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Abstract: Modularity is an important feature to solve the composition problem of software systems from subsystems. 
Recently it has been shown that Software systems’ Modularity Matrices linking structors to functionals can 
be put in almost block-diagonal form, where blocks reveal higher-level software modules. An alternative 
formalization has been independently proposed using Conceptual Lattices linking attributes to objects. But, 
are these independent formalizations related? This paper shows the equivalence of Modularity Matrices to 
their respective Modularity Lattices. Both formalizations support the simplest form of software 
composition, i.e. linear composition, expressed as an addition of independent components. This equivalence 
has both theoretical and practical advantages. These are illustrated by comparison of both representations 
for a series of case studies. 

1 INTRODUCTION 

Composition of software systems from subsystems 
and basic components is an important problem. It is 
widely accepted that modularity is essential to solve 
this problem. Two independent approaches have 
formalized modularity for the software composition 
problem, relying on algebraic structures. 

One approach uses Modularity Matrices linking 
structures to their functionality. Another approach 
represents relations between objects and attributes as 
Lattices of formal concepts. This work shows the 
equivalence of the matrix and lattice approaches, 
assuring that results in either approach are valid in 
the other approach as well. In other words, they are 
alternative representations of the software system. 

1.1 Modularity Matrix Concepts 

A Modularity Matrix displays relations between two 
kinds of architectural entities in a software system: 
structors, the columns, and functionals, the rows. 
Structors generalize UML classes (i.e. a class, 
interface, aspect, sets of related classes, such as 
design patterns). Functionals generalize class 
functions (i.e. a method, families of functions, such 
as trigonometric functions).  Each 1-valued matrix 
element links a structor to a provided functional.  

Functionals are potential functions, not necessarily 
invoked in the system.  In (Exman, 2012) it was 
shown by linear algebra arguments that:  
• A Modularity Matrix is square – if its structors 

are linearly independent and also its functionals 
are linearly independent;  

• A Modularity Matrix is block-diagonal – if 
certain structor sub-sets provide sub-sets of 
functionals, disjoint to other sub-sets; each block 
is an independent module.  
In a standard Modularity Matrix all the matrix 

elements outside modules are zero-valued. A block-
diagonal matrix is got by reordering rows/columns. 

Modularity Matrix elements are numbers used in 
actual calculations. For instance, to compare the 
relative modularity of different software designs of a 
system one calculates the Matrix M diagonality, with 
elements Mjk (row j, column k) and dimension N: 

( ) ( ) ( )Diagonality M Trace M offdiag M= −  (1) 

where 

1 1
( ) * | |

N N
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j k

offdiag M M j k
= =

= −   (2) 

1.2 Modularity Lattice Concepts 

A conceptual lattice displays relations between two 
 

109Exman I. and Speicher D..
Linear Software Models: Equivalence of Modularity Matrix to Its Modularity Lattice.
DOI: 10.5220/0005557701090116
In Proceedings of the 10th International Conference on Software Paradigm Trends (ICSOFT-PT-2015), pages 109-116
ISBN: 978-989-758-115-1
Copyright c 2015 SCITEPRESS (Science and Technology Publications, Lda.)



kinds of entities: attributes and objects. Attributes 
express the concepts’ intent, and object sets express 
the concepts’ extent. The Top lattice node has empty 
set intent and an extent as the set of all objects. 
Mutatis mutandis the Bottom lattice node has empty 
set extent and an intent as the set of all attributes. 

A conceptual lattice is built by first preparing its 
formal context, i.e. a table displaying which objects 
have certain attributes, marked by X signs. In 
contrast to the Modularity Matrix, the formal context 
has not been defined as a matrix with numerical 
matrix elements, allowing calculations. Moreover, 
there are no underlying linear algebra theorems on 
the formal context, such as being square or block-
diagonal. A formal context may be a rectangular 
table without any specific requirements. 

In this work, we make the unique decision of 
generating conceptual lattices directly from given 
Modularity Matrices, with the expectation that the 
resulting Modularity Lattices carry on the 
characteristic properties of these matrices. This work 
aims to show that this is indeed the case.  

To show the equivalence of a modularity matrix 
to a modularity lattice, we choose to match between 
matrix ‘structors’ and the lattice intent (viz. 
‘attributes’) on the one hand, and match between 
matrix ‘functionals’ and lattice extent (viz. ‘objects’) 
on the other hand. A link between a structor and a 
functional corresponds either to an attribute in the 
same node as its object, or to an attribute in a node 
connected to a node by a downward set of edges in 
the Lattice, not passing through Top or Bottom.  

The conceptual justification for this matching is 
clarified as follows. UML classes represent concepts 
with definite intents. For instance, the class “car” is 
a type of vehicle with the intent of travelling on 
roads. Cars have wheels, their speed and travelled 
distance may be calculated by suitable functions (the 
extent). The class “airplane” is another type of 
transportation medium with a different intent, viz. to 
travel by flying. Airplanes also have wheels, their 
speed is also calculated by suitable functions. Thus 
different classes have clearly different intents, but 
may have similar extents. 

Software conceptual lattices are a broader 
subject than implied by the above simple examples. 
They deserve extensive discussion, which is outside 
of this paper scope. Here we focus on the 
equivalence of Modularity Matrices and Modularity 
Lattices. For further details on formal concepts, see 
(Ganter, 1999), (Ganter, 2005), (Belohlavek, 2008).  

The remaining of this paper is organized as 
follows. Section 2 refers to related work. Section 3 
displays an introductory example. Section 4 

formulates theoretical considerations. Section 5 
deals with heuristics for modules’ decoupling. 
Section 6 presents canonical case studies. Section 7 
shows a larger system case study. The paper is 
concluded by a discussion in section 8. 

2 RELATED WORK 

In this work we refer to the modularity matrix – e.g. 
(Exman, 2014). Other matrices have also been used 
in the context of modularity. For instance, the 
Design Structure Matrix (DSM) proposed in 
(Steward, 1981), and incorporated in ‘Design Rules’ 
(Baldwin, 2000). It has been applied in various 
contexts – see e.g. (Cai, 2006). 

Two essential differences between DSM and the 
modularity matrix are: a- Linearity as an essential 
idea of the modularity matrix; b- Both DSM 
dimensions are labelled by the same structures. 

The modularity matrix, in contrast to the DSM, 
displays pairs of different entities, viz. structors to 
functional links. The use of pairs of entities was 
important to suggest the correspondence to 
conceptual lattices, as the latter also refer to pairs of 
entitities, viz. attributes and objects. 

Conceptual lattices, generally known as part of 
Formal Concept Analysis (FCA) were introduced in 
(Wille, 1982). There are many available generic 
overviews describing mathematical foundations 
(Ganter, 1999), applications (Ganter, 2005) and 
surveys of the field (Belohlavek, 2008). 

FCA has been used as a technique for 
modularization and system design. This includes 
works such as (Lindig, 1997), (Siff, 1999) and 
(Snelting, 2000). A specific usage of conceptual 
lattices for software engineering is found in 
(Heckmann, 2012). 

3 INTRODUCTORY EXAMPLE: 
COMMAND DESIGN PATTERN 

The Command software design pattern, in the GoF 
book (Gamma, 1995), serves as an introductory 
example. The pattern decouples an object invoking 
an action, say clicking a “Print” button, from another 
object that actually prints a file. The pattern enables 
generic features, such as Undo and Redo, 
independently of the specific commands’ nature. 

3.1 Command Modularity Matrix  

The six structors in the Command Modularity Matrix 
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are in the list of Participants in the GoF book: an 
abstract command (cmd), a concrete command (say, 
Print File), an invoker (a button), a receiver (a file to 
be printed), a client (initializes the application) and 
history (enables undo). The Pattern functionals are: 
execute, undo, create objects, bind command-to-
button, set-receiver, and the receiver action.  

Block-diagonal modules, in Fig. 1, reflect the 
pattern purpose: the command is decoupled from the 
generic infrastructure. The top-left module is the 
command itself, its abstract interface and concrete 
implementation. The middle module is the generic 
infrastructure: a client, the invoker and a history 
mechanism for undo operations. The bottom-right 
module is a specific receiver and its action. 

 
Figure 1: Command Design Pattern Modularity Matrix. 

It has six structors and functionals, forming three modules 
(blue background): a- upper-left, the command; b- middle, 
the generic infrastructure c- lower-right, the specific 
receiver. Zeros outside modules are omitted for simplicity. 

3.2 Command Modularity Lattice 

We use the Modularity Matrix in Fig. 1 to generate 
the Command Modularity Lattice. The result in Fig. 
2, is obtained by the (Concept Explorer, 2006) tool. 

4 THEORETICAL 
CONSIDERATIONS 

The set of Definitions and Theorems herein, for both 
Modularity Matrix and Modularity Lattice, form 
altogether the equivalence proof of these 
representations regarding modularity. 

4.1 Modularity Lattice Defined 

We define a Modularity Lattice with respect to the 
Modularity Matrix (Exman, Nov 2012): 

Definition 1: Modularity Lattice 
A Modularity Lattice is a conceptual lattice 
generated from a Modularity Matrix. 

A standard Modularity Lattice is generated from a 
standard Modularity Matrix. From this definition 
follow its characteristic properties. 

 

Figure 2: Command Design Pattern Modularity Lattice - 
Any path (or set of paths) from Top to Bottom not linked 
to other paths is a module. One sees 3 modules: a- l.h.s. 
with 2 attributes (Concrete Command and Cmd); b- 
middle with 3 attributes (Client, Invoker, History) c- r.h.s. 
with 1 attribute (Receiver). These match the matrix in Fig. 
1. Nodes may have three colors: upper-half blue – an 
attribute is associated with the node; lower-half black – an 
object is associated with the node; white – no association. 

Lemma 1: Standard Modularity Lattice 
Properties 
a- Its number of attributes is the same as its 

number of objects; 
b- No specific object is the Top; no specific 

attribute is the Bottom. 

Proof outline: 
a- This property is obvious from the fact that the 

Modularity Matrix is square; 
b- This follows from the requirement that the 

standard Modularity Matrix should not have 
column vectors or row vectors fully consisting 
of 1-valued matrix elements. 

4.2 Modularity Lattice Modules 

The Modularity Matrix modules are its diagonal 
blocks. Modularity Lattice modules are given by: 
 
Theorem 1: Modularity Lattice Modules 
The modules of a software system in its 
Modularity Lattice are the connected components 
obtained when one cuts the Top and the Bottom 
from the Modularity Lattice. 

 
Proof outline: 

Modules of a Modularity Matrix are diagonal 
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blocks whose set of structors and functionals are 
disjoint from the respective sets of other modules. 
Since structors correspond to Lattice attributes and 
their functionals to the respective Lattice objects, a 
set of attributes/objects disjoint to other sets has no 
edges to other attributes/objects, except the Lattice 
Top and Bottom. Cutting the latter from the Lattice 
leaves a set of connected components corresponding 
to the Modularity Matrix modules. 

The converse of Theorem 1 is easily verified.  
Next, we deal with different kinds of modules in 

the Modularity Lattice. The paths in the next 
corollary refer to connected components after 
cutting edges to Top/Bottom of the Lattice. 

Corollary: Modularity Lattice Module Types  
1a- single path with single node – a path with no 
edges to other paths, and a single node, fits a 
purely diagonal Modularity Matrix module; 
1b- single path with N nodes – a path without 
edges to other paths, with N nodes, fits a block- 
diagonal N-dimension module forming a full 
lower triangular matrix in the block, in a 
Modularity Matrix having no outliers. 
1c- a set of connected paths – a set of paths with 
edges among paths within the set, and N attributes 
fits an N-dimension diagonal block, in a 
Modularity Matrix having no outliers. 

Proof outline: 
1a- a single node means just one attribute with one 

object; 
1b- N nodes mean that there are N attributes, one 

for each node, therefore also N objects, as the 
module must be square; the full triangular 
matrix within the block is needed to avoid 
linear dependence among the structors in the 
Modularity Matrix, since each attribute has all 
the objects in its own node and below its node; 

1c- N nodes mean that there are N attributes, one 
for each node, therefore also N objects, as the 
module must be square; since there are two or 
more paths, not all attributes have all the 
objects below its node in the same path. 

It is straightforward to obtain module attributes 
and objects in the Modularity Lattice, corresponding 
to their Modularity Matrix. Going downwards (from 
Top to Bottom) in any path, one uses set intersection 
for objects, to obtain the respective objects of the 
next node, down to one-level above the Bottom. 
Going upwards in any path, one uses set intersection 
for attributes, to obtain the respective attributes of 
the next node, up to one-level below the Top. For 
more details see e.g. (Belohlavek, 2008). 

4.3 Modularity Matrix Outliers 
Criterion 

Formally within Linear Software Models, cohesion 
is defined in terms of sparsity of the Modularity 
Matrix (Exman, 2012). Sparsity of a matrix is the 
ratio between the number of zero-valued elements to 
the total number of elements in the matrix: 

Sparsity = NumZeros/TotalNumElements (3) 

In general, one expects the sparsity of modules 
to be lower than the sparsity of the Modularity 
Matrix elements outside the modules. Thus, the 
lower is the sparsity, the higher the cohesion. This 
implies a threshold of maximal sparsity inside a 
module. For instance, assuming a maximal sparsity 
threshold of 50%, one writes: 

Module_Sparsity < 0.5 (4) 

An outlier is a 1-valued matrix element in the 
Modularity Matrix outside of any of the diagonal 
blocks. Outliers are coined interferences in the 
Conceptual Lattice domain (Lindig, 1997). Outliers 
cause an undesirable coupling between modules. 
The outcome of this coupling is a much larger 
coupled diagonal block made of:  

• The joint original diagonal blocks coupled by 
the outliers; 

• A few 1-valued matrix elements outside the 
original blocks – the coupling outliers;  

• Many zero-valued matrix elements surrounding 
the outliers.  

The resulting larger coupled diagonal block has 
a much lower cohesion than the original modules 
coupled by the outlier (see Fig. 3). 

 

Figure 3: Block-diagonal Modularity Matrix with coupling 
outlier – There are 5 original modules (marked by blue 
background), all of them with high cohesion (i.e. low 
sparsity). The outlier couples modules 1 and 2. Around the 
outlier there are mostly zeros, causing high sparsity (i.e. 
low cohesion) of the coupled joint module of 1 and 2. 
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Searching for outliers, outside the original 
modules, the inequality sign is inverted, as the 
sparsity is above the threshold: 

Outlier_Sparsity_Criterion > 0.5 (5) 

The TotalNumElements (total number of 
elements) of a block in the Modularity Matrix is the 
square of NumStructors, (number of structors). The 
NumZeros (number of zero-valued matrix elements) 
equals the TotalNumElements minus NumOnes 
(number of 1-valued matrix elements). Substituting 
these terms in equations (3) and (5), one finally gets 
the Outlier Sparsity Criterion for the presence of 
outliers in a coupled module of a Modularity Matrix: 

Outlier_Sparsity_Criterion = 
0.5 * (NumStructors)2 - NumOnes > 0 

(6) 

4.4 Modularity Lattice Outliers 
Criterion 

To find the equivalent Outlier Sparsity Criterion for 
a Modularity Lattice, we use the same previous 
equation, substituting it with Lattice quantities: 

 
Theorem 2: Modularity Lattice Outliers 
Criterion 
Given equation (6) for a Modularity Matrix, the 
equivalent Outlier Sparsity Criterion for a 
Modularity Lattice module containing outliers is 

Outlier_Sparsity_Criterion = 
0.5 * (NumAttributes)2 - NumOnes > 0 

where  
NumOnes = LocalPairs + EdgePairs. 

 
LocalPairs is the number of nodes in which there 
are both an attribute and its object locally. 
EdgePairs is the number of edges below each 
attribute node needed to reach each of its objects, 
down to the lowest object, above the Bottom. 

 
Proof outline: 
Given equation (6) above, then: 
NumAttributes (Number of attributes) in a module is 
trivially equal to NumStructors (Number of 
structors). NumOnes (Number of 1-valued matrix 
elements) is the number of links between attributes 
(structors) and objects (functionals). These are of 
two Attribute-Object Pair types: a- Local – both in 
the same node; b- Edge – in different nodes linked 
by edges. Thus, one only needs to count and sum 
correctly both types of Attribute-Object pairs. 

To illustrate the calculation of quantities 
appearing in Theorem 2, we take the simple example 
of the Command design pattern middle module. By 

the Modularity Lattice in Fig. 2, the number of 
Attributes is 3 (Client, Invoker and History). The 
first term of the r.h.s. of the equation in Theorem 2 
is half the square of NumAttributes, i.e. 4.5. The 
second term NumOnes equals 5 which is the sum of 
2 LocalPairs (Client/CreateObjs and History/Undo) 
and 3 EdgePairs (edges from Invoker-to-Undo, 
Invoker-to-Set-Receiver and Client-to-Set-
Receiver). As the Outlier_Sparsity_Criterion is 
negative, there is no outlier in this module. 

This calculation is totally equivalent to equation 
(6). By the Modularity Matrix middle module in Fig. 
1, the number of Structors is also 3 (Client, Invoker 
and History). Half the square of NumStructors is 
4.5. By directly counting the number of ones in the 
middle module in Fig. 1, NumOnes equals 5. The 
conclusion is the same: no outliers in this module. 

5 HEURISTICS FOR 
DECOUPLING 

Once outliers were pointed out in a system design, 
software engineers should apply their ingenuity to 
solve the coupling problems and improve the design.  

A heuristic rule suggests a decoupling starting 
point. This rule is alternatively formulated either in 
terms of the Modularity Matrix or in terms of the 
Modularity Lattice. 

Decoupling Heuristic Rule 
Modularity Matrix version 

Start decoupling with a row/column with a large 
number of 1-valued (outlier) matrix elements. 

Modularity Lattice version 
Start decoupling with a Lattice node with a large 
number of edges to other nodes. 

 

In order to systematically eliminate outliers in a  
Modularity Lattice, one should look first for the 
node with a maximal connectivity to other nodes. 
Then look for the next node in terms of connectivity, 
and so on. Following the heuristic rule, a way to deal 
with an outlier node coupling of potential modules 
in the Modularity Lattice, is to erase a minimal 
number of edges from the outlier node and see 
whether this reduces the lattice to a modular one. 

6 CANONICAL CASE STUDIES 

Here we look at software systems case studies, 
which are canonical from a modularity viewpoint. 
These case studies have been analysed earlier, 
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(Exman, 2014), but here we show the equivalence of 
the Modularity Matrix to the respective Lattice.  

6.1 The Observer Design Pattern 

The Observer design pattern is taken from the GoF 
book (Gamma, 1995). Its well-known purpose is a 
many-following-one behavior, viz. many observers 
change according to the changes in the one subject. 

 

Figure 4: Observer Design Pattern Modularity Matrix. 

There are 8 structors and functionals in this matrix. 
These form 5 modules (in blue background): a- 
upper-left subject role; b- middle observer role; c- 
lower-right three strictly diagonal modules: specific 
application GUIs and initiator. 

The Observer structors are (abstract/concrete) 
subject and observer, (analog/digital) clock 
application GUI (Graphical User Interface), a 
subject resource (the internal clock) and an initiator 
to construct objects. The pattern functionals include 
the clock application Display “digital” and “analog”. 

The Observer Modularity Matrix in Fig. 4 shows 
a perfect block-diagonal modularity. The upper left 
block is the subject. The middle block is the 
observer. The lower right structors refer to 
application specific GUI and the initiator. The 
corresponding Modularity Lattice is seen in Fig. 5, 
following, from left to right, Module types 1c, 1b 
and 1a of the Corollary in sub-section 4.2. 

6.2 The Parnas KWIC System 

Parnas described in his seminal paper (Parnas, 1972) 
the KWIC system for producing an index containing 
sentences circular shifted through all possibilities, 
keeping word order, and alphabetically sorted. 
KWIC illustrated the idea of modularity. Two 
modularizations were suggested: one with couplings 
and another with couplings resolved. 

The KWIC system 1st modularization illustrates a 
coupling case, seen in the Modularity Matrix in Fig. 
6. Its matching Lattice is in Fig. 7. Both 
representations lead to the same conclusions. 

The Parnas 1st Modularity  Matrix  of  the KWIC 

 

Figure 5: Observer Design Pattern Modularity Lattice – 
There are 5 modules in this lattice: a- l.h.s. with 3 
attributes (Subject, Concrete Subject, Subject Resource) is 
the Subject Role; b- middle with 2 attributes (Concrete 
Observer, Observer) is the Observer Role; c- r.h.s. with 3 
modules, each with just 1 attribute (two GUIs and one 
Init). Modules correspond to the matrix in Fig. 4. 

 

Figure 6: Parnas KWIC System 1st Modularization Matrix 
– This Modularity Matrix shows coupling between two 
potential modules (marked by light blue background). The 
coupling outliers (marked by hatched background) are in 
column S3 (the Master Control) and in row F3. 

system in Fig. 6 points to two couplings (with a 
hatched background): a- the Master Control is not a 
real sub-system, as it refers to all functionals (a 
whole column S3 of 1-valued matrix elements); b- 
the “Store line in word order” functional in row F3 
is a coupling of any two potential modules (marked 
by a blue background). 

The Parnas KWIC 1st modularization Modularity 
Lattice in Fig. 7 points to exactly the same couplings 
as its Modularity Matrix: a- The Master Control is 
indeed not a real sub-system, as it appears at the Top 
(its extent is all the 5 objects!); b- The node of the 
“Stores line in word order” has no proper attribute 
and it couples every attribute, except Output; 

The solution of the above coupling problems is to 
eliminate the Master Control from the system 
composition as it is not a sub-system and add a new 
“Line Storage” structor (attribute), to which all the 
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Figure 7: Parnas KWIC System 1st Modularization Lattice 
– Two modules are apparent in this lattice: a- l.h.s. with 4 
attributes (Circular Shifter, Alphabetizer, Input, Master 
Control); b- r.h.s. with 2 attributes (Output, Master 
Control). The Master Control couples the 2 modules. The 
“Stores Line in word order” object is also coupling the 
l.h.s. module. This Lattice matches the matrix in Fig. 6. 

other structors refer for “Storing line in word order”. 
The outcome fits Parnas KWIC 2nd 

modularization which is indeed canonical. It is a 
strictly diagonal Modularity Matrix, and a matching 
Lattice with five neat single node modules. 

7 REAL SYSTEM CASE STUDY 

7.1 The NEESGrid System 

This system, developed at the NCSA at Urbana, 
Illinois, enables a “Network Earthquake Engineering 
Simulation” – for details see (Finholt 2004). 

The system Modularity Matrix is in Fig. 8. It 
has three diagonal blocks. The top-left module refers 
to Data as seen by structor and functional names. 
The middle module refers, by the functionals with 
Col suffix, to collaboration types, viz. synchronous, 
asynchronous and other. The right bottom strictly 
diagonal elements are external modules. 

 

Figure 8: NEESGrid System Modularity Matrix – shows 
coupling mainly between two 3*3 modules (with light 
blue background). The coupling outliers (with hatched 
background) are in column S4 (DataAc) and in row F4 
(OtherCol). 

Of the 3 outliers (with hatched background) 
close to the block borders, two of them are in the 
OtherCol row F4 and the third one in the DataAc 
column S4, pointing out to specific couplings. 

7.2 The NEESGrid Modularity Lattice 

There is a clear matching between the NEESGrid 
Modularity Matrix in Fig. 8 and its Lattice in Fig. 9. 

 

Figure 9: NEESGrid Modularity Lattice – The three 
groups of modules here are: a- the left group containing 3 
one-attribute modules (DataDis, HybExp, SimRep); b- the 
middle module with Col objects (SyncCol, AsynCol, 
OtherCol); c- the right group with Data Attributes/Objects 
(DataVu, DataRp, Data Str). OtherCol and DataAc are 
couplings between the second and third modules. 

The Modularity Lattice has 3 left-most paths 
with just 1 node in each path, fitting the Modularity 
Matrix purely diagonal elements.  

The right-most group of modules in the 
Modularity Lattice referring to Data, with attributes 
DataVu, DataRp, DataStr, fits the Modularity Matrix 
top-left module. The middle group of modules in the 
Modularity Lattice refer to collaborations (Col) 
having three objects SyncCol, AsyncCol, OtherCol.  

But, these right-most and middle groups of 
modules are coupled. This can be checked by 
computing the Outlier Sparsity Criterion for these 
coupled Modularity Lattice modules (from Theorem 
2 in sub-section 4.4), which is 10.5. It is bigger than 
zero thus there are outliers in these coupled modules. 

The node with the OtherCol object has no 
attribute by itself and is the most linked node in the 
Lattice, thus a good starting point for decoupling 
analysis. This agrees with the Modularity Matrix, 
OtherCol F4 row with maximal outlier number. 

Both representation analyses lead to the same 
potential modules, and the same suspect outliers. 
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8 DISCUSSION 

This work has shown by theoretical arguments and 
case studies, the equivalence between two different 
modularity representations of a software system, viz. 
the Modularity Matrix and its Modularity Lattice. 
This is interesting as it mutually reinforces their 
independent conclusions, and it triggers new 
questions in each representation, motivated by the 
line of thoughts of the other one. 

In practical terms, both representations enable to 
assess modularity of a software system and to 
highlight localized couplings deserving software 
sub-system redesign. 

8.1 Future Work 

Concerning rigorous formalization, linearity still is 
an open issue worth of investigation in the context of 
Modularity Lattices. Moreover, is there any meaning 
to non-linearity for software systems? 

In the context of Modularity Matrices, we have 
asked whether systems with outliers like the 
NEESGrid system, are amenable to complete block-
diagonalization or they are essentially non-block-
diagonal. Are these systems the exception, or a class 
on their own? The equivalence of Modularity 
Matrices and Lattices should facilitate research. 
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