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Abstract: In this paper, we report on our explorations of machine learning techniques based on backpropagation neural 
networks and support vector machines in building a cue identifier for mobile robot navigation using a LIDAR 
scanner. We use synthetic 2D laser data to identify a technique that is most promising for actual 
implementation in a robot, and then validate the model using realistic data. While we explore data 
preprocessing applicable to machine learning, we do not apply any specific extraction of features from the 
raw data; instead, our feature vectors are the raw data. Each LIDAR scan represents a sequence of values for 
measurements taken from progressive scans (with angles vary from 0° to 180°); i.e., a curve plotting distances 
as a functions of angles. Such curves are different for each cue, and so can be the basis for identification. We 
apply varied grades of noise to the ideal scanner measurement to test the capability of the generated models 
to accommodate for both laser inaccuracy and robot motion. Our results indicate that good models can be 
built with both back-propagation neural network applying Broyden–Fletcher–Goldfarb–Shannon (BFGS) 
optimization, and with Support Vector Machines (SVM) assuming that data shaping took place with a [-0.5, 
0.5] normalization followed by a principal component analysis (PCA). Furthermore, we show that SVM can 
create models much faster and more resilient to noise, so that is what we will be using in our further research 
and can recommend for similar applications. 

1 INTRODUCTION 

Automated Intelligent Delivery Robot (AIDer; shown 
in Figure 1) is a mobile robot platform for exploring 
autonomous intramural office delivery (Hilde et al., 
2009; Rodriguez et al., 2007). The research reported 
in this paper was part of the overall effort to explore 
ways to deliver such functionality. The robot was to 
navigate in a known environment (a map of the 
facility is one of the elements of AIDer’s 
configuration) and carry out tasks that were requested 
by the users through a Web-based application. Each 
request included the location of a load that was to be 
moved to another place that was also specified in the 
request. The pairs of start and target locations were 
entered into a queue that was managed by a path 
planning module. When the next job from the queue 
was selected, the robot was directed first to the start 
location where it was to get loaded after announcing 
itself, and then to the destination where it was to get 
unloaded after announcing its arrival. That routine 
was to be repeated indefinitely — if there were other 

requests waiting in the queue and as long as there was 
power. 

 

Figure 1: Robot with a laser scanner (between the front 
wheels). 
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Figure 2: Robot with a rotating laser scanner (between the 
front wheels) generates a sequence of distances for each 
progressive angle. 

One of the major objectives was to provide the 
functionality at low cost. Therefore, AIDer has a very 
limited set of sensors for navigation: right side 
detectors of the distance from the wall, and a frontal 
2D (one-plane) LIDAR laser scanner for detecting 
cues such as turns and intersections. The side sensors 
are used to provide a real-time feedback to a 
controller that corrects the position of the robot so it 
stays at a constant distance from the right wall (Hilde 
et al., 2007). 

Higher-level navigation in AIDer is based on 
following paths that consist of a series of intervals 
between landmarks (Rodriguez et al., 2007). A map 
of the facility is provided as an element of the 
configuration (using a custom notation), so the robot 
is not tasked with mapping the environment. The map 
configuration file includes locations of landmarks 
along with exact distances between the landmarks. 
Upon receiving the next task to carry out, the robot 
determines the path to travel in terms of the 
landmarks. The path is divided into a sequence of 
landmarks, and the robot is successively directed to 
move to the next landmark. After the current target 
landmark is identified, the robot receives the next 
target landmark to go to. To accommodate for error 
in mobility (like slippage of the wheels) that may 
skew the robot orientation based purely on traveling 
exact distances, the robot relies on identification of 
cues to verify reaching landmarks. 

In an environment lacking GPS, identification of 
environmental cues is a critical low-level task 
necessary for recognizing landmarks (Thrun, 1998), 
since landmarks are defined in terms of cues. The 
frontal laser-scanner in AIDer serves that purpose. 
Each scan produces a sequence of measurements that 
differ depending on the shape of the surrounding 
walls. For example, Figure 2 shows a scan of a left 
turn. The scan results - a sequence of numbers 
representing the measured distance (e.g., in inches) - 
are graphed using angles on the x axis and the 

distances on the y axis. Due to the range limitations 
of the laser scanner, certain measurement may be read 
as zeros; that is visible as a sudden drop in the curve 
shown in the figure. 

In (Hilde et al., 2007), an approach similar to 
(Hinkel et al, 1988) was taken with a selective subset 
of measurements used to define cues analytically with 
a limited success. 

In this paper, the complete raw set is used for this 
purpose as will be shortly explained. Our earlier 
attempts to use raw data in such a way were not 
completely successful (Henderson, 2012), and the 
research reported here remedies that. 

2 RELATED WORK 

Mapping and localization services are the foundation 
of autonomous navigation (Thrun, 1998). As we 
already stated, mapping is not a functional objective 
of the AIDer. Vast majority of the current localization 
work is based on utilization of very sophisticated 
equipment as seen in cars participating in R&D 
efforts in academia, auto industry, and government-
sponsored contests (e.g., Peters et al., 2008). Utilizing 
simple sensors with very limited capabilities started 
the field (Borenstein, 1997), but currently it’s rare to 
depend on just such limited functionality. Yet, the use 
of inexpensive devices is important in environments 
lacking access to powerful computers or abundant 
power supplies (e.g., Roman et al., 2007), and when 
cost is a concern (e.g., Tan et al., 2010). 

LIDAR-based identification was successfully 
solved by analytical methods in (Hinkel et al, 1988) 
in which histograms of laser measurements were used 
as the input data. There have been numerous attempts 
to use similar data using a variety of analytical 
approaches (e.g., Zhang et al., 2000; Shu et al., 2013; 
Kubota et al., 2007; Nunez et al., 2006). 

(Vilasis-Cardona et al., 2002) used cellular neural 
networks to classify cues, but the localization was 
based on processing 2D images of vertical and 
horizontal lines placed on the floor rather then 1D 
LIDAR measurements. Just like in (Henderson, 
2012), histogram data were used as inputs to 
backpropagation neural network in research reported 
in (Harb et al., 2010), but the authors did not specify 
the details of the backpropagation algorithm that they 
used. In here, we follow that sub-symbolic approach 
studying the capabilities of back propagation models 
and contrast them with training based on support 
vector machines (SVM). 
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Figure 3: AIDer Laser Laser Scan Data for 9 cues. 
Progressive scan angles in radians are shown on x axis, 
while the y axis shows distance in inches. 

3 DATA SETS 

The laser mounted on AIDer is capable of scanning 
180° with a granularity yielding 512 measurements 
per scan. To explore machine learning techniques for 
AIDer cue identification, we set aside the large data 
set that would be inconvenient for explorations, and 
instead we engineered a smaller data set for a 
miniaturized virtual model that otherwise preserved 
the geometry of the office environment. We are 
returning to the larger data set at the end of the paper 
when we validate our best performing technique on 
that realistic set. 

For the experiments, we created by hand data for 
9 cues: lt (left turn), rt (right turn), ts (t-section/front), 
xs (x-section), tl (left t-section), tr (right t-section), dr 
(door on right), dl (door on left), and d2 (door on both 
sides). In this miniaturized model every scan is a 
sequence of distance measurements made with a laser 
angle progressing in 17 (rather than the original 512) 
steps in the interval [0, ]. The curves for all cues are 

shown in Figure 3. 
A visual inspection of the graphs gives hope that 

the curves indeed can be correctly classified within 
some noise limits. These limits can be established to 
some degree by introducing elements of possible 
noise that can be modeled by modifying each data 
point using the normal distribution with a certain 
standard deviation. That noise accounts for the 
inaccuracy of the laser measurements. For example, 
the type of the material from which walls are built 
impacts the reading. 

 

Figure 4: Left turn curve adjusted for distance from the cue, 
and then with a noise added. Progressive scan angles in 
radians are shown on x axis, while the y axis shows distance 
in inches. 

For illustration of the impact of distortion on the ideal 
curves, the left graph in Figure 4 show the curve for 
the lt (left turn) cue with overlaid sample noisy curve: 
one distorted curve on the left, and with added noise. 
For actual training, we generated a large number of 
noisy curves. To illustrate the complexity that the 
training algorithm must overcome, the right side of 
Figure 4 shows a bundle of 100 curves generated for 
left turn with a standard deviation of  = 0.2. We used 
numerous levels of noise in the experiments and 
larger sample sets. 

4 FEATURE VECTORS 

Each of the generated noisy curves is used as a 
training sample for building a clustering model. To 
create a corresponding feature vector, each curve was 
preprocessed. First, we normalized the data to the [-
.5, 0.5] interval, and then we applied principal 
component analysis (PCA) with a hope to eliminate 
redundant data dimensions, but also to visualize data 
clustering (in 3 rather than 17 dimensions, so not all 
nuances in the data are captured in the plot). We also 
tried linear discriminant analysis (LDA), but we got 
better clustering with PCA. That was important in our 
case, since a visual inspection shows that certain parts 
of the original ideal curves are repeated in every 
pattern. We could just cut off these dimensions from 
the data altogether, but instead we left it to the PCA 
that formalizes such observations while also catching 
similarities that are not easily visible with a naked 
eye. Additionally, while the ideal data may be aligned 
in some dimensions, noisy data coming from the 
scanner may not be so inclined, so it’s better to let the 
PCA make such decisions. 

Figure 5 shows how the data is clustered using just 
the first three principal components of the 
preprocessed data. The 3D scatter graphs for curves 
with   low   distortion clearly indicate that the data are 
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Figure 5: Visible nine clusters of feature vectors 
corresponding to the nine target cues. Standard deviation of 

 = 0.05,  = 0.1,  = 0.2, and  = 0.5 were used to generate 
the curves (starting with the left upper corner). Please note 
that the visuals are rotated to show the best perspective of 
the clusters. 

clustered in nine locations corresponding to the nine 
target cues. The figure also illustrates the challenge in 
data separation when the standard deviation is 
increased. After numerous experiments, we actually 
found that for best results (i.e., for the lowest error 
rate) we needed to keep almost all principal 
components banning one or two least significant. 
Since dropping so few had minimal impact on the 
efficiency of training, we ended up with using PCA 
for improving odds for clustering rather than for 
dimension reduction. 

5 EXPLORING NEURAL 
NETWORK-BASED CUE 
IDENTIFICATION 

With so-generated one thousands of feature vectors at 
hand, we used the backpropagation neural network to 
build a classifier. We also attempted to process larger 
numbers (namely ten thousand), but that was taking 
too much time (in excess of 12 hours on a fast iMac 
running Python 3.4 and Neurolab 3.5). We tried a 
number of training strategies available as options in 
Neurolab, but we were consistently successful only 
with the one based on the Broyden-Fletcher-
Goldfarb-Shannon (BFGS) optimization. Other 
optimization methods (such gradient decent) took 
much longer time, often failed to converge, and 
lacked consistency in repeated attempts (i.e., they 
were very dependable on the starting conditions). A 
backpropagation network with BFGS optimization-
based  training  was converging successfully  under  a 

 

Figure 6: Convergence rate of a back propagation network 
with BFGS training in training with random curves 
distorted with varied standard deviation. 

variety of conditions and had a high rate of 
identification accuracy (unless the data set was very 
large as will be explained later). 

Just for completeness and clarity of the setup for 
the experiments, let us clearly state that we used a 17-
unit input layer (since we have 17-dimension feature 
vectors), and a 9-unit binary output layer (as we have 
9 cues - classification targets). We also tried a 
network with one single multivariate output unit, but 
that architecture did not yield a successful model. 

After trying a number of network architectures, 
we found that a 17-50-9 network (a single-hidden-
layer network with fifty hidden units) was performing 
similarly to a 17-20-20-20-9 (three-hidden-unit 
network with twenty units in each hidden layer); as 
shown in Figure 6. With higher level of distortion 
(standard deviation  >= 0.4), the 17-20-20-20-9 
network failed to train in a reasonable time. The 
convergence speed was similar for both networks as 
shown in Figure 7 for standard deviation  = 0.1. The 
figure shows the convergence rate of the networks for 
one thousand randomly distorted curves generated 
with two different standard deviations (with SSE used 
as a measure of errors). Increasing the standard 
deviation often led to increased training time (but not 
always owing to the dependence on the starting 
condition that are chosen automatically by the 
Neurolab’s training algorithm), to a higher error rate 
on the test set, and increasingly frequent failure to 
converge below the target error rate. Neurolab’s 
training functions detect when there is no progress 
(i.e., no change in the error rate) and terminate the 
training session even before hitting the limit on the 
number of epochs. 

The      training      the     17-50-9     network      took 
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Figure 7: Comparison of convergence rates of backpropagation networks with BFGS 17-20-20-20-9 (left) and 17-50-9 (right) 
with random curves distorted with standard deviation of  = 0.1. 

increasingly longer time for the larger , but 
completed successfully. As shown in Figure 8, the 
network was relatively effective in tests with the the 
training set, but it became increasingly less reliable 
with higher level of noise. 

For testing the models, we generated another 
thousand randomly distorted new curves. In tests, we 
used the preprocessing transform functions 
(normalization and PCA) constructed with the 
training set, since the application requires that the 
model is able to deal well with novelty. As it could be 
expected, if the standard deviation of the test set was 
the same as the one used to generate the training set, 
the accuracy of the model was better than with a test 
set generated with a higher standard deviation than 
the one used in training.  

It’s worth  noting here that we did not need  to  use  

 

Figure 8: Performance of a 17-50-9 network expressed 
through a misclassification error rate as a function of the 
standard deviation used for generating curves. 

 

Figure 9: Misclassification rate as a function of the 
regularization coefficient with standard  = 0.3. 

any of the crossvalidation techniques as we could 
generate test data at will. 

6 APPLYING REGULARIZATION 

To address the higher misclassification rate for higher 
noise in input data, we tested several values of the 
regularization coefficient to relax the clustering and 
avoid overfitting. As shown in Figure 9 it was an 
effective tool to improve the accuracy of 
classification for noisy data. 

It is interesting to note that although networks 
with a non-zero regularization factor may yield higher 
error rates (SSE), and even fail the training in the 
traditional sense of not getting under a certain error 
threshold, they can still classify correctly the data, 
and therefore show lower classification error. To 
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illustrate the point, compare the rate of 
misclassifications in Figure 9 with the number of 
erroneous outputs made by the same network shown 
in Figure 10. 

It is an important distinction between applications 
for classification in which the winner-takes-all 
strategy is applied, and for regression; in the latter, 
increased error rate would certainly be more 
troublesome. 

7 EXPLORING SUPPORT 
VECTOR MACHINES (SVM) 
FOR CUE IDENTIFICATION 

We attempted to improve the performance of the 
neural network models by increasing the cardinality 
of the training set to ten thousands samples. 
Unfortunately, as we stated earlier, the BNFS training 
algorithms in the Neurolab could not deal with that 
number of data points, and as a consequence failed to 
converge in a reasonable time. As also previously 
explained, using a reduced dimension proved to make 
things worse in the experiments with a smaller 
training set, so we decided to move on and try another 
technique said to be very successful in classification 
applications, Support Vector Machines (SVM). 

We started immediately with a very large set of 
training samples (ten thousands), since we were 
interested in the performance of the training method 
in the Scikit Learn toolkit that we used for our 
explorations. Scikit Learn uses extremely efficient 
scientific libraries collected under one common 
umbrella of SciPy; some implemented even in Fortran 
for maximal efficiency. The implementation of the 
SVM in Scikt Learn has a very convenient to use API 
for multi-class classification. 

We preprocessed the data in the way identical to 
the earlier experiments using neural networks: 
MixMaxScaler and PCA. We tried to use data with 
reduced dimension, but as earlier, we got better 
results when keeping all dimensions. 

For tests, we generated a random set of also ten 
thousand data points and using the same level of 
distortion (i.e., the standard deviation ) as in the 
training. 

One immediate observation was that the SVM 
training on a ten times larger data set was 
dramatically faster then for the neural network using 
many fewer samples. Figure 11 shows the results 
from a number of experiments with a variety of 
distortion levels. Comparing these results to the ones 
shown in Figure 8 and 9, it is evident that in presence  

 

Figure 10: A histogram of errors made by a model with a 
regularization coefficient of 0.3 for a data set generated 
with  = 0.3. 

 

Figure 11: Performance of SVM models on sets with 
increasing standard deviation. 

 

Figure 12: Ten overlaid actual 512-dimensional curves for 
cue identification in actual AIDer environment. Distance is 
measured in inches, and the x axis shows index of each 
measurement (from 0 to 511). 
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of  noise,  the  performance  of  the  model  built  with 
SVM exceeds by three-fold or so the capability of the 
backpropagation neural network with the best 
performing (with our specific data sets) BFGS 
training. We used the default values of SVM 
parameters from Scikit Learn. 

8 CONCLUSIONS: VALIDATING 
THE MODEL IN A HIGHER 
DIMENSION 

As we stated at the beginning of this document, the 
actual scanner data has a much higher dimension: 512 
rather than 17 used for our explorations of the 
machine learning techniques. Figure 12 shows the 
ideal cues taken from the actual physical facility (the 
measurements were done by hand rather than from a 
scanner; hence the adjective “ideal”). There are also 
ten rather than nine cues in this data set. With the very 
optimistic results from the experiments with the 
SVM, we used exactly same strategy to process the 
realistic data. Quite often, it’s a computational 
challenge to expand the dimension of a data set thirty-
fold; it was evident in the increased processing times. 
Still, the increase in the demand for time was more of 
linear rather than exponential nature in spite of using 
also ten thousand samples for both training and for 
testing. 

We need to emphasize that it was critical to 
normalize the data, since some algorithms in the 
Python toolkit could fail on NaNs otherwise. 
Fortunately, the MinMaxScale() function from Scikit 
Learn worked well, preparing data for successful 
PCA as shown in Figure 13. 

Subsequently, the SVM algorithms converged 
nicely and performed similarly to the experiments 
with the smaller data set. Figure 14 shows the results 
for several levels of noise. 

9 FUTURE DIRECTIONS 

One of the aspects of curve shape distortion for cues 
based on object boundaries is the point of view from 
which the snapshot is taken. If the identification is 
made quickly, then it does not matter, as the model 
may be picking the level of recognition of a cue in the 
ideal spot from which the training samples were 
generated. Introducing such an element of distortion 
with random methods is difficult, since the shape of 
the cue may change more dramatically than with 
application of a standard deviation, so another 
approach can be to use a number of points of view 
(e.g., three) and to generate snapshots of a cue taken 
from these points. In this way, the training data would 
include a number of views of each cue. We report on 
this approach in another paper (Bieszczad, 2015). 

Yet another problem omitted in this paper is the 
fact that cues often are present at the same time, so 
they make it to the same snapshot. We are planning 
to use data sets that mix cues to some degree to test 
the identification capabilities of the models trained 
under such circumstances. One idea to deal with this 
problem if it arises is to separate cues from curves. 
Such attempts have been made by numerous 
researchers, and in more complex approaches to the 
localization problem (e.g., through image processing 
and scene analysis). 

Much harder problem to overcome is the issue of 
accuracy of laser scans when dealing with various 
materials   from   which obstacles are made and light 

 

Figure 13: Normalized cue curves and their location in the feature space with only three most significant principal 
components. The distance uses normalized values, and measurement index is shown on the x axis. The 3D plot is rotated for 
best illustration of centers of the clusters. 
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conditions. These issues are of paramount importance 
in outdoor navigation in an unknown terrain as 
described in (Roman et al., 2007) and elsewhere. 

While we plan to continue experimenting with a 
robot, using a physical machine for numerous tests is 
inconvenient and inefficient, so we are planning to 
build a simulator with which it will be easier to test 
our models. 
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