
Iterative Mapreduce MPI Oil Reservoir Simulator

Madina Mansurova, Darkhan Akhmed-Zaki, Adai Shomanov,
Bazargul Matkerim and Ermek Alimzhanov

Department of Computer Science, al-Farabi Kazakh National University, Almaty, Kazakhstan

Keywords: MapReduce, MPI, Distributed Parallel Computing, Memory-mapped Files.

Abstract: Paper presents an advanced Iterative MapReduce MPI oil reservoir simulator. First we present an overview
of working implementations that make use of the same technologies. Then we define an academic example
of numeric problem with an emphasis on its computational features. We present a distributed parallel
algorithm of hybrid solution of the problem using MapReduce Hadoop and MPI technologies and describe
an improved variant of the algorithm using memory-mapped files.

1 INTRODUCTION

At present, effective solution of large-scale
computational problems of oil-gas industry is related
to the use of high-performance computational
technologies. According to (Tokarev et al., 2012),
“of the 500 most powerful supercomputers of the
world, their use in geophysics by the companies of
oil-gas service for searching, prospecting and mining
of deposits holds the third place”. Thus, the choice
of the corresponding parallel software and parallel
models of computations depending on the volumes
of scientific calculations is an actual problem. In
many cases, solution of problems of oil-gas industry
comes to oil reservoir simulation.

This work presents the results of scientific
investigations on creation of hybrid solutions for the
problems of oil-gas industry. The earlier developed
constructive approach of hybrid combination of
MapReduce and MPI technologies (Mansurova et
al., 2014) was used to solve the problem of
calculating fluid pressure in an oil reservoir. In order
to accomplish this task we first identify key features
of the existing solutions in this domain in Section 2.
Section 3.1 describes a mathematical model of the
problem of fluid in elastic porous anisotropic
medium. Section 3.2 presents a distributed algorithm
of the problem solution using Mapreduce Hadoop
technology. Section 3.3 presents a distributed
parallel algorithm of hybrid solution of the problem
using MapReduce Hadoop and MPI technologies.
Section 3.4 describes an improved variant of the
algorithm using memory-mapped files. Section 4

presents implementation and evaluation of
algorithms performance. Finally, Section 5
concludes the paper.

2 RELATED WORK

The principles of organization of parallel and
distributed computing have been known for a long
time (Chen et al., 1984, Gropp et al., 1996,
Sunderam et al., 1994). MPI and MapReduce can be
referred to the most used technologies. MPI
technology is the main instrument for parallel
computing, when solving a wide spectrum of
problems. However, with the increase in the volume
of the data being processed there arise a question of
reliability of MPI applications. In recent years the
technologies of distributed computing MapReduce is
being more widely recognized.

Creation of hybrid solutions allows using of the
advantages of separate technologies. There exist a
great variety of such solutions. The authors of
(Hoefler et al., 2009) made the first attempt to write
MapReduce with MPI. They implemented
MapReduce using basic point-to-point and collective
operations based on the original MapReduce model.
The authors of the paper (Lu et al., 2011) compare
MPI and MapReduce technologies from the point of
view of the system failure. A numerical analysis is
made to study the effect of different parameters on
failure resistance. The authors believe that their
research will be useful in answering the question: at
what volumes of data it is necessary to decline MPI

456 Mansurova M., Akhmed-Zaki D., Shomanov A., Matkerim B. and Alimzhanov E..
Iterative Mapreduce MPI Oil Reservoir Simulator.
DOI: 10.5220/0005559204560461
In Proceedings of the 10th International Conference on Software Engineering and Applications (ICSOFT-EA-2015), pages 456-461
ISBN: 978-989-758-114-4
Copyright c 2015 SCITEPRESS (Science and Technology Publications, Lda.)

and use MapReduce in case of possible failures of
the system. They implemented the original
MapReduce model using MPI and obtained a speed
improvement comparing to Hadoop based on MPI
communications. The study of primitives of MPI
and MapReduce communications allowed the
authors (Mohamed et al., 2012) to assert the fact that
MPI can give the rise in performance of MapReduce
applications.

The work (Slawinski et al., 2012) considerable
differs from the above presented works in which
MPI technology is built in the environment of
MapReduce. The authors describe the reverse task –
the start of MapReduce applications in MPI
environment. It is pointed out that several additional
MPI functions should be written for full support of
MapReduce.

The authors (Mohamed et al., 2012) modified the
MapReduce model to achieve speed up using MPI.
In the model, the authors propose the idea of
overlapping the map, the communication and the
reduce phases with a more detailed policy for the
communication and data exchange.

Nevertheless, many of these functions are, as a
rule, recognized to be important and are developed
in MPI to support other modern paradigms of
programming and parallelization. In (Srirama et al.,
2011) the essence of the approach is considered to
be division of implementation of MPI applications to
sequence of computation stages each of which is
completed by the stage of communication. This
approach is based on the conception of adapters
distributed in conventional utilities for coordination
of the requirements to applications and platform
hardware.

Other applications for adaptation of MapReduce
model to organization of parallel computing are
given in (Matsunaga et al., 2008, Biardzki et al.,
2009, Ekanayake et al., 2010, Bu et al., 2012,
http://mapreduce.sandia.gov). As a whole, the
problems of effective organization of iterative
computing on MapReduce model remain, especially;
the problems of scalability of such algorithms and
their adaptation for a wide range of scientific
problems, there are neither rigorous approach to
provide reliability of such systems.

3 THE WORK OF ITERATIVE
MAPREDUCE MPI OIL
RESERVOIR SIMULATOR

3.1 A Mathematical Model of Fluid
Pressure in the Oil Reservoir

Let us consider a hypercube in anisotropic elastic
porous medium

}10,10,10{],0[zyxKT .

Let equation (1) describes the fluid dynamics in
hypercube under initial conditions (2) and
boundary conditions:

),,,()),,((

)),,(()),,((

zyxtf
z

P
zyx

z

y

P
zyx

yx

P
zyx

xt

P

(1)

P(0, x, y, z) = (0, x, y, z) (2)

0

n

P (3)

Here under conditions (3) is the surface of cube .
In equation (1) the solution function P(t, x, y, z) is
seam pressure in point (x, y, z) at the moment t; (x,
y, z) is diffusion coefficient in the reservoir; f(x, y, z)
is density of sources. To solve (1)-(3) Jacobi’s
numerical method was used (Imankulov et al.,
2013). For problem (1)-(3) a parallel algorithm of
solution was realized using MPI technology
presented in (Matkerim et al., 2013).

3.2 Iterative MapReduce Architecture

According to MapReduce paradigm, realization of
the algorithm for iteration processes is a series of
MapReduce tasks (Ekanayake et al., 2010, Bu et al.,
2012). Algorithm of numerical solution of the
problem (1)-(3) with the help of MapReduce
Hadoop technology consists of two stages: the stage
of initialization at which MapReduce work of the
first level is performed only once and the iteration
stage at which a cycle of MapReduce works of the
second level is performed. Mapper of the first level
loads data from the file system HDFS. Then,
Mapper distributes the data between Reducer
processes on slabs, thus realizing 1D decomposition
of the data. Reducer, in its turn, performs
computations, duplications boundary slabs into the
ghost slabs of the neighbors and stores the obtained

Iterative�Mapreduce�MPI�Oil�Reservoir�Simulator

457

results. The data used by Reducer for computations
are divided into two kinds: local data, i.e. the data
which refer to the interior slab and shared boundary
data (boundary slab). Reducer enters local computed
data directly into a local file system and enter the
shared boundary data into the output file of the
distributed file system HDFS, which will be an input
file for Mapper of the second level at the next
iteration. At each iteration Mapper of the second
level distributes the updated boundary data among
Reducers, thus providing the exchange of boundary
values between slabs. The fluid of data
corresponding to the description is presented in
Figure 1.

Figure 1: Iterative MapReduce framework scheme.

3.3 The Distributed Algorithm of the
Fluid Dynamics in Oil Reservoir
based on MapReduce Hadoop
Technology

The distributed algorithm consists of two stages:
‐ The stage of initialization;
‐ The iteration stage.
The stage of initialization is a MapReduce task

“Initial” in which there takes place initialization and
writing of files necessary for computations in the
process of iterations.

The iteration stage is a MapReduce task
“Iterations”. At each iteration in Mapper, points of
the field with the same keys, i.e. numbers of
subcubes, are grouped. The input data of Mapper are
the output data of Reducer. In Reducer, the main
computations are performed according to the
formulae of the explicit method. Then, writing of

the interior parts of files into the local file system
and transfer of values of boundary slabs to the
output of Reducer “Iterations” are performed.

3.4 A Distributed Parallel Algorithm of
the Fluid Dynamics in an Oil
Reservoir based on MapReduce-
Hadoop and MPI Technologies

A distributed parallel algorithm of numerical
solution of the problem (1)-(3) consists of the
following main steps:

1. Initiation of the script on the main node of
the cluster which copies the parameters of
dimensions of computation region, the numbers of
MPI processes, the number of nodes of Hadoop
cluster necessary for computations onto all
computational nodes of the cluster.

2. The stage of initialization. Initiation of
MapReduce task which performs computations in
every point of computation region at the zero
moment of time with fulfillment of initial
conditions.

3. The iteration stage. Initiation at ith iteration
of MapReduce task to the input of which enter all
computed values in points of computation region
from the (i-1) iteration. If the number of iteration is
equal to zero, all data from the initial stage enter, in
other cases, the input data are formed only from the
boundary values of points which were obtained at
the previous iteration.

On each of Reducers, non-boundary data are
stored on the node in which the given Reducer
operates and the boundary values Reduce into the
distributed file system so that later they can be
distributed onto other nodes which share the
boundary values with the current node.

After reading out boundary and non-boundary
values, each of the Reducers initiates the process of
distribution of points to different files so that the
number of MPI processes and each MPI process will
perform computations in its subregion of data which
it reads out from the file with the name
corresponding to its rank (Fig. 2). After reading out
the data from the file corresponding to its rank, each
MPI process performs computations of the pressure
equation in its subregion of data. After that, it
performs writing of new values of points into the file
from which it read out the data. After completing all
MPI processes, Reducer gathers data and, depending
on the fact whether the point is boundary or not, it
performs operations of reducing or writing into the
local memory of the node.

ICSOFT-EA�2015�-�10th�International�Conference�on�Software�Engineering�and�Applications

458

Figure 2: Scheme of MapReduce MPI algorithm.

3.5 A Distributed Parallel Algorithm of
the Fluid Dynamics in Oil
Reservoir using Memory-Mapped
Files

Realization of the distributed parallel algorithm with
writing of data into files for their subsequent
processing by MPI processes showed that reading /
writing operations cause significant delays of
performance. In this regard, in this section we
propose to use the kind of files called memory-
mapped files (MMF).

The peculiarity of these files is that, when
working with them, the whole file or a definite
continuous part of this file is corresponded by a
definite site of memory (range of addresses of
operative storage), that allowing to considerably
accelerate realization of reading/ writing operations
(http://en.wikipedia.org/Memory-mapped-file).

To realize the algorithm of MapReduce MPI, we
used the method of data exchange between Hadoop
and MPI which uses the library Java Chronicle. Java
Chronicle is a data base which is stored in operative
memory and possesses the following properties:

1) A low level of delays;
2) High capacity;
3) Persistence (i. e. after completion of the

program the data are stored in memory)

This library allows to work with memory-

mapped files writing and reading out large volumes
of information which will be physically stored in the
disk but, if necessary, loaded into operative memory.
Files of this type perform reading/ writing operations
of much quicker compared to reading/ writing
operations of usual file. A memory-mapped file is a
segment of virtual memory which is in a direct bite
correspondence with a definite part of file or other
file-like resource. The main advantage of these files
is the increase in the rate of operations of reading /
writing, especially, on files of large volumes. It is
for this reason that we have chosen this method of
data exchange between Hadoop application and MPI
application. The main idea of the problem solution is
the same as in the method with the use of exchange
with usual files but the general rate of the program
operation increases.

Static data on coordinates of points and their
corresponding values which are stored in each of
reducers locally as well as boundary values or initial
values and coordinates of points which were
distributed to the given Reducer from the Map-stage
are read and recorded into Chronicle so that MPI-
processes can read out the points of computation
region corresponding to their ranks for their parallel
processing.

The library Chronicle allows to create a definite
indexing of objects, which are contained in a definite
copy of the database Chronicle. This property of
indexing was used in order that each MPI process
can determine, according to the correspondence of
its rank and index of the object (a three-dimensional
file), a definite copy of the data base Chronicle
which was assigned to this process for performing
computations.

After the branch process completes its operation
it is necessary to read out the result of MPI-
processes using the methods of reading given by the
library Chronicle and, depending on the fact whether
these points are boundary or not, the read out data
will be reduced or stored locally on this node.

4 IMPLEMENTATION AND
EVALUATION

Numerical solution of problem (1)-(3) was carried
out for a particular case with functions:

),,(sinsinsin),,(zyxazayaxezyxf bt (4)

222),,(zyxzyx (5)

azayaxzyx sinsinsin),,,0((6)

Iterative�Mapreduce�MPI�Oil�Reservoir�Simulator

459

23, ba

For problem (1)-(3) with the pre-determined
functions (4)-(6) there is an analytical solution equal
to zyxezyxtP bt sinsinsin),,,(which was used

for comparison of the exact and numerical solutions
of the problem.

Figures 3-5 present the results of testing of
algorithms: a distributed algorithm of the problem of
fluid in an oil reservoir based on MapReduce
Hadoop technology, a distributed parallel algorithm
based on MapReduce and MPI, a distributed parallel
algorithm based on MapReduce Hadoop and MPI
with memory-mapped files.

To estimate the execution time of three
algorithms experimental computations were
executed with this number of points:

1) 120120120 = 1,728,000;
2) 240240240 = 13,824,000;
3) 360360360 = 46,656,000;
4) 480480480 = 110,592,000.

Figure 3: Running time of MR algorithm.

The obtained results demonstrate the achievement of
a significant gain of time, when using the library
Java Chronicle. In the course of experiments it was
noted that in case when the dimensionality of the
transferred object (a three-dimensional file) makes
up more than 20 million of values of the type with a
double floating points the library Chronicle does not
allow to transfer the whole array of data in one
operation of reading/ writing. To solve this problem,
a three-dimensional array of data was divided by the
first measuring x into numerous parts so that each
part was smaller or equal to the permissible limit of
reading/writing in one operation. Consequently, in
this case there takes place the change of indexation,
i.e. for each MPI-process a range of indexes from
which it will read out the data for calculations is
formed. Thus, the problem of solving for large
dimensionalities of data arrays was solved.

Figure 4: Running time of MR+MPI algorithm.

Figure 5: Running time of MR+MPI algorithm with MMF.

5 CONCLUSIONS

Iterative MapReduce MPI oil reservoir simulator
developed within the framework of scientific
investigations allows to organize distributed parallel
computations on heterogeneous systems for solution
of oil production tasks. The earlier developed
constructive approach of hybrid combination of
MapReduce and MPI technologies was used to solve
the problem of calculating fluid pressure in an oil
reservoir. The novelty of the research includes the
use of the library Chronicle with the aim of a more
effective realization of reading/writing operations.
The comparison of testing results of oil-gas industry
problem confirms feasibility of the research, and
further actions primarily include adjusting further
action in accordance with the actual results.

ACKNOWLEDGEMENTS

Presented research is funded under Kazakhstan
government research grant.

ICSOFT-EA�2015�-�10th�International�Conference�on�Software�Engineering�and�Applications

460

REFERENCES

Biardzki, C., Ludwig, T. 2009. Analyzing Metadata
Performance in Distributed File Systems. In:
Malyshkin, V. (ed.): PACT 2009. LNCS. Vol. 5698:
8–18.

Bu, Y., Howe, B., Balazinska, M., Ernst, M.D., 2012. The
HaLoop approach to large-scale iterative data
analysis. VLDB Journal 21(2): 169–190.

Chen, S. S., Dongarra, J. J., Hsiung, C. C., 1984.
Multiprocessing linear algebra algorithms on the
CRAY X-MP-2 - experiences with small granularity.
Journal of Parallel and Distributed Computing, 1(1):
22–31.

Ekanayake, J., Li, H., Zhang, B., Gunarathne, T., Bae, S.-
H., Qiu, J., and Fox, G., 2010. Twister: a runtime for
iterative MapReduce. In: HPDC, pages 810–818.
ACM.

Gropp, W., Lusk, E., and Doss, N., 1996. A high-
performance, portable implementation of the MPI
message passing interface standard. Parallel
Computing 22(6): 789-828.

Hoefler, T., Lumsdaine, A., and Dongarra, J., 2009.
Towards efficient MapReduce using MPI. In: Ropo,
M., Westerholm, J., Dongarra, J. PVM/MPI, Lecture
notes in computer science, Springer, 5759: 240–249.

http://en.wikipedia.org/Memory-mapped-file.
http://mapreduce.sandia.gov.
Imankulov, T. S., Mukhambetzhanov, S. T., and Ahmed-

Zaki, D.Zh. 2013. Simulation of generalized plane
fluid filtration in a deformable environment. Bulletin
of the D.Serikbaev East Kazakhstan State Technical
University. Computational technologies. Part 1, № 3,
pages 183–191.

Lu, X., Wang, B., Zha, L., and Xu, Z., 2011. Can MPI
Benefit Hadoop and MapReduce Applications? In
Proceeding ICPPW '11 Proceedings of the 2011 40th
International Conference on Parallel Processing
Workshops, pages 371–379.

Mansurova, M., Akhmed-Zaki, D., Kumalakov, B., and
Matkerim, B., 2014. Distributed parallel algorithm for
numerical solving of 3D problem of fluid dynamics in
anisotropic elastic porous medium using MapReduce
and MPI technologies. In Proceedings of 9th
International Joint Conference on Software
Technologies, Vienna, Austria, pages 525–528.

Matkerim, B., Akhmed-Zaki, D., and Barata, M. 2013.
Development High Performance Scientific Computing
Application Using Model-Driven Architecture.
Applied Mathematical Sciences. Vol. 7, №. 100, pages
4961–4974.

Mohamed, H., and Marchand-Maillet S., 2012. Enhancing
MapReduce Using MPI and an Optimized Data
Exchange Policy In Proceeding ICPPW '12
Proceedings of the 2012 41st International
Conference on Parallel Processing Workshops, pages
11–18.

Matsunaga, A., Tsugawa, M., Fortes, J. 2008.
CloudBLAST: Combining MapReduce and
virtualization on distributed resources for

bioinformatics applications in eScience’08. In
Proceeding IEEE 4th Int. Conference. IEEE.

Mohamed, H., and Marchand-Maillet S., 2012. Distributed
media indexing based on MPI and MapReduce.
Springer, Science+Business Media.

Slawinski, J., and Sunderam, V., 2012.Adapting MPI to
MapReduce PaaS Clouds: An Experiment in Cross-
Paradigm Execution. In Proceedings of the 2012
IEEE/ACM Fifth International Conference on Utility
and Cloud Computing, pages 199–203.

Srirama, S. N., Batrashev, O., Jakovits, P., et al. 2011.
Scalability of parallel scientific applications on the
cloud. Scientific programming, 19(2-3): 91–105.

Sunderam, V. S., Geist, G. A., and Dongarra, J., 1994. The
PVM concurrent computing system – evolution,
experiences, and trends. Parallel Computing 20(4):
531–545.

Tokarev, M. Y., Tyurin, E. A., and Sinitsyn, M. N. 2012.
Supercomputer technologies in science, education and
industry. Moscow State University.

Iterative�Mapreduce�MPI�Oil�Reservoir�Simulator

461

