encoded Null suppres-
sion technique.

Parameterization of AN Encoding

As mentioned earlier, the choice of the constant A af-
fects fault detection rate, memory blow-up, and en-
coding/decoding performance. Table 1 shows some
“good” A’s that range in their fault coverage, bit size,
and decoding performance1. For example, A = 3 has
a size of 2 bits, can detect all single bit flips but only
86% of double bit flips, and requires 4 CPU cycles
for decoding. On the other extreme, A = 58;659 can
detect up to 5 bit flips, but is 16 bits wide, leading to
2x memory increase. The “golden” A is equal to 641,

1The probabilities for the table are taken from the
experimental results of (Hoffmann et al., 2014); they
can be found on https://www4.cs.fau.de/Research/CoRed/
experiments.

with sufficiently high fault coverage, limited memory
increase, and very fast decoding of only 3 cycles.

AN-encoded Null Suppression

The second last column of Table 1 shows the com-
pression rates for our AN-encoded Null Suppression,
whereas the last column reports the memory over-
head. Notice that the original compression rate with-
out AN-encoding is 0:561 as depicted in the first row.
As we can see, our AN-encoded extension introduces
a memory overhead of 30-90%. This overhead re-
duces with smaller value ranges. For our golden
A = 641, our AN-encoded compressed data requires
less space than uncompressed data. That means, we
are able to compress and to protect our data with less
space as uncompressed, which is a very good results
from our point of view.

To evaluate the performance, we implemented our
presented AN-encoded schemes in a sequential and
a vectorized (SIMD - SSE 4.1) version, whereas we
used A = 641 in our evaluation. As expected, AN-
coding causes slowdowns of 20-25% in case of the
sequential implementation, and 5-10% for the SIMD
implementation. The difference between the sequen-
tial and SIMD slowdowns stems from the signifi-
cantly different sequences of generated instructions;
in a nutshell, the sequential version introduces four
additional instructions while the SIMD version adds
only one. Nevertheless, the performance slowdown
is low, so that the combination of AN-encoding and
compression is very promising to efficiently tackle an
increasing dynamic bit flip rate.

5 RELATED WORK

Several techniques have been presented to deal with
certain error classes in the past. To our best knowl-

DATA�2015�-�4th�International�Conference�on�Data�Management�Technologies�and�Applications

330

edge, no research was done in the field of databases
to protect in-memory data against arbitrary dynamic
bit flips, except our own investigations on error de-
tecting B-Trees (Kolditz et al., 2014). In the field
of databases, other work mainly concentrates on han-
dling errors during I/O operations, or regards situa-
tions where the system inadvertently writes to wrong
memory regions, e.g. due to software bugs like buffer
overflows or broken pointers.

For instance, (Graefe and Stonecipher, 2009;
Graefe et al., 2012) harden the well-known B-Tree
and variants against errors during I/O-operations or
against certain other tree corruptions, whereas the
techniques are not suited for online error detection.
Dynamic bit flips may lead to false positives and false
negatives when querying such trees between there
maintenance checks.

(Sullivan and Stonebraker, 1991) deal with cor-
ruptions due to arbitrary writes by employing hard-
ware memory protection for individual pages. Mem-
ory pages are protected using hardware directives and
the protection is removed only when accessing the
pages through a special interface. The routines for
protecting and unprotecting require kernel calls which
leads to high performance penalties. Additionally,
while a page is unprotected other threads may still
corrupt data.

6 CONCLUSION

Low-cost, high-density main memory lead to a
change in the database ecosystem towards in-memory
designs, whereas data compression plays an impor-
tant role, too. However, due to the constant increase
of memory density, main memory becomes more and
more unreliable. This results in dynamic random
errors and in future hardware generations the error
rates are likely to escalate. General purpose ECC
mechanisms are not the appropriate solution from a
cost perspective. Therefore, we propose to exploit
database context knowledge by a tightly combination
of compression and resilience techniques. As pre-
sented, AN-encoding is a code family which allows
arithmetic operations on code words and, by that, is
suitable for transactional and analytical workloads.
We showed that by using AN-encoded extensions of
compression schemes, much higher bit flip detection
capabilities are achievable than with SECDED ECC.
Our preliminary evaluation shows that data compres-
sion schemes augmented with AN-encoding become
resilient at a low memory and performance cost. Nev-
ertheless, more research in this direction is necessary
from a conceptual as well as implementation perspec-

tive.

ACKNOWLEDGEMENTS

This work is partly supported by the German Re-
search Foundation (DFG) within the Cluster of Ex-
cellence “Center for Advanced Electronics Dresden”
(cfAED) and by the DFG-grant LE-1416/26-1.

REFERENCES
Abadi, D., Madden, S., and Ferreira, M. Integrating com-

pression and execution in column-oriented database
systems. In SIGMOD, pages 671–682.

Chen, Z., Gehrke, J., and Korn, F. (2001). Query optimiza-
tion in compressed database systems. SIGMOD Rec.,
30(2):271–282.

Garcia-Molina, H. and Salem, K. (1992). Main Memory
Database Systems: An Overview. Knowledge and
Data Engineering, 4(6).

Graefe, G., Kuno, H., and Seeger, B. (2012). Self-
diagnosing and self-healing indexes. In DBTest, pages
8:1–8:8.

Graefe, G. and Stonecipher, R. (2009). Efficient verification
of b-tree integrity. In BTW, pages 27–46.

Hoffmann, M., Ulbrich, P., Dietrich, C., Schirmeier, H.,
Lohmann, D., and Schröder-Preikschat, W. (2014).
A Practitioner’s Guide to Software-based Soft-Error
Mitigation Using AN-Codes. In HASE ’14, pages 33–
40.

Hwang, A. A., Stefanovici, I. A., and Schroeder, B. (2012).
Cosmic Rays Don’t Strike Twice: Understanding the
Nature of DRAM Errors and the Implications for Sys-
tem Design. SIGARCH Comput. Archit. News, 40(1).

Italiano, G. F. (2010). Resilient algorithms and data struc-
tures. In CIAC 2010, pages 13–24.

Kolditz, T., Kissinger, T., Schlegel, B., Habich, D., and
Lehner, W. (2014). Online bit flip detection for in-
memory b-trees on unreliable hardware. In DaMoN,
pages 5:1–5:9.

Lemire, D. and Boytsov, L. (2012). Decoding billions
of integers per second through vectorization. CoRR,
abs/1209.2137.

Moon, T. K. (2005). Error Correction Coding: Mathemati-
cal Methods and Algorithms. Wiley.

Roth, M. A. and Van Horn, S. J. (1993). Database compres-
sion. SIGMOD Rec., 22(3):31–39.

Schiffel, U. (2011). Hardware Error Detection Using AN-
Codes. PhD thesis, Technische Universität Dresden.

Schlegel, B., Gemulla, R., and Lehner, W. (2010). Fast inte-
ger compression using simd instructions. In DaMoN,
pages 34–40.

Sullivan, M. and Stonebraker, M. (1991). Using write pro-
tected data structures to improve software fault tol-
erance in highly available database management sys-
tems. In VLDB, pages 171–180.

Warren, H. S. (2002). Hacker’s Delight. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA.

Resiliency-aware�Data�Compression�for�In-memory�Database�Systems

331

