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Abstract: We design and implement the espionage infrastructure to launch a cache-based side channel attack on AES. 
This includes a spy controller and a ring of spy threads with associated analytic capabilities – all hosted on a 
single server. By causing the victim process (which repeatedly performs AES encryptions) to be interrupted, 
the spy threads capture the victim’s footprints in the cache memory where the lookup tables reside. 
Preliminary results indicate that our setup can deduce the encryption key in fewer than 30 encryptions and 
with far fewer victim interruptions compared to previous work. Moreover, this approach can be easily 
adapted to work on diverse hardware/OS platforms and on different versions of OpenSSL. 

1 INTRODUCTION 

Through much of the history of cryptography, 
attacks on cryptographic algorithms have focused on 
cracking hard mathematical problems such as the 
factorization of very large integers (which are the 
product of two very large primes) and the discrete 
logarithm problem (Menezes et al., 1996). More 
recently, however, side channel attacks have gained 
prominence. These attacks leak sensitive 
information through physical channels such as 
power, timing, etc. and, typically, are specific to the 
actual implementation of the algorithm (Brumley 
and Boneh, 2005). An important class of timing 
attacks are those based on obtaining measurements 
from cache memory systems. 

The Advanced Encryption Standard (AES) 
(Daemen and Rijmen, 2002) a relatively new 
algorithm for secret key cryptography, is now 
ubiquitously supported on servers, browsers, etc. 
Almost all software implementations of AES 
including the widely used cryptographic library, 
OpenSSL, make extensive use of table lookups in 
lieu of time-consuming mathematical field 
operations. Cache-based side channel attacks aim to 
retrieve the key of a victim performing AES by 
exploiting the fact that access times to different 
levels of the memory hierarchy are different.  

One possible attack scenario involves a victim 
process running on behalf of a data storage service 

provider who securely stores documents from 
multiple clients and furnishes them on request after 
due authentication. The same key or set of keys is 
used to encrypt documents from different clients 
prior to storage. The attacker or spy shares the same 
core as the victim. The spy process flushes out all 
the cache lines containing the AES tables – these are 
used by the victim in encrypting documents prior to 
storage. When CPU control returns to the victim, it 
brings in some of the evicted line(s). When control 
returns back to the spy, it determines which of the 
evicted lines were fetched by the victim by 
measuring the time to access them. Information on 
which lines of cache were accessed by the victim is 
critical in deducing the encryption key. 

Cache-based side channel attacks belong to one 
of three categories. Timing-driven attacks measure 
the time to complete an encryption. Trace-driven 
attacks make use of when and in what order specific 
lines of cache are accessed in the course of an 
encryption. Finally, access-driven attacks need 
information only about which lines of cache have 
been accessed, not the precise order. Two of the 
most successful access-driven attacks (Tromer et al., 
2010), (Gullasch et al., 2011) assume that the victim 
and spy are co-located on the same core.  

Tromer et al., (2010) assume that the spy is able 
to monitor the state of the cache containing the AES 
tables after each encryption performed by the victim. 
However, this may not always be practically 
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feasible. Moreover, several hundred encryptions are 
required to compute the complete AES key. 
Gullasch et al., (2011) use hundreds of spy threads 
to monitor the cache. The completely fair (process) 
scheduler (CFS) in Linux guarantees that each spy 
thread and the victim process get the same aggregate 
CPU time in steady state. Also, the sleep-wakeup 
routines of the spy threads are carefully controlled 
resulting in preemption of the victim when a 
sleeping thread wakes up. This, together with the 
scheduler’s “fairness guarantees”, ensures that the 
victim is preempted after it makes only a single table 
access. Their fine-grained approach requires a neural 
network to handle the large number of false 
positives. Moreover, the slowdown caused by 
frequent interruptions of the victim may arouse 
suspicion.  

The goal of our work is the design and 
implementation of an espionage network with 
associated analytic capabilities that retrieve the AES 
key using fewer encryptions and also fewer 
interruptions to the victim process. We aim for both 
simplicity and versatility. Earlier attacks may work 
on only specific OS versions or with specific 
versions of OpenSSL. Further, hardware prefetching 
(Hennessy and Patterson, 2012) (implemented on 
many modern processors) may render those attacks 
unsuccessful. To the extent possible, we seek to 
demonstrate successful attacks on diverse computing 
platforms and with different OpenSSL versions. 

This paper is organized as follows: Section 2 
summarizes related work. Section 3 contains a brief 
introduction to AES implementation using lookup 
tables and the cryptanalytic aspects of the attack. In 
Section 4 we present the design and implementation 
of our espionage network. A preliminary analysis of 
the success of our approach is presented in Section 5 
while Section 6 concludes the paper. 

2 RELATED WORK 

Software implementations of AES based on lookup 
tables were first exploited by Bernstein (2005). They 
report the extraction of a complete AES key by 
exploiting the timing dependencies of encryptions 
caused by cache on a Pentium-III machine. 
Although their attack is generic and portable, it 
needs 2ଶ଻.ହ encryptions and sample timing 
measurements with known key in an identical 
configuration of target server. 

Tsunoo et al., (2003) demonstrated a timing-
driven cache attack on DES. They focused on 
overall hit ratio during encryption and performed the 

attack by exploiting the correlation between cache 
hits and encryption time. A similar approach was 
used by Bonneau and Mironov (2006) where they 
emphasized individual cache collisions during 
encryption instead of overall hit ratio. Although the 
attack by Bonneau et al. was a considerable 
improvement over previous work by Tsunoo et al. 
(2003), it still requires 2ଵଷ timing samples. 

Osvik et al., (2006) proposed an access-driven 
cache attack where they introduced the Prime and 
Probe technique. In the Prime phase, the attacker 
fills cache with its own data before encryption 
begins. During encryption, the victim evicts some of 
the attacker's data from cache in order to load 
lookup table entries. In the Probe phase, the attacker 
calculates reloading time of its data and finds cache 
misses corresponding to those lines where the victim 
loaded lookup table entries. In the synchronous 
version of their attack, 300 encryptions were 
required to recover the 128 bit AES key on 
Athlon64 system and in the asynchronous attack, 
45.7 bits of information about the key were 
effectively retrieved.  

The ability to detect whether a cache line has 
been evicted or not was further exploited by Neve 
and Seifert (2007). They designed an improved 
access-driven cache attack on the last round of AES 
on single-threaded processors. However the 
practicality of their attack was not clear due to 
insufficient system and OS kernel version details. 

Gullasch et al., (2011) proposed an efficient 
access driven cache attack when attacker and victim 
use a shared crypto library. The spy process first 
flushes the AES lookup tables from all levels of 
cache and interrupts the victim process after 
allowing it a single lookup table access. After every 
interrupt, it calculates the reload time to find which 
memory line is accessed by the victim. This 
information is further processed using a neural 
network to remove noise in order to retrieve the 
AES key.  

Weiß et al., (2012) used Bernstein's timing attack 
on AES running inside an ARM Cortex-A8 single 
core system in a virtualized environment to extract 
the AES encryption key. Irazoqui, Inci, Eisenbarth 
and Sunar (2014a) performed Bernstein's cache 
based timing attack in a virtualized environment to 
recover the AES secret key from co-resident VM 
with 2ଶଽ encryptions. Later Irazoqui et al., (2014b) 
used a Flush + Reload technique and recovered the 
AES secret key with 2ଵଽ encryptions. 
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3 PRELIMINARIES 

We first summarize the software implementation of 
AES and then outline the Two Round Attack used in 
this paper. 

A. AES Summary 

AES is a symmetric key algorithm standardized by 
the U.S. National Institute of Standards and 
Technology (NIST) in 2001. Its popularity is due to 
simplicity in its implementation yet it is resistant to 
various attacks including linear and differential 
cryptanalysis. The full description of AES cipher is 
provided in (Daemen and Rijmen 2002). Here, we 
briefly summarize only the relevant aspects of its 
software implementation.  

AES is a substitution-permutation network. It 
supports a key size of 128, 192 or 256 bits and block 
size = 128 bits. A round function is repeated a fixed 
number of times (10 for key size of 128 bits) to 
convert 128 bits of plaintext to 128 bits of 
ciphertext. The 16 byte input is expressed as a 4×4 
array of bytes. Each round involves four steps – 
Byte Substitution, Row Shift, Column Mixing and a 
round key operation. The round operations are 
defined using algebraic operations over the field 
,ሺ2଼ሻ. The original 16-byte secret key ሺ݇଴ܨܩ . . , ݇ଵହሻ 
is used to derive 10 different round keys to be used 
in the round key operation of each round. 

In a software implementation, field operations 
are replaced by relatively inexpensive table lookups 
thereby speeding encryption and decryption. In the 
versions of OpenSSL targeted in this paper, five 
tables are employed (each of size 1KB). Only four 
table lookups and four XORs are involved in 
computing each of the four columns per round. Each 
table, ௜ܶ 	, 0 ൑ 	݅	 ൑ 4 , is accessed using an 8 bit 
index resulting in a 32-bit output.  

Given a 16-byte plaintext ݌ ൌ ሺ݌଴	, . . . , ଵହሻ݌ , 
encryption proceeds by computing a 16-byte 

intermediate state ݔሺ௥ሻ 	ൌ 	 ሺݔ଴
ሺ௥ሻ, . . . , ଵହݔ

ሺ௥ሻሻ  at each 
round ݎ . The initial state ݔሺ଴ሻ  is computed using 
Equation 5. The first 9 rounds are computed by 
updating the intermediate state using the following 
set of equations, for ݎ ൌ 0, . . . , 8. 

 

ቀݔ଴
ሺ௥ାଵሻ, ଵݔ

ሺ௥ାଵሻ, ଶݔ
ሺ௥ାଵሻ, ଷݔ

ሺ௥ାଵሻቁ 	←

଴ܶ ቂݔ଴
ሺ௥ሻቃ⨁	 ଵܶ ቂݔହ

ሺ௥ሻቃ⨁	 ଶܶ ቂݔଵ଴
ሺ௥ሻ	ቃ⨁	 ଷܶ ቂݔଵହ

ሺ௥ሻቃ⨁	ܭ଴
ሺ௥ା (1)

ቀݔସ
ሺ௥ାଵሻ, ହݔ

ሺ௥ାଵሻ, ଺ݔ
ሺ௥ାଵሻ, ଻ݔ

ሺ௥ାଵሻቁ ←

଴ܶ ቂݔସ
ሺ௥ሻቃ⨁	 ଵܶ ቂݔଽ

ሺ௥ሻቃ⨁	 ଶܶ ቂݔଵସ
ሺ௥ሻቃ⨁	 ଷܶ ቂݔଷ

ሺ௥ሻቃ⨁	ܭଵ
ሺ௥ାଵ (2)

ቀ଼ݔ
ሺ௥ାଵሻ, ଽݔ

ሺ௥ାଵሻ, ଵ଴ݔ
ሺ௥ାଵሻ, ଵଵݔ

ሺ௥ାଵሻቁ ←

଴ܶ ቂ଼ݔ
ሺ௥ሻቃ⨁ ଵܶ ቂݔଵଷ

ሺ௥ሻቃ⨁ ଶܶ ቂݔଶ
ሺ௥ሻቃ⨁	 ଷܶ ቂݔ଻

ሺ௥ሻቃ⨁	ܭଶ
ሺ௥ାଵ (3)

ቀݔଵଶ
ሺ௥ାଵሻ, ଵଷݔ

ሺ௥ାଵሻ, ଵସݔ
ሺ௥ାଵሻ, ଵହݔ

ሺ௥ାଵሻቁ ←

଴ܶ ቂݔଵଶ
ሺ௥ሻቃ⨁ ଵܶ ቂݔଵ

ሺ௥ሻቃ⨁ ଶܶ ቂݔ଺
ሺ௥ሻቃ⨁	 ଷܶ ቂݔଵଵ

ሺ௥ሻቃ	⨁	ܭଷ
ሺ௥ା

 

(4)

Here ܭ௜
ሺ௥ାଵሻ  refers to the ݅௧௛  column vector of the 

ሺݎ ൅ 1ሻ௧௛  round key expressed as a 4x4 array. 
Finally to compute the last round, equations similar 
to the above are used except that table ସܶ  is used 
instead of ଴ܶ, . . . , ଷܶ. The output of the last round is 
the ciphertext. The change of lookup tables in the 
last round (for 10 = ݎ) is due to the absence of the 
Column Mixing step. 

B. Attack Overview 

The granularity of cache access is a block or line 
which is 64 bytes in most of our target machines. 
Each entry in a table is 4 bytes, so there are 16 
entries in each block. Each table contains 256 
entries, so it occupies 16 blocks. The first four bits 
of an 8-bit table index identify a line within the table 
while the last four bits specify the position of the 
entry within the line. Thus the first four bits of a 
table index are leaked if the attacker can determine 
which line of the cache was accessed. 

The access-driven cache timing attack described 
by Osvik et al., (2006) assumes that the attacker 
provides several blocks of plaintext to be encrypted 
by the victim during the course of the attack. It 
involves two steps. The First Round Attack exploits 
the table indices accessed in the first round which 
are simply 

௜ݔ
ሺ଴ሻ ൌ ௜݌ ⨁ ݇௜ , 0 ൑ 	݅	 ൑ 	15 (5) 

Thus the first four bits of each of the 16 bytes of the 
AES key may be derived from the high-order nibble 
of the corresponding plaintext and the corresponding 
line number of the AES table. 

The Second Round Attack seeks to obtain the 
low-order nibble of each byte of the key. These can 
be deduced from the set of equations in Table 1 
which involve only four accesses – one each from 
଴ܶ, ଵܶ, ଶܶ  and ଷܶ  respectively. These equations are 

further used in Section 5. 
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Table 1: Equations used in the Second Round Attack. 

ଶݔ
ሺଵሻ ൌ 	⨁଴݌ሺݏ	 ݇଴ሻ	⨁	ݏሺ݌ହ⨁	݇ହሻ	⨁ 2 ⦁ ⨁ଵ଴݌ሺݏ ݇ଵ଴ሻ ⨁ 3 ⦁ ⨁ଵହ݌ሺݏ ݇ଵହሻ ⨁ ሺ݇ଵହሻݏ ⨁	݇ଶ (6)

ହݔ
ሺଵሻ 	ൌ ݇ଽሻ	ଽ⨁݌ሺݏ	⦁	2	⨁	݇ସሻ	ସ⨁݌ሺݏ	 ⨁ 3 ⦁ ⨁ଵସ݌ሺݏ ݇ଵସሻ ⨁ ⨁ଷ݌ሺݏ ݇ଷሻ ⨁ ሺ݇ଵସሻݏ ⨁ ݇ଵ⨁	݇ହ (7)

଼ݔ
ሺଵሻ ൌ ሻ଼݇	⨁଼݌ሺݏ	⦁	2	 ݇ଵଷሻ	ଵଷ⨁݌ሺݏ	⦁	3	⨁ ⨁ ⨁ଶ݌ሺݏ ݇ଶሻ ⨁ ⨁଻݌ሺݏ ݇଻ሻ ⨁ ሺ݇ଵଷሻݏ ⨁ ݇଴ ⨁ ݇ସ	⨁	଼݇	⨁	1 (8)

ଵହݔ
ሺଵሻ ൌ ⨁	݇ଵଶሻ	ଵଶ⨁݌ሺݏ	⦁	3	 ⨁଺݌ሺݏ	⨁	݇ଵሻ	ଵ⨁݌ሺݏ ݇଺ሻ ⨁ 2 ⦁ ⨁ଵଵ݌ሺݏ ݇ଵଵሻ ⨁ ሺ݇ଵଶሻݏ ⨁ ݇ଵହ ⨁ ݇ଷ	⨁	݇଻	⨁	݇ଵଵ (9)

 

4 THE ESPIONAGE 
INFRASTRUCTURE 

Our espionage infrastructure (Figure 1) comprises an 
Espionage Network and the Centre for Advanced 
Analytics (CAA). The former includes a Spy 
Controller (SC) and a Spy Ring. The SC runs on one 
CPU core while the ring of spy threads runs on 
another core together with the victim. 
 

 

Figure 1: The Espionage Infrastructure. 

Our goal is to cause the execution of spy threads 
and the victim (V) to be interleaved as shown in 
Figure 2 (in steady state). We refer to an execution 
instance of V as a run. During each run, V accesses 
the AES tables and the next spy thread that is 
scheduled attempts to determine which lines of the 
table were accessed in the preceding run of V. The 
default time slice (or quantum) assigned by the OS 
to a process is large enough to accommodate tens of 
thousands of cache accesses. But if V is given this 
full time slice it would perform hundreds of 
encryptions (each encryption involves 160 table 
accesses) thus making it impossible to obtain any 
meaningful information about the encryption key. 

 

 

Figure 2: Execution timeline of spy threads and victim. 

The CFS scheduler employed in many Linux 
versions uses a calculation based on virtual runtimes 
to ensure that the aggregate CPU times allocated to 
all processes and threads are nearly equal. In Figure 
2, the sum of the CPU times allocated to V is equal 
to that of the times given to each of the spy threads. 
If the number of threads is ݊ and they execute in 
round robin fashion, then each run of V is roughly of 
duration ݔ/݊  where ݔ  is the uninterrupted time 
allocated to any running thread. 

The task of a spy thread is to measure the access 
times of each of the cache lines containing the AES 
tables and then flush the tables from all levels of 
cache. It then signals the SC through a shared 
boolean variable, finished, that its task is complete. 
Finally it waits for an amount of time δଵ  before 
blocking on cond. At this point, all spy threads are in 
the blocked state and the OS resumes execution of 
V. 

 
Spy Thread (i):  
while(true) 
 wait (cond) 
 for each cacheLine containing AES 

 tables 
 if(accessTime[cacheLine]<THRESHOLD)  

 isAccessed[cacheLine] = true 
 clflush(cacheLine) 
 finished = true 
 delay loop // time=δଵ 

The SC continuously polls the finished flag. When it 
finds that finished has been set, it waits for time δଶ 
and then wakes up the spy thread that has waited the 
longest.  

 
Spy Controller :  
while (true) 
 while(finished ≠ true) 
 delay loop // time=δଶ 
 signal(nextThread)  
 finished = false  
 

Our experiments were performed on Intel(R) Core-
i5 2540M, 2.60GHz processor running Debian Kali 
Linux 1.1.0, 64bit, kernel versions 3.14.5 and 3.18 
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using the C implementation of AES in OpenSSL 
0.9.8a. This version of OpenSSL uses a separate 
table for the last round of encryption. The core-i5 
has 3-level cache architecture. The L1 cache is 
32KB (8-way associative), L2 cache is 256KB (8-
way associative) and L3 cache is 3MB (12-way 
associative). Each CPU core has private L1 and L2 
caches whereas L3 is shared among different CPU 
cores.  

The distribution of cache hit and miss times as 
measured by us were clearly separated as shown in 
Figure 3 (32 - 68 ticks for a cache hit and 200 – 260 
ticks for a cache miss). Based on these 
measurements we set the threshold for hit/miss 
determination = 100 ticks.  

 

Figure 3: Distribution of cache Hit and Miss Times. 

Three design parameters can be tweaked at the 
discretion of the SC. These are the number of 
threads and the two delay parameters, δଵ and δଶ. As 
the number of threads increases, the execution time 
of V during each run decreases and V would make 
fewer table accesses. This is indeed the case as 
shown in Figures 4 and 5. The number of distinct 
accesses per run is concentrated between 28 and 37 
with 10 spy threads but the range decreases to 18-27 
for the case of 40 spy threads. 

The delay at the SC, δଶ, was designed to defer 
waking a spy thread. This was necessitated by the 
fact that occasionally multiple threads would get 
executed in sequence without any intervening run of 
V. Then, when V got scheduled, it computed several 
encryptions and synchronization between the 
espionage network and V was lost. Finally, the delay 
in the spy thread, δଵ, was intended to delay the start 
of a run by V and so decrease the number of table 
accesses made by V if indeed that was necessary. 

The set of accessed lines in each table is 
communicated to the CAA. The latter analyzes the 
results and derives the AES key. Depending on the 
“quality” of input it receives, the CAA may 

recommend a change of design parameters to the 
SC. 

 

Figure 4: # Accesses per run (# Spy Threads =10). 

 

Figure 5: # Accesses per run (# Spy Threads =40). 

In the next section, we perform some back of the 
envelope calculations to demonstrate that the AES 
key on our set-up can be deduced with results from 
fewer than 30 encryptions.  

5 ANALYSIS  

To retrieve a given AES key, we performed 
successive encryptions on random plaintexts with 
that key. Experimental results on the setup described 
in Section 4 indicate that there are almost always 
two consecutive runs containing accesses to ସܶ (see 
Table 2). Let these be denoted R1 and R2 and let the 
run following R2 be R3. The former are useful 
synchronization points signaling that an encryption 
is complete and a new one has begun (or is about to 
begin). If R2 also has accesses to Tables ଴ܶ	–	 ଷܶ , 
then those would certainly include accesses made in 
round 1 of the new encryption. Our experimental 
results with 40 threads in the Spy Ring show that, 
collectively, R2 and R3 access around 7-10 distinct 
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lines in each of ଴ܶ, ଵܶ, ଶܶ and ଷܶ.  

Table 2: Sample number of distinct accesses per table in 
consecutive runs. 

 

Let ߩ௜,௝ denote the subset of distinct line numbers 
in Table ௜ܶ  accessed in the first two runs of 
Encryption 	݆  . Also, let ̂ݖ	 denote the high order 
nibble of	ݖ. We next show how to obtain ݇଴෢ as part 
of the First Round Attack. 

We associate a variable	,  (initialized to 0) ,݁ݎ݋ܿݏ
with each of the 16 possible values of ݇଴. For each 
encryption,	݆ ൌ 1, 2, . . . , ݉, we compute the possible 
values of ݔ ൌ ݕ where	଴ෞ݌	⊕ݕ ∈  and increment	଴,௝ߩ
by 1 the score of ݔ. The ݔ	with the highest score is 
the true value of	݇଴. Indeed, given highly accurate 
measurements by the spies, the true value of ݇଴ will 
end up with a perfect score of ݉  after the ݉ 
encryptions. On the other hand, the probability that 
any other value of ݔ  gets this score is 

only	∏
หఘబ,ೕห

ଵ଺
௠
௝ୀଵ . For ߩ௜,௝	~	8	and	݉ ൌ 9, this works 

out to 2-9. In a similar manner, we can obtain the 
first nibble of each of the 16 bytes of the AES key.  

To obtain the second nibble of each byte of the 
AES key, we use the Second Round Attack 
(Equations 6-9 in Section 3). Consider the 16-bit 
integer, ݖ,  obtained by concatenating candidate 
values for the low-order nibbles of	݇଴, ݇ହ , ݇ଵ଴ and 
݇ଵହ . Again, we associate a variable, ݁ݎ݋ܿݏ , with 
each of the 216 possible values of ݖ  and initialize 
these to 0. For an encryption ݅  and corresponding 
plaintext we do the following. For each possible 

value of ݖ, we obtain the value of ݔଶ
ሺଵሻ෢ from Equation 

6. We then check to see whether	ݔଶ
ሺଵሻ෣ ∈  ,ଶ,௜. If soߩ

we increment by 1 the score associated with ݖ. We 
repeat this for 20-30 encryptions. The ݖ  with the 
perfect score would reveal the true values of the 
low-order nibbles of each of ݇଴ , ݇ହ  , ݇ଵ଴  and ݇ଵହ . 
Performing an analysis similar to that for the First 
Round Attack leads us to conclude that it is highly 

improbable that any other candidate comes close to 
the winner. Finally, the rest of the key bits may be 
obtained using Equations 7, 8 and 9. 

6 CONCLUSIONS 

There are two parts of this work. The first part 
which is heavily experimental can be summarized 
by the following modified lyrics of an evergreen 
song (Synchronicity, 1983). 
 . . .  
Every move you make 
 . . . 
Every step you take 
 . . . 
Every single tick 
Every line you pick 
I’ll be watching you.  
 

We have been able to accurately monitor cache hits 
and misses of the AES lookup tables with our 
espionage network. We have completed a 
preliminary analysis of the results and feel that the 
heuristics to be implemented by the CAA (the 
second part of this work) will obtain the keys with 
around 12 to 30 encryptions. Though we have 
completed our experiments on a specific platform, 
we will next investigate the success of our attack on 
other platforms and other versions of OpenSSL. 
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