
The Web Integration & Interoperability Layer (WIIL)
Turning Web Content into Learning Content using a Lightweight Integration and

Interoperability Technique

Sokratis Karkalas, Manolis Mavrikis and Patricia Charlton
London Knowledge Lab, UCL Institute of Education, University of London, London WC1N 3QS, U.K.

Keywords: Learning Management Systems, Learning Platforms, Interoperability, Integration.

Abstract: This paper presents a technique that enables integration and interoperability of web components with learning
platforms. This technique is proposed as a lightweight alternative to IMS LTI and OpenAjax and is especially
suited to simple client-side widgets that have no back-end dependencies and potential security risks. The
technique has already been used successfully in an experimental learning platform to provide data generated
by various heterogeneous components for intelligent support and learning analytics.

1 INTRODUCTION

Educators have always been trying to take advantage
of technology affordances of their time and introduce
innovative approaches in their teaching. One ma-
jor component of teaching and learning is the devel-
opment and delivery of courseware material. Since
TCP/IP and the advent of WWW a multitude of sys-
tems emerged as precursors of modern Learning Man-
agement Systems (LMS). Systems like TrainingPart-
ner (by GeoMetrix) 1, Teachers Toolbox and Interac-
tive Learning Network (by CourseInfo) 2 and ASAP
(by ePath Learning) 3 attempted to leverage the po-
tential of new technologies and offer efficient organi-
sation, management and dissemination of teaching re-
sources. The appearance of modern LMSs like Moo-
dle 4, Blackboard 5, Sakai 6 and ANGEL Learning
7 and the development of standards like SCORM 8

changed radically the educational landscape (Bohl
et al., 2002). In the 00s the level of acceptance and
adoption started to dramatically increase and the LMS
established itself as the dominant technology for more
than a decade. Nowadays LMSs are mature and cur-

1http://www.trainingpartner.com/
2http://en.wikipedia.org/wiki/CourseInfo
3http://www.epathlearning.com/services/lms/
4https://moodle.org/
5http://uki.blackboard.com/sites/international/globalmaster/
6https://sakaiproject.org/
7http://www.angellearning.com/community/higher ed.html
8http://www.adlnet.gov/scorm.html

rent implementations are stable, robust and reliable
but that is just one side of the coin. LMSs ended
up being treated like any other large-scale enterprise-
wide application (Severance et al., 2010). The
primary concern gradually shifted from education-
related issues to considerations like system stability
and reliability. As a consequence of that the process
of integrating new functionality and instructional con-
tent became more difficult (Severance et al., 2010).
The new challenge now is the ability to balance inno-
vation with stability. The solution for stability was a
shift to an architectural approach that offers the ability
to decouple functionality into independent and self-
sufficient components that interoperate via standard-
ised communication protocols potentially over a net-
work (González et al., 2009). Innovation is empow-
ered by the ability and the freedom to combine poten-
tially heterogeneous learning components into forma-
tions that offer new and unique learning experiences.
The solution employed for the stability problem led to
the development of a new market for learning compo-
nents. These components are typically fully-fledged
web-based applications equipped with their own in-
frastructure in terms of security and operations and
able to provide their services as stand-alone appli-
cations. The need for these applications to integrate
with LMSs without sacrificing stability led to the de-
velopment of standards like the IMS Learning Tools
Interoperability (LTI) specification and OpenAjax 9.

This is definitely a step forward but educators are

9http://www.openajax.org/index.php

Karkalas, S., Mavrikis, M. and Charlton, P..
The Web Integration & Interoperability Layer (WIIL) - Turning Web Content into Learning Content using a Lightweight Integration and Interoperability Technique.
In Proceedings of the 7th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K 2015) - Volume 2: KEOD, pages 139-146
ISBN: 978-989-758-158-8
Copyright c© 2015 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

139



still finding development in LMSs too restrictive for
their purposes (Mott, 2010). LMSs are designed to
be very controllable and well-structured. That makes
them very efficient in supporting administrative func-
tions but relatively inflexible in supporting student-
centered learning scenarios. Nowadays, educators see
learning platforms as highly customisable mashup ap-
plications that don’t necessarily impose prefabricated
and static teaching-centered material to students. Ed-
ucators want the freedom to easily develop forma-
tions of components that are available on the web and
make them part of their educational practice with lit-
tle or no configuration overhead in a way that resem-
bles systems like (Gurram et al., 2008). This is a
browser-based application composition environment
and run-time that simplifies development on top of ex-
isting complex systems. This new trend leads to sys-
tems that deviate from the basic LMS norm. These
systems are called Personal Learning Environments
(PLE) (Severance et al., 2008) or Personal Learn-
ing Networks (PLN) and are expected to be used in
conjunction with LMSs. Another, more radical ap-
proach is the Open Learning Network (OLN) (Mott,
2010) that unifies both worlds in a single platform.
The logic behind these systems is radically different
and promises greater flexibility, portability, adaptabil-
ity and openness but the stringent and expensive to
implement processes of LTI still remain and have to
be used even when practically they have nothing to
offer.

In this paper we propose a new lightweight tech-
nique that can be used instead of LTI and OpenA-
jax for integration and interoperability of web com-
ponents with learning platforms. This technique pro-
vides learning content authors the ability to utilise
any type of web component with minimal devel-
opment and administrative overhead. Furthermore,
it promises robustness, better functionality and effi-
ciency in every respect.

2 MOTIVATION

This work started as part of the MCSquared project
(EU-funded). The purpose of this project is to design
and develop an intelligent digital environment that en-
ables authoring and utilisation of creative books (c-
books). These are e-books that offer interactivity over
rich media content and enhance creativity of mathe-
matical thinking. The platform is deployed as a web-
based application and features a flexible authoring en-
vironment that supports the dynamic integration of
web components at design time. These components
may be specialised learning widgets or any other type

of component that provides a basic API and is avail-
able on the web.

A typical component of that category has the follow-
ing characteristics:

1. It is deployed either as an individual widget or as
a part of a JavaScript library that offers a logically
interrelated collection of tools.

2. It is freely available and no copyright or license
issues abide. Potential users are free to execute,
copy, amend and distribute the software.

3. It offers an API through which its functionality
can be made available to the users. Through this
API it is possible to load, initialise, get/set its state
and intercept user/system interactions with it.

4. It executes in the browser and there are no depen-
dencies on back-end components.

5. It may include a visual part to be presented as part
of the page.

6. There is no registration requirement for the com-
ponent to be used.

7. It is hosted in a public Content Delivery Network
(CDN) or it is downloadable and able to be hosted
locally.

8. There is no ability to amend the implementation
of the component. It is not possible or feasible
to change its source and make it compatible with
a potential host or extend it with some interoper-
ability method remotely.

The motivation for this work was to devise a method
that provides seamless integration of web compo-
nents with the platform, with minimal technical sup-
port and administrative overhead. The method should
be able to support efficient two-way communication
with no server round trips (network traffic and back-
end dependencies) and the implementation should be
lightweight enough in order not to burden excessively
the browser. The interface for this communication
should be generic and able to support any type of stan-
dard like the W3C widget interface 10 or non-standard
widget-specific interfaces. Cross-widget communica-
tion should be safe but not artificially constrained. It
should be up to the implementer to decide what is ex-
posed from widget interfaces and how it can be used
by the rest of the system. In this work we are not
concerned with general architectural issues regarding
distribution of learning widgets for the web (Wilson
et al., 2007; Wilson et al., 2008). Issues like widget
packaging, deployment and description are beyond
the scope of this project.

10http://www.w3.org/TR/widgets-apis/

KEOD 2015 - 7th International Conference on Knowledge Engineering and Ontology Development

140



The considerations that played a crucial role in this
discussion can be summarised as follows:

1. Component heterogeneity: Nowadays the
plethora of these components in the web is over-
welming. There components are disparate and
heterogeneous and their exposed APIs are always
dissimilar. Integration with a platform requires
a technique that is generic and independent of
widget-specific functionality. The method should
be able to overcome variability by providing a
very simple interface, usable by any type of com-
ponent.

2. Platform compliance: Another consideration
is the potential to re-use the method in future plat-
forms as well. The method should not be depen-
dent on platform-specific functionalities and id-
iosyncrasies.

3. Registration: The integration process should
not require the execution of protracted and cum-
bersome procedures. It should be possible to reg-
ister the component with the platform with mini-
mal effort and technical expertise.

4. Communication: Once the component is embed-
ded in the platform, it should be relatively easy
and inexpensive (in terms of resource utilisation
and complexity) to exchange messages with its
host. Passing messages should be based on a con-
nectionless communication protocol and rely on
system stability at both ends of the channel.

5. Roles: A crucial question is whether it is accept-
able to consider the host (platform) and the guest
(component) nodes as two equal entities in this
relationship. In this case, implementation is sim-
ple and can be used globally by both sides in the
same way. In the case that host and guest need
to be treated unequal, the method should be based
on the assumption that there are certain host and
guest-specific functionalities that must be imple-
mented. If this is deemed unnecessary, it obvi-
ously must be avoided.

6. Browser security restrictions: Modern
browsers are not very tolerant with pages that in-
termix content from different domains and most
web components will most likely originate from
foreign domains. The method should be able
to overcome security constraints and browser-
specific idiosyncrasies.

7. Performance: Building a system as a dynamic
and arbitrary collection of heterogeneous compo-
nents, implies that these entities have their own
space and distinct purpose in the system. It makes
sense for these components to be able to operate
in parallel and communicate asynchronously with

the platform. In multi-processor systems this is
not just a matter of asynchronous behaviour, but
it can also make a huge difference in the overall
performance of the application.

8. Memory: Memory footprint is becoming a serious
issue in browser-based fat-client implementations.
The interoperability part must not be a substantial
burden in the memory balance.

9. Security: Security is always a major issue when
integrating foreign and potentially non-trusted
components with a system. The tendency is to
create integration methods with artificial barriers
in order to prevent developers from making dan-
gerous mistakes. This approach obviously may
have a major impact on the functionality that is
eventually exposed and reused. The method in
this project should allow for maximum flexibil-
ity in terms of what is exposed and what is not.
It should allow both secure containment of unsafe
material and unrestricted exposure of data and op-
erations wherever needed. It should be up to the
designer/developer to decide what is secure and
what is not.

3 THE METHOD

The method devised can logically be thought of as a
combination of two parts: communication protocol
and node interfacing. The terms we use to identify
the interoperable parts (nodes) are host and guest. The
nodes are treated as equals and two-way unrestricted
communication between them is assumed. The imple-
mentation is based on a thin JavaScript wrapper that
abstracts the node implementation from its interface
and encapsulates its internal specifics. The wrappers
provide the ability to selectively externalise any part
of the nodes’ functionality in a generic way. The func-
tionality is exposed through the definition of a public
interface that maps internal implementations to pub-
licly available methods. These methods can then be
callable by the communicating parties through mes-
sage passing.

3.1 Browser Security

A major challenge when integrating content from dif-
ferent domains over the web is the Same-Origin
Policy (SOP) enforced by all modern browsers. This
is a policy that aims to prevent unauthorised access to
confidential information by malicious scripts and thus
protect data integrity.

A simple solution to the problem is to reference
the components directly as JavaScript libraries in the

The Web Integration & Interoperability Layer (WIIL) - Turning Web Content into Learning Content using a Lightweight Integration and
Interoperability Technique

141



host page. The origin in this case is defined by the
location of the containing page. Therefore, even if we
have to load multiple components from various ori-
gins, the files will eventually run in the origin of the
page that includes them. The biggest problem with
this scenario is the possible use of mixed content in
the case of files coming from both secured (HTTPS)
and non-secured (HTTP) origins. Behaviour in this
case is browser-dependent and typically problematic.
Another problem is that code, regardless of origin,
will run under the same context as a single-threaded
application. Performance-wise this is not desirable.
The third issue is code organisation. Intermixing code
from different sources in the same global namespace
is a potential risk. Accidental name clashes that inval-
idate data are not uncommon problems in this case. In
conclusion this method is obviously not an option.

Another method for performing cross-origin
requests is JavaScript Object Notation with
Padding (JSONP). This is essentially a hack based
on the premise that JavaScript code referenced di-
rectly from a page, eventually runs in the origin of
that page. This method presupposes a great deal of
control over the component source and JSONP-aware
services. It also suffers from most of the problems
mentioned above. For these reasons this approach is
inadequate for our purposes. A third method (that is
also a hack) is to circumvent the policy by not mak-
ing any cross-origin requests at all. This apparently
requires an extra logical tier in the system that re-
sides at the server side. Requests are sent to a server-
side proxy that has the same origin as the page. This
approach is cleaner than the previous ones but re-
quires an extra server-side component which makes
it somewhat cumbersome. Another alternative is
to use Cross-origin Resource Sharing (CORS).
The assumption again is that we have access over
the server processes and we can overcome SOM by
adding an HTTP header in the response. This header
can then instruct the browser not to consider the call
a SOM violation. Apart from the previously men-
tioned issues, this approach has the additional prob-
lems of potential browser incompatibility and header
removal by firewalls. Modern browsers have the abil-
ity to bypass SOP by making calls to WebSocket ad-
dresses. In this case it is the WebSocket server that
does the security checks and allows the caller to re-
ceive an answer or not. Server dependencies and other
obvious problems make this approach equally inade-
quate as the above. A fifth method is to use iframes
by explicitly declaring in JavaScript that the nodes
have the same origin. This can be done by setting
the property document.domain to the same domain
name at both ends. A system called Subspace (Jack-

son and Wang, 2007) is using this technique to imple-
ment cross-domain communication for web mashup
applications. The actual behaviour depends on the
browser and another problem is that resetting the do-
main property may not have the expected result. A
typical problem is that the port number may be set
to null (empty) by that process. Implementation is
again browser-dependent.

The only method that overcomes all of the above
obstacles is to embed the component in a sandbox
and communicate through HTML5 messaging. In
HTML terms this can be a common iframe element
that hosts a separate page containing the external li-
brary. The component is kept isolated in the sandbox
and executes in its own context as a separate applica-
tion. That provides the advantages of code safety and
parallel execution. The component interoperates with
its host through a messaging system inherently sup-
ported by HTML5 (Järvinen, 2011). Concurrency is
maintained by asynchronous message passing at ei-
ther direction. Execution and data interchange take
place entirely in the browser and there is no network
and server overhead involved.

3.2 Interfacing

As explained above, node diversity is hidden within a
wrapper. The wrapper provides a very generic inter-
face through which basic communication can be car-
ried out. The interface comprises the following two
functions:

• sendMessage(message)
• receiveMessage(event)

This system provides the ability for two-way com-
munication between the host and the guest. In both
cases the data is sent in the form of a message ob-
ject. The only difference is that in the latter case the
message is received as a property of an event object.
Message passing in the HTML5 system is carried out
using events.

The format of the message object follows:

• origin: This property serves as the unique identi-
fier of the component that sends the message. It is
not the same as the homonymous property of the
event object that carries it when in transit. The lat-
ter corresponds to the domain of the sender. This
property is just some text that uniquely identifies
the component in the system.

• content: This property can contain data of any
type. The purpose in this case is to send some
data and let the receiver decide what to do with it.

KEOD 2015 - 7th International Conference on Knowledge Engineering and Ontology Development

142



• command: This is an instruction (command) that is
possibly sent along with some data in the form of
arguments. The intention in this case is to utilise
receiver-specific functionality and perform some
processing there. This functionality is exposed
in the form of a public interface that the receiver
makes available to other communicating parties.
The command can only be given as a string
(text).

• args: This is an array of values that accompany
the command. These values are addressed to a
method of the receiver’s public interface. That
method is what the command property refers to.

• callback: This is a string value (text) that cor-
responds to a function exposed in the public in-
terface of the sender. The receiver, upon receipt
of the message, performs the requested operation
and then sends the resulting value as argument to
the callback function of the sender. This prop-
erty permits the asynchronous continuation of the
same logical process in the sender after a remote
call in the receiver is completed.

This message gives the ability to either pass some data
to another node for internal consumption or instruct
the other node to execute a function (remotely) and
possibly send back the results. Since the communi-
cating parties do not have direct access to each other’s
APIs, the instruction (command) can only be sent in
the form of text. The receiving wrapper uses this text
to identify the actual function that needs to be called
and request the operation.

A message object is not valid if:

• command is not a string
• args is not an array
• callback is not a string
• both content and command are not given
• args is given without a command
• callback is given without a command

The above validation rules are enforced by wrappers.
Components by their nature are expected to be very
diverse in terms of functionality. As a consequence
of that their interfaces are expected to be heteroge-
neous. On the other hand platform - widget interop-
erability should be based on a standardised uniform
way of communication. The solution to this problem
is to enable interprocess communication through the
above message objects. Instead of extending the ba-
sic interface presented above with more functions, we
pass method names and parameters as properties of
messages. By using this technique we keep a simple
and uniform interface that facilitates basic communi-
cation for any type of node (component or platform)

and at the same time we accommodate the utilisation
of the nodes’ particular functionalities without con-
straints.

According to the above system every wrapper
must define an object called publicIF that exposes
the node’s particular functionality to the rest of the
world. This functionality can be utilised locally by
calling this object’s public member methods. The
same methods can also be called remotely through
a special executor method that is also provided by
publicIF. If, for example, there is a method called
add(a, b) that performs addition, this method can be
called in two ways:

locally: publicIF.add(a, b)

remotely: publicIF.execute({’command’:’add’,
’args’:[a, b], ’callback’:’log’})

The only argument of the executor is the message ob-
ject described above. The information about the ac-
tual function to be executed, its arguments and the
callback is given as properties of the object.

3.3 Communication Protocol

The communication protocol for platform - widget
communication doesn’t have to be particularly com-
plex. There are four communication scenarios that
can possibly take place:

a. The guest wants to inform the host about its avail-
ability. This message is supposed to be sent immedi-
ately after the guest loads up and is fully functional
within its page. The message follows:

content: ’ready’
command: null
args: null
callback: null

b. The node (guest or host) wants to send a message to
the other party without any instruction as to what the
receiver should do with it. This is a simple message
with some content (like the previous one).

content: ’some content’
command: null
args: null
callback: null

c. The node (guest or host) wants to use a service
provided by the other party. That entails the execution
of a remote method. An answer may be required as
well. The message looks like the following in this
case:

content: null
command: ’add’

The Web Integration & Interoperability Layer (WIIL) - Turning Web Content into Learning Content using a Lightweight Integration and
Interoperability Technique

143



Figure 1: The interfacing stack.

args: [2,3,4]
callback: ’display’

The receiver is expected to perform the operation and
return the result to the caller (enclosed within another
message). The new message takes the form of another
function call to the caller’s display function.

d. The node (guest or host) wants to send some data
and instruct the receiver explicitly what to do with the
data. That, again, entails the execution of a remote
method. The data is send as an argument for the re-
mote method to be executed. The message would look
like the following in this case:

content: null
command: ’logActions’
args: [{action1},{action1},..,{actionN}]
callback: null

It is, of course, up to the implementer of the integra-
tion to decide what the protocol should be able to do.
In the scenario presented above the assumption is that
once the guest becomes fully functional, an uninter-
ruptible (HTML5) communication channel becomes
available. If the host knows that the guest exists and
is available, then it is safe to assume that the guest
will remain available throughout the whole session.
But that may not be true if the guest crashes or the el-
ement holding the sandbox is removed from the host’s
DOM for some reason. The communication protocol
could be used in a less connection-less manner in this
case and check for availability at certain time inter-
vals.

3.4 Component Installation

Third-party components are typically considered ex-
ternal to an application and therefore an installation
is required prior to their use. This type of process
can take many forms in web-based applications. In
Moodle, for example, plug-ins must physically be-
come part of the application codebase. If the compo-
nent is hosted externally and is LTI-compliant, there
is a registration process that provides configuration
parameters and a method of authentication (OAuth).
Configuration parameters typically include the URL
referencing the tool, the user credentials under which
a trust relationship can be established (consumer key
and shared secret in Moodle) and launch instructions.

Our system is designed to work with external non-
LTI-compliant components. Installation is much sim-
pler and registration is more lax since authentication
is not required. A mutual trust relationship can be
established by injecting the trusted foreign domain
names to the nodes.

3.5 Component Launch

The LTI Launch protocol can be a long-winded pro-
cess for non-LTI-compliant components. Making a
simple client-based web component LTI-compliant
just for the sake of making it interoperable with the
platform is an overkill. The LTI launch process is de-
picted in figure 2.

Figure 2: The LTI launch protocol.

The tool is selected by the user in the LMS environ-
ment (browser). The LMS server prepares the neces-
sary information for the launch as a HTML form and
sends it back to the browser. Upon arrival the form
gets automatically submitted to the tool. The user
gets authenticated and the tool provider sends back a
tool instance. After that, session information is main-
tained in cookies during server roundtrips.

If the component does not include any native
server-side logic, then according to the LTI launch
protocol, some server-side code must be introduced.
The self-submitting form that contains launch infor-
mation is sent to the server through a POST HTTP
method. There has to be something at the back-end to
receive and process the values. Apart from the extra
processing tier, this method entails unnecessary net-
work traffic.

In our system, the launch protocol is much sim-
pler. The tool is invoked by the user in the LMS en-

KEOD 2015 - 7th International Conference on Knowledge Engineering and Ontology Development

144



vironment and a request is sent to the tool provider.
An instance of the tool is returned and loaded into
the guest’s DOM. The guest informs the host that the
tool is ready to be used and the host sends a message
with initialisation data. After that the tool sends data
updates whenever user activity is detected. The pro-
cess does not involve any server-side processing and
network traffic is not incurred. After instantiation the
tool communicates with its host locally through mes-
sage passing.

Figure 3: A simpler launch protocol.

3.6 Cross-component Communication

Typically the framework used for this part does not
deviate a lot from the basic principles of OpenA-
jax. In the OpenAjax world cross-component com-
munication takes place through managed or unman-
aged hubs. A component may take the role of a pro-
ducer that publishes messages to the hub and/or a
consumer that subscribes to receive messages from
the hub. The hub is designed around the concept of
anonymous broadcasting. Producers and consumers
are not aware of each other. Point-to-point messag-
ing, cross-component property management and re-
mote procedure calls are not inherently supported.

In the approach proposed here communication be-
tween components is possible only through the plat-
form’s wrapper. In that respect this wrapper plays the
role of a hub. Components live in their own secure en-
vironment (sandbox) and exchange information with
the platform through message passing. This is where
the similarities end.

An important difference is that the platform itself
is a component. In this case communication is direct
and unrestricted. System integrators are allowed to
expose a widget functionality (or part of it) and make
it available to its host and vice versa. Components
are able to exchange messages and to make remote
procedure calls. Property management is also pos-
sible through the same mechanism. Communicating
parties are fully aware of each other’s exposed func-
tionality and are free to utilise it. A distinguishing

feature of this system is the ability to asynchronously
execute a logical process in the sender after a remote
procedure call is completed.

4 A WORKED EXAMPLE

In this section we present a sample application that
demonstrates a basic but complete integration sce-
nario. The guest in this case is a page that hosts a
learning activity developed in Geogebra. The host
is just a simple page that coordinates the operations.
The wrapper of Geogebra in the guest registers a few
event handlers and intercepts user interactions with
the tool. In this activity the student uses the slid-
ers to change values in variables. User activity data
along with the current state of the construction are
sent through the wrappers to the host.
updateObjectHandler = function(object)
{
var args={’object’:object,’action’:’updated’};
var message =
createMessage(null,’logAction’,[args],null);
sendMessage(message);
}

The only thing that needs to be done in the host is to
implement and expose a function that processes the
input data.
//private method
function logAction(action)
{

database.log(action);
}
//public method
publicIF.logAction = logAction;

The actual data is received in the form of an event
object but the wrapper transparently handles unpack-
aging of the content and delivers the data directly to
the requested method.
The host inserts the data into a local JavaScript
database that is linked to visualisations on the page.
As the student interacts with the tool and the data
changes in the database, the host displays real-time
user activity/performance statistics in histograms.
The visualisations are themselves separate widgets
hosted in their own guest sandboxes and communi-
cate with the host using the same system.
One additional feature of this implementation is that
the host analyses the data dynamically using a rule-
based expert system and provides real-time intelligent
support to the student. If the student achieves some-
thing that seems to be leading to the correct direction,
the host displays a message to reinforce this attempt.

The Web Integration & Interoperability Layer (WIIL) - Turning Web Content into Learning Content using a Lightweight Integration and
Interoperability Technique

145



Figure 4: The ’Ladders’ Activity from Geogebra Tube.

The student can also ask for help and check whether
the objective has been accomplished or not. All this
processing uses data coming dynamically through the
interoperability sub-system.

5 CONCLUSION

The technique presented in this paper has been used
in an experimental system that was developed as part
of the EU project MC2 11 at London Knowledge Lab,
IOE UCL 12. Preliminary test results showed that the
method works as expected and fulfils the original de-
sign goals. The method deals effectively with com-
ponent heterogeneity and seamlessly integrates dis-
parate components into a seemingly homogeneous
whole. Registration, instantiation and initialisation
of these components is simple and efficient. Op-
eration is safe and the system performs well when
the components asynchronously communicate with
the platform. The method overcomes browser secu-
rity restrictions and the overhead in terms of mem-
ory and processing power needed is minimal. It is
estimated that the experimental implementation has
successfully processed so far approximately 37,000
events. Sample tests showed that messages are being
exchanged with 0% loss at a speed that allows a very
smooth interaction between different components. In
future versions of the system we envisage to imple-
ment an on-line editor that simplifies the integration
process by inserting wrapper boilerplate code to the
nodes and by providing the ability to visually manip-
ulate them.

ACKNOWLEDGEMENTS

The research leading to these results has re-
ceived funding from the European Union Seventh

11http://www.mc2-project.eu
12http://www.lkl.ac.uk

Framework Programme (FP7/2007-2013) under grant
agreement N◦610467 - project ”M C Squared”. This
publication reflects only the author’s views and the
EU is not liable for any use that may be made of the
information contained therein.

REFERENCES

Bohl, O., Scheuhase, J., Sengler, R., and Winand, U. (2002).
The sharable content object reference model (scorm)-
a critical review. In Computers in education, 2002.
proceedings. international conference on, pages 950–
951. IEEE.

González, M. A. C., Penalvo, F. J. G., Guerrero, M. J. C.,
and Forment, M. A. (2009). Adapting lms architec-
ture to the soa: an architectural approach. In Internet
and Web Applications and Services, 2009. ICIW’09.
Fourth International Conference on, pages 322–327.
IEEE.

Gurram, R., Mo, B., and Gueldemeister, R. (2008). A web
based mashup platform for enterprise 2.0. In Web
Information Systems Engineering–WISE 2008 Work-
shops, pages 144–151. Springer.

Jackson, C. and Wang, H. J. (2007). Subspace: secure
cross-domain communication for web mashups. In
Proceedings of the 16th international conference on
World Wide Web, pages 611–620. ACM.

Järvinen, H. (2011). Html5 web workers. In T-111.5502
Seminar on Media Technology BP, Final Report,
page 27.

Mott, J. (2010). Envisioning the post-lms era: The open
learning network. Educause Quarterly, 33(1):1–9.

Severance, C., Hanss, T., and Hardin, J. (2010). Ims learn-
ing tools interoperability: Enabling a mash-up ap-
proach to teaching and learning tools. Technology, In-
struction, Cognition and Learning, 7(3-4):245–262.

Severance, C., Hardin, J., and Whyte, A. (2008). The
coming functionality mash-up in personal learning
environments. Interactive Learning Environments,
16(1):47–62.

Wilson, S., Sharples, P., and Griffiths, D. (2007). Extend-
ing ims learning design services using widgets: Initial
findings and proposed architecture.

Wilson, S., Sharples, P., and Griffiths, D. (2008). Distribut-
ing education services to personal and institutional
systems using widgets. In Proc. Mash-Up Personal
Learning Environments-1st Workshop MUPPLE, vol-
ume 8, pages 25–33.

KEOD 2015 - 7th International Conference on Knowledge Engineering and Ontology Development

146


