
Towards Compliant Reference Architectures by Finding Analogies
and Overlaps in Compliance Regulations

Eduardo B. Fernandez and Dereje Yimam
Dept. of Computer Science and Engineering, Florida Atlantic University, 777 Glades Rd, Boca Raton, Florida, U.S.A.

Keywords: Compliance, Regulations, Business Software, Security Patterns, Reference Architectures.

Abstract: Business software is subject to a variety of regulations depending on the type of application. For example,
software handling of medical records must follow HIPAA; software for financial applications must comply
with Sarbanes Oxley, and so on. A close examination of the policies included in those regulations shows that
they have analog and common aspects. Analog parts of regulations can be expressed as Semantic Analysis
Patterns (SAPs), which can lead to building similar parts in other regulations. Overlapping parts usually
correspond to security patterns and can be used to add security to other regulations. If we collect SAPs and
security patterns in a catalog we can build reference architectures (RAs) for existing and new regulations. The
resultant Compliant RAs (CRAs) can be used as guidelines for building compliant applications.

1 INTRODUCTION

In many countries, business activities have
government, state, or industry-based regulations.
Regulations are sets of policies about how the
information used in some areas of business must be
handled, i.e., software used in those businesses must
comply with these regulations. Some laws state that
organizations are responsible for all compliance-
related issues. The cost of not being compliant may
result in penalty fees, possible lawsuits, and bad
business reputation. Compliance implies keeping a
set of rules that implement the policies defined in the
regulations, which are then enforced by the software
when handling the corresponding type of data. In the
opinion of (Massey et al., 2011), legal compliance
may become the most important Non-Functional
Requirement (NFR) for a large number of software
systems. Government and state regulations are
mandatory while industry regulations are
suggestions. However, not following industry
regulations may hurt the marketing possibilities of a
software system.

Regulations are written by lawyers and usually are
lengthy, hard to read, at times redundant, perhaps
ambiguous, and maybe even inconsistent at some
places. Incorrect or imprecise implementations of
regulations may lead to lawsuits and may harm
people. (Massey et al., 2011) reports that most

computer science graduate students have trouble
understanding regulations. To make regulations
clearer and more precise there has been attempts to
analyze them to understand the rights and obligations
of the participants (Breaux and Anton, 2008; Lam and
Mitchell, 2008). However, there has been few
attempts to make clear the software architecture
required for the implementation of the policies in the
regulations. We can express regulations in the form
of patterns; as shown for HIPAA in (Fernandez and
Mujica, 2014a). A pattern is a solution to a recurrent
problem in a given context (Gamma et al., 1994).
Several methodologies exist for building secure
systems using patterns (Uzunov et al., 2015); these
methodologies could also handle compliance.

The specific regulations to be followed depend on
the type of application. For example, software
handling medical records must follow HIPAA
(HIPAA, 2013); software for financial applications
must comply with Sarbanes Oxley (SOX, 2015), and
so on. Some applications may need to follow more
than one regulation. A close examination of the
policies included in those regulations shows that they
have analogies. By that, we mean that portions of the
regulations handle information in a similar way.
Different regulations also have straight
commonalities, e.g., they specify the same
enforcement mechanism. We show here that by
identifying analogies and commonalities we can
make regulations much clearer and easier to

435B. Fernandez E. and Yimam D..
Towards Compliant Reference Architectures by Finding Analogies and Overlaps in Compliance Regulations.
DOI: 10.5220/0005575604350440
In Proceedings of the 12th International Conference on Security and Cryptography (SECRYPT-2015), pages 435-440
ISBN: 978-989-758-117-5
Copyright c
 2015 SCITEPRESS (Science and Technology Publications, Lda.)

implement. If we collect these aspects as patterns in a
catalog, we can build reference architectures (RAs)
for existing as well as new regulations. The resultant
RAs can be used as guidelines for building compliant
applications. We can also use this catalog to
complement secure or compliant software
development methodologies. We can make the
software developed using one of the methodologies
mentioned above not just secure but also compliant if
we add to them a catalog of patterns that describe the
regulation(s). In addition, incorporating regulations
described as patterns into reference architectures we
can generate applications that comply with these
regulations (Fernandez and Mujica, 2014b). We
describe our models using the Unified Modelling
Language (UML) (Rumbaugh et al., 1999), at times
enhanced using the Object Constraint Language
(OCL) (Warmer and Kleppe, 2003).

Specifically, our contributions include a
demonstration that regulations have analog and
common aspects that can be leveraged to build or
enhance RAs compliant with different regulations
and we show an example of how to do this.

Section 2 describes some background about
regulations and patterns. We show in Section 3 that
some regulations perform similar actions with their
data and we can deduce patterns by analogy. Section
4 indicates commonalities between regulations.
Section 5 considers related work. We end with some
conclusions in Section 6.

2 BACKGROUND

2.1 Regulations and Standards

We summarize below four of the most common
regulations in the US, which we use as examples in
Section 4. These regulations apply to a large variety
of common and /or important business applications.

HIPAA (Federal regulation): Healthcare
organizations are required to comply with the
Healthcare Insurance Portability and Accountability
Act (HIPAA), intended to protect individual health
information. It requires covered entities (i.e. health
care providers) to protect the privacy of the patient’s
Protected Health Information (PHI) (HIPAA, 2015),
for which providers must use data encryption,
authentication, authorization, backup, monitoring,
notification, and disaster recovery. Also, providers
and transactions must have unique identifiers.

PCI-DSS (Credit Card industry regulation):
Companies that handle cardholder information are
required to comply with the Payment Card Industry

Data Security Standard (PCI DSS). Cardholder
information includes debit, credit, prepaid, e-purse,
ATM, and Point of Sale (POS) cards (PCI, 2015).
PCI-DSS require using data encryption, access
control, auditing, disaster recovery, monitoring, and
notification.

Sarbanes-Oxley Act (SOX) (Federal regulation):
SOX establishes standards for all US publicly-traded
companies in order to protect shareholders and the
general public from accounting errors and fraudulent
practices in the enterprise (SOX, 2015). SOX
enforces control on user management, system
development, program and infrastructure
management, monitoring, backup, auditing, and
disaster recovery.

Gramm-Leach-Bliley Act (GLBA) (Federal
regulation). It requires financial institutions that offer
financial products or services to consumers to
develop, implement, and maintain a comprehensive
information security program that protects the
confidentiality and integrity of customer records
(GLBA, 2015).

2.2 Patterns and Related Concepts

As indicated, a (software) pattern is a solution to a
recurrent problem in a given context. A pattern
embodies the knowledge and experience of software
developers and can be reused in new applications.
Analysis patterns can be used to build conceptual
models (Fernandez and Yuan, 2000; Fowler, 1997),
design and architectural patterns are used to build
flexible software (Buschmann and Meunier, 1996)
(Gamma et al., 1994), and security patterns can be
used to build secure systems (Fernandez et al., 2006;
Fernandez, 2013). The concept of Semantic Analysis
Pattern (SAP) is an analysis pattern realizing a small
set of related use cases; it will be used here as a
conceptual unit. Well-thought patterns implicitly
apply good design principles. Pattern solutions are
usually expressed using UML diagrams, semi-formal
solutions that can be more formalized using OCL
(Warmer and Kleppe, 2003). The typical solution
provided by a pattern comes in the form of a class
diagram complemented with some sequence
diagrams and possibly activity or state diagrams. This
level of detail and precision allows designers to use
them as guidelines and users to understand the effect
of the mechanisms they represent. Patterns are also
good for communication between designers and to
evaluate and reengineer existing systems. Design
patterns are already widely accepted in industry;
Microsoft, Siemens, Sun, and IBM, among others,
have web pages and even books about them. Security

SECRYPT�2015�-�International�Conference�on�Security�and�Cryptography

436

patterns are starting to be accepted, with some
companies producing catalogs in books and in the
web, including IBM, Microsoft, Amazon, and Sun
(Oracle). We have written a large amount of security
patterns, some of which (about 70), are described in
(Fernandez, 2013).

A Domain Model (DM) is a model of an area of
knowledge, e.g., electrical engineering. We can think
of a DM as a compound pattern, including several
simpler patterns that represent specific aspects of the
domain. A Reference Architecture (RA) is a generic
architecture, valid for a particular domain (or set of
domains), with no implementation aspects (Avgeriou,
2003; Taylor et al., 2010). It is reusable, extendable,
and configurable, that is, it is a kind of pattern for
whole architectures and it can be instantiated into a
specific software architecture by adding
implementation-oriented aspects.

3 ANALOGY

Typically, regulations refer to four aspects: data with
indications or classifications of their sensitivity; the
entities (stakeholders) involved in handling this data,
usually defined by their roles; the rights of these roles
with respect to the data; and the obligations of the
roles when they access data. Keeping in mind these
four aspects we can see that some regulations have
parallel concepts. Analogy to discover new SAPs is
applied in (Fernandez and Yuan, 2000). Analogy
implies the realization that the information in a
specific model is handled in a similar way in another
model; i.e., the other model has the same concepts
(possibly with different names) related in a similar
way and followed by specialization.

Figure 1 shows a UML class model showing parts
of the HIPAA rules. The role Patient has a Medical
Record for which the role has the right to read it and
authorize its use. Medical Records include Treatment
Histories. The role Doctor has the right to read and
modify the records of his own patients. Medical
records are related to each other based on some
Medical Relationship that relates records of contact
for infectious diseases or genetic relationships.
Reading of medical records by external entities
requires patient notification. The left side of Figure 1
can be considered a SAP describing the rights of
patients and doctors as well as a system obligation.
The classes Health Care Provider and Patient on the
right side of Figure 1 are in fact part of another pattern
describing two of the stakeholders of the regulation
(Sorgente and Fernandez, 2004).

Figure 2 shows a SOX model obtained from the
HIPAA model by making the following analogies:
Patient=>Investor, Medical Record=>Financial
Record, Doctor=>Broker, Treatment
History=>Financial Account. The left side of the
figure is the analog of the medical record SAP and
can be derived directly from it. As in all patterns, it is
not a plug-in but it needs to be tailored. A type of
tailoring is shown in Figure 2 where the OCL
constraints of Figure 1 have been expressed in words
and the class names reflect the different context. We
can carry this analogy to any regulation that requires
handling of some type of records that belong to
individuals.

The model of Figure 1 requires a platform that can
apply content-dependent restrictions and by using
again analogy we know that this type of restrictions
will also be needed in the model of Figure 2. We can
generalize the patterns of Figures 1 and 2 and define
an abstract Record Protection pattern from which we
can derive patterns specific to new regulations.

Figure 1: A partial model of HIPAA.

4 OVERLAP

Reading the descriptions of the regulations in Section
2 we can see that specific security mechanisms appear
in most of them because they require protection of
information. Compliance requires attributes such as
confidentiality, integrity, availability, reliability and
accountability. As a result, there are a number of
commonalities among regulations and standards that
could be abstracted as patterns. Some of the
commonalities are described below.

Towards�Compliant�Reference�Architectures�by�Finding�Analogies�and�Overlaps�in�Compliance�Regulations

437

Figure 2: A model for parts of SOX.

For example, privacy requirements are present in
many regulations. Privacy requires the use of security
mechanisms that can be described by security
patterns. For example, a privacy policy that indicates
that “hospital patients can see their own medical
records” requires content-dependent access control,
which can be enforced by a corresponding security
pattern (Fernandez et al., 2014). Obligations can be
realized as part of authorization rules but also can be
defined as separate rules. All regulations require
participants to be uniquely identified. Most of the
regulations described here show the following
requirements:
1) Security: policies and procedures to regulate the

security of data, systems, applications and
configurations. Security implies authentication,
authorization, and encryption which provide
confidentiality and integrity. Security
management focuses on policies and procedures
to create, modify, delete, and review user access
control, security settings and configurations.

2) Privacy: policies and procedures to regulate the
use and the disclosure of sensitive information
that uniquely identify an individual or client.

3) Logging and Audit Control: policies and
procedures to record and examine activities of
users (data accessed, time), configurations of
systems and applications.

4) Secure Data Transmission and Storage:
policies and procedures to secure data
transmission and storage (cryptography and
digital signatures for transmission, authentication
and authorization for storage).

5) Notification: when information is accessed by
entities not specifically entitled to do so, users
must be notified.

6) Reporting: policies and procedures to generate an
incident report to assure compliance, including
security breaches and compliance on user

activities, system activities, and configurations
changes.

7) Compliance Monitoring: Monitors and enforce
compliance by applying compliance rules and
regulations.

8) Compliance Analysis: Analyze the overall
activities of users, data, configurations, systems
and applications by auditing logs and records.

9) Backup: policies and procedures to archive
protected data to ensure recovery.

10) Disaster Recovery: policies and procedures to
recover systems, applications, data and
configurations.

11) Sanitation: policies and procedures to sanitize
storage devices when they are out of use.

12) Emergency Access: policies and procedure to
access protected data in the case of emergency.

We have patterns for most of these. For those aspects
where there are no patterns, we list them as future
work and include in the list: reporting, compliance
monitoring, compliance analysis, disaster recovery,
sanitation, and emergency access.

In spite of the fact that regulations explicitly
indicate the types of security mechanisms they
require for their protected information, the truth is
that the system must be secure as a whole. It doesn’t
really matter if private information is disclosed
through a path not considered in the corresponding
regulation, the record keeper is still legally
responsible. In other words, the list of the security
mechanisms indicated by the regulation should be
interpreted mostly as a core and not as a complete set
of requirements, what matters is avoiding misuse of
the information.

Figure 3: A model for secured SOX.

If we catalog the patterns, we can build models for
other regulations starting from the models we have.
For example, we can build an RA for SOX starting
from the HIPAA RA. Using analogy we could have

SECRYPT�2015�-�International�Conference�on�Security�and�Cryptography

438

deduced the model of Figure 2 and using the table of
commonalities we can add corresponding
mechanisms in the form of patterns. Figure 3 shows
the model of Figure 1 with the addition of
mechanisms for Encryption, Authentication, and
Reporting. Note that Figure 2 already had
Authorization in the form of RBAC.

5 RELATED WORK

(Breaux and Anton, 2008) presented a methodology
for extracting formal descriptions of rules and
regulations. In particular, they analyzed a method for
acquiring and presenting data access requirements
and a method for defining priorities on these
requirements. We work at a higher architectural level,
considering computational units, expressed as
patterns.

Another attempt to formalize HIPAA is given in
(Lam et al., 2009). The authors used a restricted
version of Prolog and analyzed parts of HIPAA. They
found some conflicts in its rules and also
implemented a compliance checker.

(Massacci et al., 2005) used the Secure Tropos
requirements engineering modeler to verify that the
University of Trento complied with the Italian laws
on privacy and data protection.

(Hamdaqa and Hamou-Lhadj, 2009) built a
citation graph that can be used by analysts to navigate
through the provisions of various interrelated laws, to
uncover overlaps and possible conflicts or to simply
understand specific compliance documents. The
author also used a Compliance Decision Support
System (CompDSS) to identify compliance
similarities and differences. In particular, the author
used citation graphs to uncover overlapping and
possible conflicts, detecting important provisions by
ranking, assessing the impact of change in a particular
act, and checking its consistency. The author focused
only in HIPAA, SOX and GLBA standards. This is
the only paper we know which took advantage of
overlaps in regulations.

All this work focuses on the correct and complete
interpretation of the regulation rules. As far as we
know, there has been almost no work on the system
architecture aspects of the implementation of the
regulations; in particular, nobody else has applied
patterns to describe regulations. In (Fernandez et al.,
2006) and (Fernandez, 2013) a methodology to build
secure systems is proposed. This was extended in
(Uzunov et al., 2015). It could be possible to tailor
some of its steps to consider the use of regulation
patterns and we leave this as future work.

Note that patterns are not components or software
modules, they are suggestions expressed as models or
even words that represent specific software artifacts;
they can be instantiated once or many times in the
same application. As validation for our ideas we
cannot implement patterns or build a complete
catalog that by necessity must be open ended. What
we can do though, is to show a complete example of
the use of our ideas in deriving part of an RA for a
new regulation. We cannot do this here for lack of
space, however.

6 CONCLUSIONS

Companies that develop software to be used by
institutions that must follow a variety of regulations
can benefit by first building a catalog of patterns that
can be used as building blocks to build complete
regulation models. These patterns can describe
specific policies or security mechanisms that appear
in several of the regulations. We can also build a
catalog of patterns based on making analogies across
regulations as the ones shown in Section 4, which can
be used for building support for new regulations. The
use of these catalogs leads to a factory for RAs from
where we can derive applications that comply with
one or several regulations. The fact that patterns are
not components but abstract templates makes their
use easily shareable by software companies, one
catalog is enough from which each company can
produce different implementations as components,
web services, or ad hoc modules.

We are working on a structure to automatically
derive compliant applications starting from compliant
RAs. For example, the patterns of Figure 1 could be
the start of a RA for HIPAA, where we can add
patterns for billing, lab tests, diagnostics, and other
medical procedures all of which would be compliant.
From such an RA we can derive concrete
architectures such as a cloud-based RA for HIPAA.
This is future work, to which we can add writing the
missing patterns identified in Section 4. Our results
are also useful to decide if a legacy system is or can
be made compliant with specific regulations or to
evaluate if a new platform can support the regulations
supported by the old platform.

REFERENCES

Avgeriou, P. 2003, ‘Describing, instantiating and
evaluating a reference architecture: A case study’,
Enterprise Architecture Journal.

Towards�Compliant�Reference�Architectures�by�Finding�Analogies�and�Overlaps�in�Compliance�Regulations

439

Breaux, T. D. and Anton, A. I. 2008, ‘Analyzing regulatory
rules for privacy and security requirements’, IEEE
Trans. on Soft. Eng., vol. 34, No 1, Jan. /Feb., 5-20.

Breaux, T.D. and Gordon, D.G. 2011, ‘Regulatory
requirements as open systems: Structures, patterns and
metrics for the design of formal requirements
specifications’, Rept. CMU-ISR-11-100, Carnegie
Mellon University.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P.,
Stal, M. 1996, Pattern-Oriented Software Architecture:
A System of Patterns, Volume 1, Wiley.

Fernandez, E. B., Larrondo-Petrie, M.M., Sorgente, T., and
VanHilst, M. 2006, ‘A methodology to develop secure
systems using patterns", Chapter 5 in "Integrating
security and software engineering: Advances and
future vision’, H. Mouratidis and P. Giorgini (Eds.),
IDEA Press, 107-126.

Fernandez, E. B. and Yuan, X. 2000, ‘Semantic analysis
patterns’, Proceedings of the 19th Int. Conf. on
Conceptual Modeling, ER2000, 183-195.

Fernandez, E. B. 2013, Security patterns in practice:
Building secure architectures using software patterns,
Wiley Series on Software Design Patterns.

Fernandez, E. B. and Mujica, S. 2014, ‘Two patterns for
HIPAA regulations’, Procs. of AsianPLoP (Pattern
Languages of Programs), Tokyo, Japan.

Fernandez, E. B. and Mujica, Sergio 2014, ‘From domain
models to secure and compliant applications’, Procs.
12th LACCEI.

Fernandez, E. B., Monge, Raul, and Hashizume, Keiko
2015, ‘Building a security reference architecture for
cloud systems’, Requirements Engineering. DOI:
10.1007/s00766-014-0218-7.

Fernandez, E. B., Monge, R., Carvajal, Encina, O.,
Hernandez, J., and Silva, P., R. 2014, ‘Patterns for
Content-Dependent and Context-Enhanced
Authorization’. Proceedings of 19th European
Conference on Pattern Languages of Programs,
Germany.

Fowler, M. 1997, Analysis patterns – Reusable object
models, Addison-Wesley.

Gamma, E., Helm, R., Johnson, R., Vlissides, J. 1994,
Design Patterns: Elements of Reusable Object-
Oriented Software, Addison-Wesley, Boston, Mass.

GLBA 2015, Gramm-Leach-Bliley Act. Available from:
<http://www.business.ftc.gov/privacy-and-security/
gramm-leach-bliley-act. [10 January 2015].

Hamdaqa, M. and Hamou-Lhadj, A. 2009, ‘Citation
Analysis: An Approach for Facilitating the Analysis of
Regulatory Compliance Documents’, Procs. 2009 6th
Int. Conf. on Information technology: New
Generations, IEEE, 278-283.

HIPAA 2015, Understanding Health Information Privacy.
Available from: http://www.hhs.gov/ocr/privacy/
hipaa/understanding/index.html. [8 January 2015].

HIPAA 2013, HIPAA Administrative Simplification.
Available from: <http://www.hhs.gov/ocr/privacy/
hipaa/administrative/combined/hipaa-simplification-
201303.pdf. [10 January 2015].

Lam, Peifung E., Mitchell, John C., Sharada Sundaram
2009, ‘A Formalization of HIPAA for a Medical
Messaging System’, in Trust, Privacy and Security in
Digital Business, Lecture Notes in Computer Science,
Volume 5695, 73-85.

Massacci, F., Presti, M., and Zannone, N. 2005, ‘Using a
security requirements engineering methodology in
practice: the compliance with the Italian data protection
legislation’, Computer Standards & Interfaces, 27 (5),
445-455.

Massey, A.K., Smith, B., Otto, P.N., and Anton, A.I. 2011,
‘Assessing the accuracy of legal implementation
readiness decisions’, 19th IEEE Int. Reqs. Eng. Conf.,
207-216.

PCI 2015, Official Source of PCI DSS Data Security
Standards. Available from: <https://www.pcisecurity
standards.org/security_standards/ index.php>. [11
January 2015]

Rumbaugh, J., Jacobson, I., and Booch, G. 1999, The
Unified Modeling Language Reference Manual,
Addison-Wesley, Boston, Mass.

Sorgente, T. and Fernandez 2004, ‘Analysis patterns for
patient treatment’, Procs. of PLoP.

SOX 2015, The Sarbanes-Oxley Act. Available from :<
http://www.soxlaw.com/>. [11 January 2015].

Taylor, R. N., Medvidovic, N., and Dashofy, N. 2010,
Software architecture: Foundation, theory, and
practice, Wiley.

Uzunov, A., Fernandez, E. B., Falkner, K. 2015, ‘ASE: A
Comprehensive Pattern-Driven Security Methodology
for Distributed Systems’, Journal of Computer
Standards & Interfaces , Volume 41, September 2015,
Pages 112-137, http://www.sciencedirect.com/science
/article/pii/S0920548915000276

Warmer, J. and Kleppe, A. 2003, The Object Constraint
Language (2nd Ed.), Addison-Wesley.

SECRYPT�2015�-�International�Conference�on�Security�and�Cryptography

440

