
Reactive Planning on a Collaborative Robot for Industrial Applications

Gautier Dumonteil1, Guido Manfredi2, Michel Devy2, Ambroise Confetti1 and Daniel Sidobre2;3

1Siemens Industry Software SAS, Miniparc 2, 478 rue de la Decouverte, 31670 Labege, France
2CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France

3Univ. de Toulouse, UPS, LAAS, F-31400 Toulouse, France

Keywords: Industrial Robotics, Cobot, Reactive Planning, Obstacle Detection, ROS Architecture.

Abstract: A challenge for roboticists consists in promoting collaborative robotics for industrial applications, i.e. allowing
robots to be used close to humans, without barriers. Safety becomes the key issue. For manipulation tasks,
a part of the problem is solved using new arms like the KUKA LWR, which is able to physically detect a
collision from torque measurements on each joint. Nevertheless it is better to avoid collisions, especially if
the obstacle is the arm or the head of an operator. This paper describes how obstacles could be detected and
avoided, using a single Kinect sensor for the monitoring of the workspace and the reactive planner of the
KineoWorksT M software library for the real-time selection of an avoidance trajectory. Experimental results
are provided as a proof that this dynamic obstacle avoidance strategy works properly.

1 INTRODUCTION

An important challenge for industrial countries con-
cerns the renovation of industrial sites, with several
objectives, such as higher productivity, improved ver-
satility and flexibility of the production system, and
improved safety for the workers, especially the reduc-
tion of injury and musculoskeletal disorders.

For this reason new robots appeared 10 years ago,
such as the KUKA Light-Weight-Robot (LWR) or the
Neuronics Katana arms, among others. These robots
have been designed with respect to the ISO standard
10218-1 defining the safety rules to be respected by
collaborative robots, i.e. robots which can be de-
ployed close to humans. Figure 1 shows some con-
texts for the deployment of collaborative robots as co-
workers for industial applications. We study these use
cases in the context of the Industrial Cooperative As-
sistant Robotics (ICARO) project.

In the use case considered in this paper, it is
mainly a manipulator executing motions close to an
operator. The complete experiment involves a phys-
ical interaction between the robot and the operator,
i.e. the operator executes an insertion on an object
grasped by the manipulator. In the Factory of the Fu-
ture, such collaborative tasks will be authorized only
if safety is guaranteed for the operator, i.e. by the use
of intrinsic and extrinsic behaviours to minimize col-
lision risks, especially with the operator.

These robots are endowed with intrinsic safety
behaviours; they are able to detect a collision from
torque measurements made in real time on every joint.
This is not sufficient, since an operator could be in-
jured by collisions before the robot stops effectively.
Therefore it is necessary to detect from extrinsic sens-
ing, the presence of obstacles along a planned trajec-
tory, and then to modify the trajectory online, so that
these obstacles are avoided. First, using the modules
available on the ROS web site (ros, 2010), it is possi-
ble to perform an experiment with the robot stopping
as soon as an obstacle is detected on the trajectory,
and restarting as soon as the path is free.

This paper presents a more reactive approach, in-
tegrating the ROS middleware with the reactive plan-
ner developped by Siemens PLM Software (formerly
Kineo CAM), and evaluating using a dedicated set-
up with a KUKA arm available at LAAS-CNRS. It is
also proposed to integrate the SoftMotion controller
developped by LAAS-CNRS for collaborative manip-
ulators interacting with humans, in place of the Re-
flexxes module available with ROS. Presented here is
the principle of the planner with initial experimental
results.

Section II proposes a very synthetic state of the
art. Section III recalls how to use the OctoMap mod-
ule in order to monitor the robot path during motion
execution. It has been improved to be used efficiently
for obstacle detection. Section IV describes the reac-

450 Dumonteil G., Manfredi G., Devy M., Confetti A. and Sidobre D..
Reactive Planning on a Collaborative Robot for Industrial Applications.
DOI: 10.5220/0005575804500457
In Proceedings of the 12th International Conference on Informatics in Control, Automation and Robotics (ICINCO-2015), pages 450-457
ISBN: 978-989-758-123-6
Copyright c 2015 SCITEPRESS (Science and Technology Publications, Lda.)

Figure 1: Some examples where co-workers execute collab-
orative tasks with humans, either during the learning step of
an action, or for executing assembly operations in cluttered
environments.

tive planner, while Section V shows how it has been
integrated with the other ROS modules. Section VI
proposes some experimental results. Finally section
VII summarizes our contribution and speaks about
our on-going works.

2 STATE OF THE ART FOR
OBSTACLE DETECTION AND
AVOIDANCE

Obstacle detection and avoidance is a classical topic
in robotics, that has been overall studied for mobile
robots navigating in cluttered environments. Con-
cerning manipulators, generally, it is considered that
the robot is alone, knows perfectly its workspace, so
that paths are always generated in the free space; these
hypothesis are no more possible for collaborative ma-
nipulation tasks.

Several recent works address dynamic obstacle
detection and avoidance while an arm executes a
planned trajectory. Flacco et al (Flacco et al., 2012)
present a simple variant of a classical potential field
method for safe human-robot cooperation. It enables
real-time generation of repulsive commands for the
robot to avoid collisions. First the concept of depth
space is introduced in order to evaluate distances be-

tween the robot and possibly moving obstacles, and to
estimate their velocities, directly from depth images
acquired by a Kinect sensor. These distances and ve-
locities are exploited to generate repulsive vectors that
are integrated in the control law applied on the robot
while executing a generic motion task. The complete
collision avoidance framework, has been validated on
a KUKA LWR IV executing tasks in a dynamic envi-
ronments with obstacles and a human.

Yang and Brock (Yang and Brock, 2010) pre-
sented an original solution, though lacking convinc-
ing experimental validation and generic obstacle de-
tection capabilities. It is based on a novel motion gen-
eration technique, called elastic roadmap, proposed to
generate robust and globally task-consistent motion in
dynamic environments. Building and following a re-
active path in real time, the motion must satisfy dif-
ferent classes of constraints for a redundant mobile
manipulator for which the end effector follows a path.

Considering our use cases about collaborative
robotics, these two approaches have important draw-
backs. Flacco et al reacts only at control level by try-
ing to increase distance to obstacles; Yang and Brock
provide a solution taking advantage of a mobile arm,
but they do not take into account human constraints.

In our applications, the set-up is simpler, with only
a fixed manipulator (without considering that this arm
is mounted on a mobile platform by now); this arm
has to execute a plan, and to reactively adapt this plan
if an obstacle is detected. The path is directly re-
planned in real time.

The ROS-based robot motion control architectures
make use of the Reflexxes framework (Kröger and
Wahl, 2010) (T.Kröger, 2011) which allows to trans-
form a path in an on-line time-defined trajectory. This
intermediate layer allows to generate jerk-limited and
continuous motions, taking into account constraints
on the dynamic robot capabilities with low latencies
(1ms for the low-level control loop). Our reactive
planner has been firstly integrated with the Reflexxes
framework.

Even if the Reflexxes framework is very efficient,
it does not guarantee an error bound between the ini-
tial path and the executed trajectory. The current
version of our system takes profit of the SoftMotion
framework as the robot controller (Broquere et al.,
2008) (Broquère and Sidobre, 2010). The SoftMo-
tion controller has been independantly developped in
order to generate motions for collaborative manipula-
tors, i.e. soft motions more tolerable by an operator;
this module was previously validated and adapted for
a KUKA LWR-IV arm, as it was presented in (Zhao
et al., 2014). Our reactive planner produces a path
to be executed by the robot as a polygonal line de-

Reactive�Planning�on�a�Collaborative�Robot�for�Industrial�Applications

451

fined by a sequence of via-points. Using smoothing
techniques, SoftMotion computes firstly a trajectory
stopping at via-points and then smooth the trajectory
near each vertex. The smoothed area is managed to
maintain the moving parts inside a pre-defined tube,
so respecting error bounds specified by the user. The
system can adapt the kinematic bounds (velocity, ac-
celeration and jerk) in real time making the trajectory
more acceptable to humans.

3 OBSTACLE DETECTION

The KineoT M Collision Detector (KCD) provides fast
and reliable collision detection, based on minimal dis-
tance computations. This module is synchronized
with the OctoMap module (Hornung et al., 2013).
The OctoMap is updated at 30Hz with the point
clouds acquired by an Xtion PRO LIVE RGB-D cam-
era.

In the OctoMap updating process there is a com-
promise between updating speed and noise: the faster
the update, the easier noise appears. Has we are do-
ing reactive planning, we want the OctoMap to be up-
dated as quickly as possible. In order to avoid the
introduction of noise in the OctoMap, we must use ro-
bust noise filters. In fact, before a point cloud is added
to the OctoMap, it undergoes three filtering steps. The
first step removes the points corresponding to NaN
depth values, typically points at infinity or on specu-
lar surfaces, and points out of reach of the robot’s arm,
with which there is no possible collision. The second
step filters out parts of the point cloud corresponding
to robot joints. During this step, a correct hand-eye
calibration is crucial as it will determine the quality
of this filtering. Though most of the noise sources are
now removed, a third step is necessary. Indeed, the
sensor can generate spurious points at random posi-
tions which impair the reactive planning by blocking
free paths.

In order to limit the apparition of such sparse out-
liers, we use a statistical filter (Rusu and Cousins,
2011) available in the PCL library (pcl, 2010). For all
points, the statistical filter measures the distance be-
tween every point and its closest N neighbors. These
data are fitted to a Gaussian. A threshold is set in
function of the mean and variance of the Gaussian.
Every point for which the mean distance to its neigh-
bours is higher than the threshold, is considered as an
outlier and is removed.

4 SIEMENS REACTIVE PATH
PLANNING ROS PACKAGE

As part of the ICARO project, we have developed a
reactive path planning package over the ROS mid-
dleware. This kws ros interface package (hereafter
kws ros), is built on top of the KineoWorksT M soft-
ware component. KineoWorks addresses all aspects
of motion processes including collision-free auto-
mated path planning. It includes the most common
motion types, such as joint motion, and features an
advanced algorithm for detecting collisions along a
trajectory, which is both fast and exact, regardless
of kinematical complexity. The reactive path plan-
ning involves two packages: the kws ros package
dedicated to trajectory planning, interacts with the
KineoT M Collision Detector (hereafter, KCD).

4.1 General Structure

The kws ros package contains two nodes, one in
charge of all collision-free path planning tasks and the
other performing reactive control (Yoshida and Kane-
hiro, 2011) over the executing trajectory. Both nodes
embed a representation of the scene into KCD. This
one has to be defined offline in a dedicated CAD mod-
eller, the Kite module, by providing CAD models of
static obstacles and parts of the robot, together with
its kinematics model. The representation is loaded at
node launch and it is then enriched, for reactive pur-
pose, by the dynamic point cloud data such as those
obtained through laser scanning or optical vision sen-
sors. KCD enables collision detection between point
clouds and the rest of the environment. Each one of
these nodes is implemented using a robust state ma-
chine fully driven by the ROS actionlib protocol al-
lowing multi process communication. Both nodes up-
date the robot position by a ROS topic and provide
convenient topics to add, move, remove, attach and
detach geometric parts on the fly. This allows cover-
ing a wide variety of scenarios from simple pick and
place tasks to complex human collaboration tasks.

4.2 Reactive Path Planning

Reactive path planning is mainly performed by the
controlling node which basically interacts with the
path planning node and some critical nodes execut-
ing the global task, here grouped in the ICARO stack,
such as the trajectory execution node. The reactive
strategy is implemented in its state machine by four
states described in figure 2.
WAITING State: A simple state waiting for user
input.

ICINCO�2015�-�12th�International�Conference�on�Informatics�in�Control,�Automation�and�Robotics

452

Figure 2: Controlling node state machine. Colors correspond to different actionlib types. Arrows indicate sending or receiving
events.

PLANNING State: The user has requested a robot
motion. The controller requests a path plan via
the path planner node and waits for the result. For
robustness, a fallback strategy is implemented to retry
the path planning in case of failure if a predefined
timeout has not yet been reached. If the path planner
node is still failing, then the robot motion is canceled.
Oterwise, the controller retrieves a collision free
trajectory and sends it for execution via the trajectory
executor node.

MONITORING State: This state is entered when
a trajectory is being executed by the robot. The
controller monitors the robot position to extract the
remaining trajectory to follow and test it for collision
in a fast way, without distance computation. If no
collision is detected, it continues monitoring until full
trajectory execution. If a collision is detected then it
switches to the next state.

MONITORING WITH PLANNING PENDING
State: In this state, the controller has already detected
a collision over the trajectory. Therefore, it sends
a new path plan request to the path planning node

with the current robot position as start configuration
and the initial user goal configuration. Then it con-
tinues to monitor the remaining trajectory. Collision
detection in this state is applied more accurately;
it includes distance computation. If the minimal
distance allowed between the robot and the environ-
ment is not yet reached, it continues to monitor and
waits for the response of the path planning node. A
fallback strategy is also implemented in this state
in case of path planning failure. Several exit events
are taken into account: if the trajectory is no longer
colliding, the controller cancels the path plan request
and switches back to the monitoring state; if the
path planning node fails to find a new collision free
trajectory, or reaches the timeout, then the robot
motion is stopped and the controller returns to the
initial waiting state. And finally, if the path plan
succeeds on time, the current executing trajectory is
cancelled and the controller switches to the monitor-
ing state which sends the new trajectory for execution.

Since a small amount of time can be spent by the
path planning node to find a new collision free tra-
jectory, the robot position will not be the same as the
start configuration of the new trajectory. To avoid the

Reactive�Planning�on�a�Collaborative�Robot�for�Industrial�Applications

453

robot to go backwards during the new trajectory ex-
ecution, a fast collision free optimization is done on
the first four configurations.

5 INTEGRATION USING THE
ROS MIDDLEWARE

The ICARO project has performed meaningful exper-
iments, related to the use cases illustrated on figure 1.
These experiments involve numerous modules (plan-
ning, perception on the operator or on objects, gesture
recognition, object recognition, object grasping, con-
trol. . .) which are integrated using the ROS middle-
ware (ros, 2010). This paper is only concerned by the
reactive motion control modules; so we do not present
modules related to perception or sensor-based control.

The set-up can be seen on figure 6, with a Kinect
sensor mounted on a pan and tilt platform above
the KUKA LWR ARM. The arm is mounted on a
Neobotix mobile robot, but here neither the pan and
tilt platform or the robot are exploited for this paper.
The calibration process has been executed offline, us-
ing (opencv, 2010) for the Kinect calibration and (pcl,
2010) in order to estimate the Kinect reference frame
with respect to the arm’s frame, executing known mo-
tions of the arm, while matching the arm bodies in the
depth images acquired by the Kinect sensor.

A first robot motion control architecture pre-
sented on Figure 3 has been integrated and vali-
dated. It uses the standard OMPL module for path
planning, and the Reflexxes framework (T.Kröger,
2011) for motion generation. The experiment pre-
sented in the next section, have been performed us-
ing the architecture presented on Figure 4, where the
kws ros interface for the planning function and the
KineoT M Collision Detector (KCD), replace the stan-
dard ROS modules. The planned trajectory has to be

!"#$%

&'!%

("))*+*",%

$,#*'",$!$,-%
"(-"!&.%

-'&/$(-"'0%

1*)-$'%
'$1)$22$+%

()"34%

1*)-$'+%
+$,+"'%

'"5"-%

&'!%

6"&)%

'73+-%

"!.)%

.)&,,$'%

Figure 3: Architecture using available modules on (ros,
2010).

Figure 4: Architecture integrating the KCD and Kws mod-
ules with Reflexxes.

Figure 5: Architecture integrating the SoftMotion frame-
work for motion generation.

pre-processed for feeding the Reflexxes module in or-
der to generate motions.

In the last version, we have replaced Reflexxes by
the SoftMotion module, which generates better mo-
tions with respect to the operator acceptability; see
Figure 5.

6 EXPERIMENTAL RESULTS

The reactive path planning has been successfully
tested for hours in different simulated environments
and real scenarios, on both single computer and multi
computers configuration. A video (video, 2014) illus-
trates some experimental results; the following figures
are extracted from this video.

The KUKA arm is programmed to execute a sim-
ple trajectory: a loop between two positions A and B.
An operator perturbs this process, introducing an ob-
stacle on the path. Figure 6 presents the initial A and
final B positions of this nominal trajectory.

Only two situations are illustrated here. Figure 7
shows a situation where the planner fails in finding
a new path that avoids the obstacle. Therefore it is
blocked until the obstacle is removed and disappears
fromthe OctoMap. Nevertheless due to the latency on
the OctoMap, it modifies the nominal trajectory going
under a virtual obstacle, created by isolated points re-
maining in the map.

ICINCO�2015�-�12th�International�Conference�on�Informatics�in�Control,�Automation�and�Robotics

454

Figure 7: Experiments: the operator has blocked the arm which stops as soon as the obstacle apperas in the map. Here the
generation of a new path failed; so the arm restarts as soon as the obstacle disappears from the map; nevertheless, due to a
latency in the map, it avoids a virtual obstacle going under virtual points.

Figure 6: Experiments: execution of a nominal trajectory
from an initial point (left) to a final one (right).

Figure 8 shows a replanning process. The planner
finds a new path, going above the detected obstacle.
Many other situations have been tested.

7 CONCLUSIONS

This paper presented a reactive planification algo-
rithm, that has been integrated in a ROS architecture
devoted to the execution of collaborative manipula-
tion tasks between a KUKA LWR arm and an opera-
tor. Such a planner, associated with a module dealing

Reactive�Planning�on�a�Collaborative�Robot�for�Industrial�Applications

455

Figure 8: Experiments: a dynamic obstacle avoidance. The operator tries to block the arm, which generates a trajectory
towards the goal, through a subgoal under the obstacle.

with obstacle detection, guarantees that a robot arm
could detect and avoid a human before any collision.

The detection module is built upon the OctoMap
algorithm already integrated under ROS. It has been
necessary to adapt OctoMap and to apply specific tun-
ings so that (1) detected obstacles disappear from the
map as soon as the corresponding actual objects are
no longer on the trajectory the robot is executing, and
(2) the robot is not itself detected as an obstacle.

As soon as an obstacle detection occurs, the plan-
ner module tries to find another path, continuous with
the initial ones in order to reach the goal. If it fails,

the robot performs as it would do by now with the
OMPL module under ROS: it waits until the obstacle
disappears from the map.

As a future work, the OctoMap module has to be
modified in order to minimize the latency when an
obstacle appears or disappears in the map. Moreover
the link between the kws ros reactive planner and the
SoftMotion controller has to be refined in order to
make more dynamic the obstacle avoidance.

ICINCO�2015�-�12th�International�Conference�on�Informatics�in�Control,�Automation�and�Robotics

456

ACKNOWLEDGEMENTS

This work has been funded by the ICARO project
from the ANR CONTINT program (french Research
Ministry) and by the CAAMVIS project from the
AEROSAT program (french Industry Ministry and
Midi-Pyrénées region).

REFERENCES

Video (2014): homepages.laas.fr/michel/documents/ Reac-
tivePlanningJido2LAAS HD.mp4.

Open CV (2008). OpenCV: Open Computer Vision library.
opencv.willowgarage.com/.

PCL (2010). PCL: Point Cloud Library.
www.pointclouds.org.

ROS (2010). ROS: Robot Operating System. www.ros.org.
Broquère, X. and Sidobre, D. (2010). From motion plan-

ning to trajectory control with bounded jerk for ser-
vice manipulator robots. In IEEE Int. Conf. Robotics
and Automation, Anchorage (USA), pages 4505–4510.

Broquere, X., Sidobre, D., and Herrera-Aguilar, I. (2008).
Soft motion trajectory planner for service manipulator
robot. Proc. IEEE/RSJ Int. Conf. Intelligent Robots
and Systems (IROS) Nice (France), pages 2808–2813.

Flacco, F., Kroger, T., De Luca, A., and Khatib, O. (2012).
A depth space approach to human-robot collision
avoidance. In Robotics and Automation (ICRA), 2012
IEEE International Conference on, pages 338–345.
IEEE.

Hornung, A., Wurm, K., Bennewitz, M., Stachniss, C., and
Burgard, W. (2013). Octomap: An efficient proba-
bilistic 3d mapping framework based on octrees. Au-
tonomous Robots Journal.

Kröger, T. and Wahl, F. (2010). On-line trajectory gener-
ation: Basic concepts for instantaneous reactions to
unforeseen events. IEEE Trans. on Robotics, pages
94–111.

Rusu, R. and Cousins, S. (2011). 3d is here: Point cloud
library (pcl). In Proc. IEEE Int. Conf. on Robotics
and Automation (ICRA), pages 1–4.

T.Kröger (2011). Opening the door to new sensor-based
robot applicationsthe reflexxes motion libraries. In
Proc. IEEE Int. Conf. on Robotics and Automation,
Shanghai, China.

Yang, Y. and Brock, O. (2010). Elastic roadmapsmotion
generation for autonomous mobile manipulation. Au-
tonomous Robots, 28(1):113–130.

Yoshida, E. and Kanehiro, F. (2011). Reactive robot motion
using path replanning and deformation. In Proc. IEEE
Int. Conf. on Robotics and Automation, IEEE press,
Shanghai, China.

Zhao, R., Sidobre, D., and He, W. (2014). Online via-
points trajectory generation for reactive manipula-
tions. In IEEE/ASME Int. Conf. on Advanced Intelli-
gent Mechatronics (submitted to AIM 2014), Besanon,
France.

Reactive�Planning�on�a�Collaborative�Robot�for�Industrial�Applications

457

